CMOS Digital Integrated Circuits

Lec 13
Semiconductor Memories
Semiconductor Memory Types

Semiconductor Memories

Read/Write (R/W) Memory or Random Access Memory (RAM)
- Dynamic RAM (DRAM)
- Static RAM (SRAM)

Read-Only Memory (ROM)
1. Mask (Fuse) ROM
2. Programmable ROM (PROM)
 - Erasable PROM (EPROM)
 - Electrically Erasable PROM (EEPROM)
3. Flash Memory
4. Ferroelectric RAM (FRAM)
Semiconductor Memory Types (Cont.)

- **Design Issues**
 - **Area Efficiency of Memory Array:** # of stored data bits per unit area
 - **Memory Access Time:** the time required to store and/or retrieve a particular data bit.
 - **Static and Dynamic Power Consumption**

- **RAM:** the stored data is volatile
 - **DRAM**
 - A capacitor to store data, and a transistor to access the capacitor
 - Need refresh operation
 - Low cost, and high density ⇒ it is used for main memory
 - **SRAM**
 - Consists of a latch
 - Don’t need the refresh operation
 - High speed and low power consumption ⇒ it is mainly used for cache memory and memory in hand-held devices
Semiconductor Memory Types (Cont.)

- ROM: 1, nonvolatile memories
 2, only can access data, cannot modify data
 3, lower cost: used for permanent memory in printers, fax, and game machines, and ID cards
 - Mask ROM: data are written during chip fabrication by a photo mask
 - PROM: data are written electrically after the chip is fabricated.
 » Fuse ROM: data cannot be erased and modified.
 » EPROM and EEPROM: data can be rewritten, but the number of subsequent re-write operations is limited to 10^4-10^5.
 - EPROM uses ultraviolet rays which can penetrate through the crystal glass on package to erase whole data simultaneously.
 - EEPROM uses high electrical voltage to erase data in 8 bit units.
 - Flash Memory: similar to EEPROM
 - FRAM: utilizes the hysteresis characteristics of a capacitor to overcome the slow written operation of EEPROMs.
Random-Access Memory Array Organization

Bit Lines(2^M)

Col 1 Col 2 Col 2^M

Row 1
Row 2
Row 2^N

Memory Cell

(2N×2M total)

Data Line Control Circuits

Column Decoder

B1 B2 BM

Column Decoder Bits
Nonvolatile Memory
4Bit × 4Bit NOR-based ROM Array

- One word line “R_i” is activated by raising its voltage to V_{DD}
- Logic “1” is stored: Absent transistor
 Logic “0” is stored: Present transistor
- To reduce static power consumption, the pMOS can be driven by a periodic pre-charge signal.

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

CMOS Digital Integrated Circuits
Layout of Contact-Mask Programmable NOR ROM

- **“0” bit**: drain is connected to metal line via a metal-to-diffusion contact.
- **“1” bit**: omission the connect between drain and metal line.
- **To save silicon area**: the transistors on every two adjacent rows share a common ground line, also are routed in n-type diffusion.
In reality, the metal lines are laid out directly on top of diffusion columns to reduce the horizontal dimension.
Implant-Mask Programmable NOR ROM Array

Logic “0” is stored in each cell:
Present transistor

- V_{T0} is implanted to activate 1 bit:
 - Let $V_{T0} > V_{DD}$ ⇒ permanently turn off transistor
 - ⇒ disconnect the contact
• Each diffusion-to-metal contact is shared by two adjacent transistors
 ⇒ need smaller area than contact-mask ROM layout
4Bit × 4Bit NAND-based ROM Array

- All word lines are kept at logic “1” level, except the selected line pulled down by “0” level.
- Logic “0” is stored: Absent transistor
 Logic “1” is stored: Present transistor
Layout of Implant-Mask Programmable 4Bit × 4Bit NAND ROM

- No contact in the array ⇒ *More compact than NOR ROM array*
- Series-connected nMOS transistors exist in each column
 ⇒ *The access time is slower than NOR ROM*
Design of Row and Column Decoders

- Row and Column Decoders: To select a particular memory location in the array.

\[
\begin{array}{c|c|c|c|c|c}
A_1 & A_2 & R_1 & R_2 & R_3 & R_4 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

- 2 address bits \(\Rightarrow\) 4 word lines
NOR-based Row Decoder Circuit
2 Address Bits and 4 Word Lines
Implementation of Row Decoder and ROM

- Can be implemented as *two adjacent* NOR planes
Implementation of Row Decoder and ROM (Cont.)

