MOS CAPACITOR AND MOSFET

Dr. Mohammed M. Farag

Faculty of Engineering
Alexandria University

Ideal MOS Capacitor

Semiconductor Devices – Physics and Technology
Chapter 5
The metal-oxide-semiconductor field-effect transistor (MOSFET) is composed of a MOS capacitor and two p-n junctions placed immediately adjacent to the MOS capacitor. The MOS device 3D view and cross section are shown in Figure, d is the thickness of the oxide and V_C is the applied voltage on the metal plate (gate).

The energy band diagram of an ideal p-type semiconductor MOS at $V=0$ is shown in χ. The work function is the energy difference between the Fermi level and the vacuum level ($q \phi_m$ for the metal and $q \phi_s$ for the semiconductor). Electron affinity $q \chi$ is the energy difference between the conduction band and vacuum level in semiconductor. Oxide electron affinity $q \Phi_B$ is the energy barrier between the metal and oxide. $q \phi_B$ is the energy difference between the Fermi level E_F and intrinsic Fermi level E_i. Oxide electron affinity $q \Phi_B$ is the energy barrier between the metal and oxide.
An ideal MOS is defined as follows: (a) At zero applied bias, the energy difference between the metal work function $q\phi_m$ and the semiconductor work function $q\phi_s$ is zero, or the work function difference $q\phi_{ms}$ is zero:

$$q\phi_{ms} = (q\phi_m - q\phi_s) = q\phi_m - \left(q\chi + \frac{E_g}{2} + q\varphi_g \right) = 0,$$

(b) The energy band is flat (flat-band condition) when

- There is no applied voltage to the gate
- The only charges that exist in the capacitor under any biasing conditions are those in the semiconductor and those with equal but opposite sign on the metal surface adjacent to the oxide, i.e. no charges in the SiO$_2$
- There is no carrier transport through the oxide under direct current (dc)-biasing conditions, or the resistivity of the oxide is infinite
- This is the ideal MOS capacitor

When an ideal MOS capacitor is biased with a gate voltage, three cases can exist at the semiconductor surface:

- **Accumulation** ($V_G < 0$): excess positive carriers (holes) will be accumulated at the SiO$_2$-Si interface and no current flows.
- **Depletion** ($0 < V_G < V_T$): excess negative carriers will be induced at the SiO$_2$-Si interface but the number of majority carriers is still larger
- **Inversion** ($V_G > V_T$): number of excess negative minority carriers will exceed the number of majority carriers near the SiO$_2$-Si interface
For a p-type semiconductor, when a negative voltage \(V_C < 0\) is applied to the metal plate, excess positive carriers (holes) will be induced at the SiO₂-Si interface and the energy bands near the semiconductor surface are bent upward.

For an ideal MOS capacitor, no current flows in the device regardless of the value of the applied voltage, therefore, the Fermi level in the semiconductor remains constant.

The carrier density in the semiconductor depends exponentially on the energy difference \(E_F - E_i\):

\[
p_p = n_i e^{(E_F - E_i)/kT}
\]

(2)

The hole concentration increases as \((E_F - E_i)\) increases with further decreasing \(V_C\).

The corresponding charge distribution is shown in the previous Figure where \(Q_s\) is the positive charge per unit area in the semiconductor and \(Q_m\) is the negative charge per unit area in the metal where \(|Q_m| = Q_s\).
When a small positive voltage \((V_G > 0) \) is applied to the gate, the energy bands near the semiconductor surface are bent downward and the majority carriers (holes) are depleted.

The space charge per unit area, \(Q_{sc} \), in the semiconductor is equal to \(qN_AW \), where \(W \) is the width of the depletion region.

When a larger positive voltage is applied, the energy bands bend downward even more so that the intrinsic level \(E_i \) at the surface crosses over the Fermi level, as shown in Figure C.

As a result, the positive gate voltage starts to induce excess negative carriers (electrons) at the \(\text{SiO}_2\text{-Si} \) interface.

The electron concentration in the semiconductor depends exponentially on the energy difference \(E_F - E_i \) and is given by

\[
 n_p = n_i e^{(E_F - E_i)/kT}
\]

In this case, the electron concentration \(n_p \) at the interface is larger than \(n_i \), and the hole concentration is less than \(n_i \).

The number of electrons (minority carriers) at the surface is greater than holes (majority carriers).
Initially, the surface is in a weak inversion condition since the electron concentration is small.