- Can also be implemented as \textit{two adjacent} NAND planes

\[2^N \text{ word lines} \]

\[\begin{array}{c}
\text{NAND Row} \\
\text{Decoder} \\
\hline
1 \quad 2 \quad N \\
\text{Address bits}
\end{array} \quad \begin{array}{c}
\text{NAND ROM} \\
\text{Array} \\
\hline
\text{2}^M \text{ columns}
\end{array} \]

\[\begin{array}{cccccc}
A_1 & A_2 & R_1 & R_2 & R_3 & R_4 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 \\
\end{array} \]

\textbf{4×4 NAND ROM Array}
Column Decoder (1)
NOR Address Decoder and Pass Transistors

- **Column Decoder**: To select one out of 2^M bits lines of the ROM array, and to route the data of the selected bit line to the data output.

- **NOR-based column address decoder and pass transistors**:
 - Only one nMOS pass transistor is turned on at a time.
 - # of transistors required: $2^M(M+1)$ (2^M pass transistors, $M2^M$ decoder)

![Diagram of NOR Address Decoder and ROM Array]

Diagram Notes:
- **Column Address Decoder**: 1, 2, 3, M
- **ROM Array**: 1, 2, 3, 2^M
- 2^M pass transistors
- Serial or Parallel Data output
Column Decoder (2)

Binary Tree Decoder

- **Binary Tree Decoder**: A binary selection tree with consecutive stages
 - The pass transistor network is used to select one out of every two bit lines at each stage. The NOR address decoder is not needed.
 - **Advantage**: *Reduce the transistor count* \(2^{M+1}-2+2M\)
 - **Disadvantage**: Large number of series connected nMOS pass transistors ⇒ *long data access time*

![Binary Tree Decoder Diagram]
An Example of NOR ROM Array

- Consider the design of a 32-kbit NOR ROM array and the design issues related to *access time analysis*
 - # of total bits: 15 ($2^{15} = 32,768$)
 - 7 row address bits ($2^7 = 128$ rows)
 - 8 column address bits ($2^8 = 256$ columns)
 - Layout: implant-mask
 - $W = 2 \, \mu m$, $L = 1.5 \, \mu m$
 - $\mu nC_{ox} = 20 \, \mu A/V^2$
 - $C_{ox} = 3.47 \, \mu F/cm^2$
 - $R_{\text{sheet-poly}} = 20 \, \Omega$/square

- R_{row}, and C_{row} / unit memory cell
 - $C_{\text{row}} = C_{ox} \cdot W \cdot L = 10.4 \, fF/bit$
 - $R_{\text{row}} = (# \, \text{of squares}) \times R_{\text{sheet-poly}} = 3 \times 20 = 60 \, \Omega$
An Example of NOR ROM Array (Cont.)

- The poly word line can be modeled as a RC transmission line with up to 256 transistors.

\[R_1 = 60 \, \Omega \quad R_2 = 60 \, \Omega \quad R_3 = 60 \, \Omega \quad R_{256} = 60 \, \Omega \]

\[C_1 = 10.4 \, \text{fF} \quad C_2 = 10.4 \, \text{fF} \quad C_3 = 10.4 \, \text{fF} \quad C_{256} = 10.4 \, \text{fF} \]

- The row access time \(t_{row} \): delay associated with selecting and activating 1 of 128 word lines in ROM array. It can be approximated as

\[t_{row} \approx 0.38 \cdot R_T \cdot C_T = 15.53 \, \text{ns} \]

\[R_T = \sum_{\text{all cols}} R_i = 15.36 \, \text{k\Omega} \]

\[C_T = \sum_{\text{all cols}} C_i = 2.66 \, \text{pF} \]
An Example of NOR ROM Array (Cont.)