As the bands are bent further, the conduction band E_c edge comes close to the Fermi level E_f.

The case of strong inversion occurs when the electron concentration near the SiO$_2$-Si interface is equal to the substrate doping level of the holes N_a.

After this point most of the additional negative charges in the semiconductor consist of the charge Q_n in a very narrow n-type inversion layer $0 \leq x \leq x_i$, where x_i is the width of the inversion region.

Once strong inversion occurs, the surface depletion-layer width reaches a maximum.

This is because when the bands are bent downward far enough for strong inversion to occur, even a very small increase in band bending corresponding to a very small increase in depletion-layer width results in a large increase in the charge Q_{in} in the inversion layer.

Thus, under a strong inversion condition the charge per unit area Q_s in the semiconductor is the sum of the charge Q_n in the inversion layer and the charge Q_{sc} in the depletion region:

$$Q_s = Q_n + Q_{sc} = Q_n - q N_a W_m$$

where W_m is the maximum width of the surface depletion region.
In Figure, we define a potential ψ at any point x relative to the equilibrium position of E_i.

- Ψ represents the band bending.
- $\Psi = 0$ in the bulk of the semiconductor ($x >> 0$).
- $\psi = \psi_s$ at the semiconductor surface ($x = 0$), the surface potential.

We can express electron and hole concentrations as a function of ψ:

$$n_p = n_i e^{(\psi - \psi_B)/kT},$$ (5)

$$p_p = n_i e^{(\psi - \psi_s)/kT},$$

where ψ is positive when the band is bent downward.

At the surface, the densities are

$$n_s = n_i e^{(\psi - \psi_s)/kT}.$$ (6)

$$p_s = n_i e^{(\psi - \psi_s)/kT}.$$

We can describe different operating regions with the aid of ψ_s:

- $\psi_s < 0$ Accumulation of holes (bands bend upward)
- $\psi_s = 0$ Flat-band condition
- $\psi_s > 0$ Depletion of holes (bands bend downward)
- $\psi_s = \psi_B$ Midgap with $n_s = n_p = n_i$ (intrinsic concentration)
- $\psi_s > \psi_B$ Inversion (bands bend downward)

The potential ψ as a function of distance x can be obtained by solving the one-dimensional Poisson's equation:

$$\frac{d^2\psi}{dx^2} = -\frac{\rho_s(x)}{\varepsilon_s},$$ (7)

where $\rho_s(x)$ is the charge density per unit volume at position x and ε_s is the dielectric permittivity.
Solving Poisson’s Equation

\[
\frac{d^2 \psi}{dx^2} = -\frac{\rho_s(x)}{\varepsilon_s}
\]

We already know that \(\rho_s(x) = q(N_D^+ - N_A^- + p_p - n_n) \) (I)

Away from the surface, \(\rho_s = 0 \Rightarrow N_D^+ - N_A^- = n_0 - p_0 \) (II)

Also we know that \(p_p = n_i e^{q \psi / kT} \), \(n_n = n_i e^{-q \psi / kT} \) (III)

where \(p_0 = n_i e^{q \psi / kT}; n_0 = n_i e^{-q \psi / kT} \)

Sub (II), (III) in (I):

\[
\rho_s(x) = q \left(p_0 (e^{q \psi / kT} - 1) - n_0 (e^{q \psi / kT} - 1) \right)
\]

\[
\therefore \frac{d^2 \psi}{dx^2} = -\frac{q}{\varepsilon_s} \left(p_0 (e^{q \psi / kT} - 1) - n_0 (e^{q \psi / kT} - 1) \right)
\]

Also we remember that \(E = -\frac{d\psi}{dx} \)

Solving Poisson’s Equation (2)

\[
E = \frac{d^2 \psi}{dx^2} = -\frac{dE}{dx} = -\frac{dE}{d\psi} \frac{d\psi}{dx} = \frac{E}{d\psi} \frac{d\psi}{dx}
\]

\[
\therefore \frac{dE}{d\psi} = -\frac{q}{\varepsilon_s} \left(p_0 (e^{q \psi / kT} - 1) - n_0 (e^{q \psi / kT} - 1) \right)
\]

Integrate the last equation to get the electric field \(E \)

\[
E \phi = \int \frac{q}{2\varepsilon_s kT} \left[(e^{q \psi / kT} + \frac{q}{kT} \psi - 1) + \frac{n_0}{p_0} (e^{q \psi / kT} - \frac{q}{kT} \psi - 1) \right] d\psi
\]

Let \(\beta = \frac{q}{kT} \), \(L_D = \frac{kT e}{\varepsilon_s q^2} = \frac{\varepsilon_s}{q^2 \beta} \) (Debye length)

\[
F = \left(\beta \psi, \frac{n_0}{p_0} \right) = \left[(e^{-\beta \psi} + \beta \psi - 1) + \frac{n_0}{p_0} (e^{\beta \psi} - \beta \psi - 1) \right]^{1/2}
\]

\[
E = \frac{1}{\sqrt{2kT}} F \left(\beta \psi, \frac{n_0}{p_0} \right)
\]
Surface Charge

- Use Gauss's law to find surface charge per unit area
 \[Q_s = -\varepsilon_0 E_s \]
- When \(\psi_s \) is negative (accumulation), the first term \(e^{-\beta \psi_s} \) dominates the electric field equation
- At \(\psi_s = 0 \) (flat band) there is no space charge
- When \(\psi_s \) is positive, initially the linear term \(\beta \psi_s \) in the electric field equation dominates as a result of the exposed, immobile dopants
- In depletion region, as \(\psi \) gets larger, the term \(\frac{e^{-\beta \psi}}{\varepsilon_0 \varepsilon_s} \rightarrow 1 \), the term \(e^{\beta \psi} \) dominates the equation

\[
\left(e^{-\beta \psi} + \beta \psi - 1 \right) + \frac{qN}{\beta \varepsilon_0} \left(e^{\beta \psi} - \beta \psi - 1 \right) \right]^{1/2}
\]

Charge, Field, and Potential

- The electric field does not penetrate the metal
- It is constant across the oxide as there are no charges in the oxide
- The electric field in the semiconductor drops linearly, as we would expect
- Charge on metal = induced surface charge in semiconductor
 \[Q_M = qN_A W - Q_n = -Q_s \]
- The potential is constant in the metal
- It drops linearly across the oxide
- The potential also drops across the depletion region of the semiconductor

\[
\psi(x) = \begin{cases}
V_s & 0 \leq x < d \\
\frac{qN_A}{\varepsilon_0} & d \leq x \leq W
\end{cases}
\]
In a depletion region with width \(W \), the charge in the semiconductor is approximately given by \(\rho_s = -qN_A \).

Integrating Poisson’s equation gives the potential \(\psi_s \) as a function of distance \(x \) in the depletion region, where the boundary conditions are \((E = -d\psi/dx = 0 \& \psi = 0 \ at \ x = \infty) \)

\[
\psi = \frac{qN_AW^2}{2\varepsilon_s} (1 - \frac{x}{W})^2 \tag{8}
\]

The electrostatic potential \(\psi = \psi_s \) at \(x=0: \)

\[
\Rightarrow \psi_s = \frac{qN_AW^2}{2\varepsilon_s} \tag{9}
\]

The surface is inverted whenever \(\psi_s \) is larger than \(\psi_B \).

In strong inversion, the electron concentration at the surface is equal to the substrate impurity concentration

\[
n_s = N_A = n_i e^{\frac{q\psi_B}{kT}} \Rightarrow \psi_B = \frac{kT}{q} \ln\left(\frac{N_A}{n_i}\right)
\]

This equation states that a potential \(\psi_B \) is required to bend the energy bands down to the intrinsic condition at the surface \((E_i = E_f) \), and bands must then be bent downward by another \(\psi_B \) at the surface to obtain the strong inversion.

Use the p-n junction approximation to calculate the depletion width \(W = \frac{2\varepsilon_s\psi_s(N_A+N_D)}{qN_A^2N_D} \approx \frac{2\varepsilon_s\psi_B}{qN_A} \) for p-type MOS.