• A more accurate RC delay value: *Elmore time constant* for RC ladder circuits

\[
t_{\text{row}} = \sum_{k=1}^{256} R_{jk} C_k = 20.52 \text{ ns}
\]

• The column access time \(t_{\text{column}} \): worst case delay \(\tau_{\text{PHL}} \) associated with discharging the precharged bit line when a row is activated.
An Example of NOR ROM Array (Cont.)

- $C_{column} = 128 \times (C_{gd,driver} + C_{db,driver}) \approx 1.5\text{pF}$
 where $C_{gd,driver} + C_{db,driver} = 0.0118\ \text{pF/word line}$
- Since only one word line is activated at a time, the above circuit can be reduced to an inverter circuit

Remark: τ_{PLH} is not considered because the bit line is precharged high before each row access operation

\[t_{column} = \tau_{PHL} = \frac{C_{load}}{k_n(V_{OH} - V_{T0,n})} \left[\frac{2V_{T0,n}}{V_{OH} - V_{T0,n}} + \ln\left(\frac{4(V_{OH} - V_{T0,n})}{V_{OH} + V_{OL}} - 1\right) \right] = 18\text{ns} \]

\[t_{access} = t_{row} + t_{column} = 20.52 + 18 = 38.52\ \text{ns} \]
Static Random Access Memory (SRAM)

- **SRAM**: The stored data can be retained indefinitely, without any need for a periodic refresh operation.

- **Complementary Column** arrangement is to achieve a more reliable SRAM operation.
Resistive-Load SRAM Cell

pass transistors to activated by a row select (RS) signal to enable read/write operators

Basic cross-coupled 2-inverter latch with 2 stable op points for storing one-bit

SRAM cell is accessed via two bit (column) lines C and its complement for reliable operation

undoped polysilicon resistor

V_{DD}

bit line C

word line

bit line C

word line
Full CMOS and Depletion-Load SRAM Cell

Full CMOS SRAM Cell

Depletion-Load SRAM Cell
SRAM Operation Principles

- **RS=0**: The word line is not selected. \(M_3 \) and \(M_4 \) are OFF
 - One data-bit is held: The latch preserves one of its two stable states.
 - **If RS=0 for all rows**: \(C \) and \(\overline{C} \) are charged up to near \(V_{DD} \) by pulling up of \(M_{P1} \) and \(M_{P2} \) (both in saturation)

\[
V_C = V_{\overline{C}} = V_{DD} - \left(V_{T0} + \gamma \sqrt{|2\phi_F|} + V_C - \sqrt{|2\phi_F|} \right)
\]

- Ex: \(V_C = V_{\overline{C}} = 3.5V \) for \(V_{DD} = 5V, V_{T0}=1V, |2\phi_F|=0.6V, \gamma=0.4V^{1/2} \)
SRAM Operation Principles (Cont.)

Pull-up transistor (one per column)

- **RS=1**: The word line is now selected. \(M_3 \) and \(M_4 \) are ON

Four Operations

1. **Write “1” Operation** \((V_1=V_{OL}, V_2=V_{OH} \text{ at } t=0^+):\)

 \(V_C \Rightarrow V_{OL} \) by the *data-write circuitry*. Therefore, \(V_2 \Rightarrow V_{OL} \), then \(M_1 \) turns *off* \(V_1 \Rightarrow V_{OH} \) and \(M_2 \) turns on pulling down \(V_2 \Rightarrow V_{OL} \).
SRAM Operation Principles (Cont.)

2. Read “1” Operation ($V_1=V_{OH}$, $V_2=V_{OL}$ at $t=0^-$):

V_C retains pre-charge level, while $V_C \Rightarrow V_{OL}$ by M_2 ON. Data-read circuitry detects small voltage difference $V_C - V_{\overline{C}} > 0$, and amplifies it as a “1” data output.
3. Write “0” Operation ($V_1 = V_{OH}$, $V_2 = V_{OL}$ at $t=0^-$):

$V_C \Rightarrow V_{OL}$ by the *data-write circuitry*.

Since $V_1 \Rightarrow V_{OL}$, M_2 turns off, therefore $V_2 \Rightarrow V_{OH}$.