The depletion layer reaches a maximum when the surface is strongly inverted and the maximum width of the surface depletion region \(W_m \) is given by substituting \(\psi_s = 2\psi_B \) in eqn (8)

\[
W_m = \sqrt{\frac{2\varepsilon_s\psi_s(\text{inv})}{qN_A}} = 2 \sqrt{\frac{\varepsilon_s\psi_B}{qN_A}} \tag{11}
\]
MOS Capacitance

In the absence of any work function differences, the applied voltage will be divided on the oxide and semiconductor

\[V = V_o + \psi_s, \] \hspace{1cm} (13)

where \(V_o \) is the potential across the oxide and is given by

\[V_o = \frac{Q_s}{d} = \frac{|Q_s|}{d} \] \hspace{1cm} (14)

where \(\varepsilon_o \) is the field in the oxide, \(C_o = \varepsilon_o / d \) is the oxide capacitance per unit area

\[|Q_s| = qN_A W = qN_A \frac{2 \varepsilon_s \psi_s}{qN_A} \]

\[= \sqrt{2qN_A \varepsilon_s \psi_s} \]

The total capacitance \(C \) for the MOS capacitor is a series combination of the oxide capacitance \(C_o \) and the semiconductor depletion-layer capacitance \(C_j \)

\[C = C_o \frac{C_j}{C_o + C_j} \text{ F/cm}^2. \] \hspace{1cm} (15)

where \(C_j = \varepsilon_s / W \), the same as for an abrupt p-n junction

From eqs. (9), (13), (14) we can eliminate \(W \) and obtain \(C \) by sub in eqn (15)

\[C = \frac{1}{\sqrt{1 + \frac{2 \varepsilon_o^2 V}{qN_A \varepsilon_s d^2}}}, \] \hspace{1cm} (16)

which states that the capacitance decreases with increasing metal-plate voltage while the surface is being depleted

When the applied voltage is negative, there is no depletion region, and we have an accumulation of holes at the semiconductor surface and thus the total capacitance is close to the oxide capacitance \(\varepsilon_o / d \)
MOS Capacitance (2)

- When strong inversion occurs, the width of the depletion region will not increase with increasing the applied voltage.
- This condition takes place at a metal-plate voltage that causes the surface potential \(\psi_s \) to reach \(2\psi_B \).
- Substitute \(\psi_s = 2\psi_B \) in Eq. 13 and note that the corresponding charge per unit area is \(qN_A W_m \) yields the metal-plate voltage at the case of strong inversion.
- This voltage is called the threshold voltage \(V_T \):

\[
V_T = \frac{qN_A W_m}{C_o} + \psi_s (im) \approx \frac{\sqrt{2\varepsilon_o qN_A (2\psi_B)}}{C_o} + 2\psi_B . \tag{17}
\]

MOS Capacitance (3)

- Once the strong inversion takes place, the total capacitance will remain at a minimum value given by Eq 15 with \(C_i = \varepsilon_s / W_m \),

\[
C_{\text{min}} = \frac{\varepsilon_s}{d + \left(\frac{\varepsilon_o}{\varepsilon_s} \right) W_m} . \tag{18}
\]

- After inversion is reached, the small signal capacitance depends on whether the measurements are made at high (typically -1MHz) or low (typically -1-100Hz) frequency, where "high" and "low" are w.r.t. the generation-recombination rate of the minority carriers in the inversion layer.
- If signal applied to make measurement is too fast, inversion layer carriers can't respond and do not contribute to the charge.
- Slowly varying signals allow time for minority carriers to be generated, drift across depletion region, or recombine.
- Majority carriers in the accumulation region respond much faster.
Ideal MOS C-V Characteristics

HF C-V Characteristics

LF C-V Characteristics

Figure 5.7
© John Wiley & Sons, Inc. All rights reserved.

Practical MOS Capacitor
The Work Function Difference

- The metal-SiO₂-Si is the most studied MOS capacitance.
- The electrical characteristics of the SiO₂-Si system approach those of the ideal MOS capacitor.
- However, for commonly used metal electrodes, the work function difference $q\phi_{ms}$ is generally not zero, and there are various charges inside the oxide or at the SiO₂-Si interface that will affect the ideal MOS characteristics.
- The work function of a semiconductor $q\phi_s$ and consequently the work function $q\phi_{ms} (= q\phi_m - q\phi_s)$ varies with the doping concentration.
- The ϕ_{ms} can vary over a 2V range depending on the electrode materials (Aluminum, p⁺Polysilicon, or n⁺Polysilicon) and the silicon doping concentration.

Energy Band Diagram of Practical MOS Capacitance

- In the isolated situation shown in Figure (a), all bands are flat; this is the flat-band condition.

![Energy Band Diagram](image)
At thermal equilibrium, the Fermi level must be a constant and the vacuum level must be continuous.