SRAM Operation Principles (Cont.)
SRAM Operation Principles (Cont.)

4. Read “0” Operation ($V_1=V_{OL}$, $V_2=V_{OH}$ at $t=0^-$):

$V_{\overline{C}}$ retains pre-charge level, while $V_C \Rightarrow V_{OL}$ by M_1 ON.

Data-read circuitry detects small voltage difference $V_C - V_{\overline{C}} < 0$, and amplifies it as a “0” data output.
SRAM Operation Principles (Cont.)

Pull-up transistor (one per column)

- **Bit line C**
- **Word line**
- **V_{DD}**
- **MP1**
- **MP2**
- **M1**
- **M2**
- **M3**
- **M4**
- **V_C**
- **VC**
- **CC**
- **RS**

Pull-up transistor (one per column)

Write 1

- RS: Hold
- VC: 3.5V
- V_C: 3.5V

Read 1

- RS: Hold
- VC: 3.5V
- V_C: 3.0V

Write 0

- RS: Hold
- VC: 3.5V
- V_C: 0V

Read 0

- RS: Hold
- VC: 3.5V
- V_C: 3.5V

Hold

- RS: Hold
- VC: 3.5V
- V_C: 3.0V
Static or "Standby" Power Consumption

- **Assume:** 1 bit is stored in the cell ⇒ M_1 OFF, M_2 ON ⇒ V_1=V_H, V_2=V_L. I.E. One load resistor is always conducting non-zero current.

\[
P_{\text{standby}} = \left(V_{DD} - V_{OL} \right)^2 / R
\]

with $R = 100\, \text{M} \Omega$ (undoped poly), $P_{\text{standby}} \approx 0.25 \, \mu\text{W}$ per cell for $V_{DD} = 5\text{V}$
Advantages

- Very low standby power consumption
- Large noise margins than R-load SRAMS
- Operate at lower supply voltages than R-load SRAMS

Disadvantages

- Larger die area: To accommodate the n-well for pMOS transistors and polysilicon contacts. The area has been reduced by using multi-layer polysilicon and multi-layer metal processes
- CMOS more complex process
6T-SRAM — Layout

Source: Digital Integrated Circuits 2nd
CMOS SRAM Cell Design strategy

Two basic requirements which dictate \(W/L \) ratios

1. Data-read operation should not destroy data in the cell
2. Allow modification of stored data during data-write operation

- Read “0” operation
 - at \(t=0^- \): \(V_1=0V, \) \(V_2=V_{DD} \); \(M_3, M_4 \) OFF; \(M_2, M_5 \) OFF; \(M_1, M_6 \) Linear
 - at \(t=0^+ \): \(RS = V_{DD} \), \(M_3 \) Saturation, \(M_4 \) Linear; \(M_2, M_5 \) OFF; \(M_1, M_6 \) Linear

- Slow discharge of large \(C_C \): Require \(V_1 < V_{T,2} \) \(\Rightarrow \) Limits \(M_3 \) \(W/L \) wrt \(M_1 \) \(W/L \)
CMOS SRAM Cell Design Strategy (Cont.)

- **Design Constraint:** \(V_{1,\text{max}} < V_{T,2} = V_{T,n} \) to keep \(M_2 \) OFF
 - \(M_3 \text{ saturation, } M_1 \text{ linear } \Rightarrow \)
 \[
 k_{n,3}(V_{DD} - V_1 - V_{T,n})^2/2 = k_{n,1}(2(V_{DD} - V_{T,n})V_1 - V_1^2)/2
 \]
 - Therefore,
 \[
 \frac{k_{n,3}}{k_{n,1}} = \frac{\left(\frac{W}{L}\right)_3}{\left(\frac{W}{L}\right)_1} < \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} - 2V_{T,n})^2}
 \]

- **Symmetry:**
 - Same for \(k_{n,4}/k_{n,2} \)
 - \(M_1 \) OFF for Read “1”
CMOS SRAM Cell Design Strategy (Cont.)

- Write “0” operation with “1” stored in cell:

 - V_C is set “0” by data-write circuit

 - at $t=0^-$: $V_1=V_{DD}$, $V_2=0V$; M_3, M_4 OFF; M_2, M_5 Linear; M_1, M_6 OFF
 - at $t=0$: $V_C=0V$, $V_C=V_{DD}$; M_3, M_4 saturation; M_2, M_5 Linear; M_1, M_6 OFF

 » Write “0” $\Rightarrow V_1: V_{DD} \rightarrow 0 (<V_{2T,n})$ and $V_2: 0 \rightarrow V_{DD}(M_2 \rightarrow OFF)$
CMOS SRAM Cell Design Strategy (Cont.)

- **Design constraint:** \(V_{1,max} < V_{T,2} = V_{T,n} \) to keep \(M_2 \) OFF

 » When \(V_1 = V_{T,n} \): \(M_3 \) Linear and \(M_5 \) saturation \(\Rightarrow \)

\[
k_{p,5}(0-V_{DD}-V_{T,p})^2/2 = k_{n,3}(2(V_{DD}-V_{T,n})V_{T,n}-V_{T,n}^2)/2
\]

» \(V_1 < V_{T,n} \), i.e. \(M_2(M_1) \) forced OFF

\[
\frac{k_{p,5}}{k_{n,3}} = \frac{k_{p,6}}{k_{n,4}} < \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} + V_{T,p})^2} \Rightarrow
\]

By symmetry

\[
\frac{W}{L}_3 = \frac{W}{L}_6 < \frac{\mu_n}{\mu_p} \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} + V_{T,p})^2} \Rightarrow
\]
SRAM Write Circuit

\[
\begin{array}{c|c|c|c|c|c}
W & DATA & \overline{WB} & WB & \text{Operation (M3 on)} \\
\hline
0 & 1 & 0 & 1 & M_1 \text{ off}, M_2 \text{ on } \implies V_C \rightarrow \text{low} \\
0 & 0 & 1 & 0 & M_1 \text{ on}, M_2 \text{ off } \implies V_C \rightarrow \text{low} \\
1 & X & 0 & 0 & M_1 \text{ off}, M_2 \text{ off } \implies V_C, V_C \text{ no change} \\
\end{array}
\]
SRAM Read Circuit

Source coupled differential amplifier

\[I_{D1} = \frac{k_n}{2} \left(V_C - V_X - V_{T1,n} \right)^2 \]

\[I_{D2} = \frac{k_n}{2} \left(V_C - V_X - V_{T2,n} \right)^2 \]

\[A_{sense} = \frac{\partial (V_{o1} - V_{o2})}{\partial (V_C - V_C)} = - g_m R \]

\[g_m = \frac{\partial I_D}{\partial V_{GS}} = \sqrt{2k_n I_D} \]

- Increase \(R \) →
- Use active load
- Use cascade
Sense Amp Operation

\[V_{BL} \]

\[V_{PRE} \]

\[V(1) \]

\[V(0) \]

\[t \]

Word line activated

Sense amp activated

Source: Digital Integrated Circuits 2nd
Fast Sense Amplifier

- $V_C < V_{\overline{C}}$: $M_1 \Rightarrow \text{OFF}$, V_o decreases, $V_{ON} \Rightarrow \text{High}$
- $V_C > V_{\overline{C}}$: $M_2 \Rightarrow \text{OFF}$, V_o remains high, $V_{ON} = \text{Low}$

$$A_{\text{sense}} = -g_m2(r_{o2}||r_{o5})$$
Two-Stage differential Current-Mirror Amplifier Sense Circuit
Typical Dynamic Response for One and Two Stage Sense Amplifier Circuits

Voltage (V)

Output-2 Stage

Output-1 Stage

V_C

t (nsec)

5 10 15 20 25 30

1 2 3 4 5
Cross-Coupled nMOS Sense Amplifier

- Assume: M_3 OFF, V_C and $V_{\overline{C}}$ are initially precharged to V_{DD}
- Access: V_C drops slightly less than $V_{\overline{C}}$
- $M_3 \Rightarrow$ON and $V_C < V_{\overline{C}}$: M_1 ON first, pulling V_C lower
 - M_2 turns OFF, C_C discharge via M_1 and M_3

Enhances differential voltage $V_C - V_{\overline{C}}$
Does not generate output logic level
Dynamic Read-Write Memory (DRAM) Circuits

- **SRAM**: 4~6 transistors per bit
 - 4~5 lines connecting as charge on capacitor
- **DRAM**: Data bit is stored as charge on capacitor
 - Reduced die area
 - Require periodic refresh

![Four-Transistor DRAM Cell](image)

Four-Transistor DRAM Cell
DRAM Circuits (Cont.)