To accommodate the work function difference, the semiconductor bands bend downward, as shown in Figure.

Thus, the metal is positively charged and the semiconductor surface is negatively charged at thermal equilibrium.

To achieve the ideal flat-band condition of the ideal MOS capacitor, we have to apply a voltage equal to the work function difference $q \phi_{ms}$ to the metal.

The flat-band voltage is negative where $V_{FB} = \phi_{ms}$.

In ideal MOS equations the voltage V must be replaced with $(V - V_{FB})$.

$$V = V_{FB} + V_0 + \psi_S$$

The new expression of the threshold voltage V_T will be

$$V_T = V_{FB} + \frac{2e \alpha A (2 \psi_B)}{C_0} + 2 \psi_B$$

In addition to the work function difference, the MOS capacitor is affected by charges in the oxide and traps at the SiO$_2$-Si interface.

They are the interface trapped charge, fixed-oxide charge, oxide-trapped charge, and mobile ionic charge.

The basic classification of these traps and charges are shown in the Figure.
Interface Traps and Oxide Charges (2)

- Interface-trapped charges Q_{it} are the charges on the SiO2-Si interface due to the interruption of the periodic lattice structure of the Si interface, and are dependent on the chemical composition of this interface.
- The traps are located at the SiO2-Si interface with energy states in the silicon forbidden bandgap.
- Similar to bulk impurities, an interface trap is considered a donor if it is neutral and can become positively charged by donating (giving up) an electron.
- An acceptor interface trap is neutral and becomes negatively charged by accepting an electron.
- The donor state usually exists in the lower half of the bandgap while the acceptor state usually exists in the upper half of the bandgap.

Interface Traps and Oxide Charges Types

- Interface charges are classified into:
 - Fixed Charge Q_f that cannot be changed over a wide variation in surface potential ψ_s. Generally, Q_f is positive and depends on oxidation and annealing conditions and on silicon orientation.
 - The oxide-trapped charges Q_{ot} are associated with defects in the silicon dioxide. The traps are distributed inside the oxide layer.
 - The mobile ionic charges Q_m, such as sodium or other alkali ions, are mobile within the oxide under high temperature and high electric-field operations. Under these conditions mobile ionic charges can move back and forth through the oxide layer and cause shifts of the C-V curves along the voltage axis.
Measuring Interface Traps and Oxide Charges

- Figure shows an interface-trap system consisting of both acceptor states and donor states, in which the states above a neutral level E_0 are of the acceptor type and those below E_0 are of the donor type.

- To calculate the trapped charge, we can assume that at room temperature, the occupancy takes on the value of 0 and 1 above and below E_F.

- With these assumptions, the interface-trapped charges Q_{it} can now be easily calculated by:

$$Q_{it} = q \int_{E_0}^{E_F} D_i dE \quad E_F \text{ above } E_0,$$

$$Q_{it} = -q \int_{E_0}^{E_F} D_d dE \quad E_F \text{ below } E_0,$$

where D_{it} is the interface trap density and Q_{it} is the effective net charges per unit area (i.e., C/cm^2).

- The interface trap levels are distributed across the energy bandgap and the interface trap density is given by

$$D_{it} = \frac{1}{q} \frac{dQ_{it}}{dE} \quad \text{Number of traps} / \text{cm}^2 \cdot \text{eV} \quad (20)$$

- The method used to determine D_{it} experimentally is to measure the change of Q_{it} w.r.t the change of E_F or surface potential ψ_s.

- When a gate voltage is applied, the Fermi level moves up or down with respect to the interface-trap levels and a change of charge in the interface traps occurs.

- This change of charge affects the MOS capacitance and alters the ideal MOS curve.
Assume a positive sheet charge per unit area, Q_0, within the oxide, as shown in Figure (a) for $q\phi_{ms} = 0$, $V_C=0$.

To reach the flat-band condition, we must apply a negative voltage to the metal as shown in Figure (b).

As the negative voltage increases, more negative charges are put on the metal and thereby the electric-field distribution shifts downward until the electric field at the semiconductor surface is zero.

Under this condition, the area contained under the electric-field distribution corresponds to the flat-band voltage V_{FB}:

$$V_{FB} = -\varepsilon_0 \varepsilon_{ox} x_o = -\frac{Q_0}{\varepsilon_{ox}} x_o = \frac{Q_0 x_o}{C_o} d$$

The flat-band voltage is dependent on both the density of the sheet charge Q_0 and its location x_o within the oxide.

- If the charge Q_0 is located at the metal-SiO$_2$ interface $x_o=0$ \rightarrow $V_{FB}=0$
- If the charge Q_0 is located at the Si-SiO$_2$ interface $x_o=d$ \rightarrow $V_{FB} = \frac{Q_0}{C_o}$
Oxide Charges and V_{FB} (2)

- For the more general case of an arbitrary space charge distribution within the oxide, the flat-band voltage is given by

$$V_{FB} = \frac{-1}{C_o} \left[\frac{1}{d} \int_{0}^{d} x \rho(x) \, dx \right], \quad (23)$$

where $\rho(x)$ is the volume charge density in the oxide.

- If the value of the work function difference $q\phi_{ms}$ is not zero:

$$V_{FB} = \phi_{ms} - \frac{1}{C_o} \left[\frac{1}{d} \int_{0}^{d} x \rho(x) \, dx \right]$$
The surface potential, ψ_s, is zero at V_{FB} and approximately zero in the accumulation region.

As V_G increases from V_{FB} into the depletion regime, ψ_s increases from zero towards $2\psi_B$.

When ψ_s reaches $2\psi_B$, the surface electron concentration becomes so large that the surface is considered inverted.

The V_G at that point is called V_T, the threshold voltage.

Figure reviews the three charge components in the substrate:

- The depletion charge Q_{dep} is constant in the inversion region because W_{dep} is a constant there.
- $Q_{inv} = -C_{ox}(V_G - V_T)$ appears in the inversion region.
- Q_{acc} shows up in the accumulation region.
Total Substrate Charge

- Figure shows the total substrate charge, Q_{sub}
- Q_{sub} in the accumulation region is made of accumulation charge
- Q_{sub} is made of Q_{dep} in the depletion region
- In the inversion region, there are two components, Q_{dep} that is a constant and Q_{inv} that is equal to $-C_{ox}(V_G - V_T)$

MOS C-V Characteristics

- The capacitance–voltage (C–V) measurement is a powerful and commonly used method of determining the gate oxide thickness, substrate doping concentration, threshold voltage, and flat-band voltage
- The C–V curve is usually measured with a C–V meter which applies a DC bias voltage, V_G, and a small sinusoidal signal (1 kHz–10 MHz) to the MOS capacitor and measures the capacitive current with an AC ammeter. The capacitance is calculated from $i_{cap}/V_{ac} = \omega C$

$$C = \frac{dQ_{ac}}{dV_g} = -\frac{dQ_{sub}}{dV_g}$$
The Quasi-Static MOS C–V Characteristics

MOS transistor C–V at any f, LF capacitor C–V, or QS C–V

Quasi-Static C-V Curve

HF MOS capacitor C–V

Accumulation Depletion Inversion

Capacitance eqs:

\[
\begin{align*}
C_{\text{dep}} &= \frac{\varepsilon_s}{W_{\text{dep}}} \\
\frac{1}{C} &= \frac{1}{C_{\text{ox}}} + \frac{1}{C_{\text{dep}}} \\
\frac{1}{C} &= \frac{1}{\varepsilon_s C_{\text{ox}}} \left(\frac{1}{2} + \frac{2(V_g - V_{\text{th}})}{qN_a \varepsilon_s} \right)
\end{align*}
\]

MOS Capacitor in All Bias Regions

(a) Accumulation

(b) Depletion

(c) Inversion in MOSFET

(d) Inversion in MOS Capacitance
MOS Capacitor in All Bias Regions (2)

- In the accumulation region, the MOS capacitor is just a simple capacitor with capacitance C_{ox} as shown in Figure.
- In the depletion region, the MOS capacitor consists of two capacitors in series: the oxide capacitor, C_{ox}, and the depletion-layer capacitor, C_{dep}. Under the AC small-signal voltage, W_{dep} expands and contracts slightly at the AC frequency. Therefore, the AC charge appears at the bottom of the depletion layer.
- Fig (c) shows that an inversion layer exists at the Si–SiO$_2$ interface. In response to the AC signal, Q_{inv} increases and decreases at the AC frequency. The inversion layer plays the role of the bottom electrode of the capacitor. Therefore, C reverts to C_{ox} in the inversion region.
- This C–V curve is called the quasi-static C–V because Q_{inv} can respond to the AC signal as if the frequency is low (<100 Hz).