Three-Transistor DRAM Cell

No constraints on device ratios
Reads are non-destructive
Value stored at node X when writing a “1” = $V_{WWL} - V_{Tn}$
3T-DRAM — Layout

Source: Digital Integrated Circuits 2nd
One-Transistor DRAM Cell

- **Industry standard** for high density dram arrays
- **Smallest** component count and silicon area per bit
- Separate or “explicit” capacitor (dual poly) per cell
The binary information is stored as the charge in \(C_1 \).

- Storage transistor \(M_2 \) is on or off depending on the charge in \(C_1 \).
- Pass transistors \(M_1 \) and \(M_3 \): access switches.
- Two separate bit lines for “data read” and “data write”.

\[C_2, C_3 >> C_1(>10C_1) \]
The operation is based on a **two-phase non-overlapping clock scheme**

- The precharge events are driven by \(\phi_1 \), and the “read” and “write” operations are driven by \(\phi_2 \).
- Every “read” and “write” operation is preceded by a precharge cycle, which is initiated with \(PC \) going **high**.
Write “1” OP: \(\text{DATA} = 0, \ WS = 1; \ RS = 0 \)

- \(C_2, C_1 \) Share charge due to \(M_1 \) ON
- Since \(C_2 >> C_1 \), the storage node \(C_1 \) attains approximately the same logic level.
Operation of Three-Transistor DRAM Cell (Cont.)

- Read “1” OP: \(\overline{DATA} = 0, \ WS = 0; \ RS = 1 \)

 \(M_2, M_3 \text{ ON } \Rightarrow C_3, C_1 \) discharges through \(M_2 \) and \(M_3 \), and the falling column voltage is interpreted by the “data read” circuitry as a stored logic “1”.

\[RS \]
\[M_2 \]
\[DATA \]
\[M_1 \]
\[M_3 \]
\[WS \]
\[C_2 \]
\[C_1 \]
\[C_3 \]
Operation of Three-Transistor DRAM Cell (Cont.)

- Write “0” OP: \(\overline{DATA} = 1, \ WS = 1; \ RS = 0 \)
 - \(M_2, M_3 \) ON \(\Rightarrow C_2 \) and \(C_1 \) discharge to 0 through \(M_1 \) and \textit{data_in} \textit{nMOS}.
Operation of Three-Transistor DRAM Cell (Cont.)

• Read “0” OP: \(\overline{DATA} = 1 \), \(WS = 0 \); \(RS = 1 \)

 » \(C_3 \) does not discharge due to \(M_2 \) OFF, and the logic-high level on the \(Data_{out} \) column is interpreted by the data read circuitry as a stored “0” bit.
Operation of One-Transistor DRAM Cell

- **Write “1” OP:** $BL = 1$, $WL = 1$ (M_1 ON) $\implies C_1$ charges to “1”
- **Write “0” OP:** $BL = 0$, $WL = 1$ (M_1 ON) $\implies C_1$ discharges to “0”
- **Read OP:** destroys stored charge on C_1 \implies destructive refresh is needed after every data read operation
Appendix

Derivation of $k_{n,3}$

\[
\frac{k_{n,3}}{k_{n,1}} = \left(\frac{W}{L} \right)_3^3 \times \frac{2(V_{DD} - 1.5V_{T,n})V_{T,n}}{(V_{DD} - 2V_{T,n})^2} < 0
\]

Therefore,

\[
k_{n,3}(V_{DD} - V_1 - V_{T,n})^2/2 = k_{n,1}(2(V_{DD} - V_{T,n})V_1 - V_1^2)/2
\]