High-Frequency MOS Capacitor C-V Curve

- If the p-n junctions are not present, the p-type substrate is an inefficient supplier of electrons. It produces electrons through thermal generation at a very slow rate and Q_{inv} cannot respond to the AC signal and remains constant at its DC value.
- Instead, the AC signal causes ψ_s to oscillate around $2\psi_B$ and causes W_{dep} to expand and contract slightly around W_{dmax}.
- This change of W_{dep} can respond at very high frequencies because it only involves the movement of the abundant majority carriers and, consequently, the AC charge exists at the bottom of the depletion region.
- The result is a saturation of C at V_T as illustrated by the lower curve as shown in the MOS C-V characteristics slide.
- This curve is known as the capacitor C–V or the high-frequency MOS capacitor C–V (HF C–V).
MOSFET Fundamentals

The n-channel MOSFET shown in Figure is a four terminal device consisting of a p-type semiconductor substrate in which two n⁺ regions, the source and drain, are formed.

The metal plate on the oxide is called the gate and the fourth contact is the substrate.

The basic device parameters are the channel length L, width W, the oxide thickness d, the junction depth r_j, and the substrate doping N_A.
MOSFET Operation

- Modes of operation are:
 - Cut-off mode
 - Linear mode
 - Saturation mode

- Cut-off Region:
 - When no voltage is applied to the gate, the source-to-drain electrodes correspond to two p–n junctions connected back to back.
 - For $V_G < V_T$ (in accumulation and depletion mode), there is no charge carriers that can conduct current between source and drain $\Rightarrow I_D = 0$.

If $V_G > V_T$, inversion occurs at the semiconductor surface.
If a small drain voltage is applied, electrons will flow from the source to the drain through the conducting channel.
Thus, the channel acts as a resistor, and the drain current I_D is proportional to the drain voltage.
The conductance of this channel can be modulated by varying the gate voltage.
Saturation Region

- When the drain voltage increases to \(V_{\text{dsat}} \) (the thickness of the inversion layer \(x_i \) near \(y=L \) is reduced to zero); this is called the pinch-off point \(P \).
- Beyond the pinch-off point, the drain current remains essentially the same, because for \(V_D > V_{\text{dsat}} \), at point \(P \) the voltage \(V_{\text{dsat}} \) remains the same.
- Thus, the number of carriers arriving at point \(P \) from the source or the current flowing from the drain to the source remains the same.
- This is the saturation region, since \(I_D \) is a constant regardless of an increase in the drain voltage.
- The major change is the decrease of \(L \) to the value \(L` \) shown in Figure.
- Carrier injection from \(P \) into the drain depletion region is similar to that of carrier injection from an emitter-base junction to the base-collector depletion region of a bipolar transistor.

MOSFET I-V Characteristics

- We will derive the MOSFET I-V characteristics under the following ideal conditions:
 a) The gate structure corresponds to an ideal MOS capacitor, that is, there are no interface traps, fixed-oxide charges, or work function differences.
 b) Only drift current is considered.
 c) Carrier mobility in the inversion layer is constant.
 d) Doping in the channel is uniform.
 e) Reverse-leakage current is negligibly small.
 f) The transverse field created by the gate voltage (\(\varepsilon_x \) in the x-direction, which is perpendicular to the current flow) in the channel is much larger than the longitudinal field created by the drain voltage (\(\varepsilon_y \) in the y-direction, which is parallel to the current flow).
The total charge induced in the semiconductor per unit area, Q_s, at a distance y from the source as shown in Figure is given from eqs 13, 14:

$$Q_s(y) = -[V_G - \psi_s(y)]C_o, \quad (26)$$

Since Q_s is the sum of the charge in the inversion layer, Q_{in} and the charge in surface depletion region, Q_{sc}, we can obtain Q_n as

$$Q_n(y) = Q_s(y) - Q_{sc}(y) = -[V_G - \psi_s(y)]C_o - Q_{sc}(y)$$

The surface potential $\psi_s(y)$ at inversion can be approximated by $2\psi_B + V(y)$, where $V(y)$, as shown in Figure, is the reverse bias between the point y and the source electrode.

The charge within the surface depletion region $Q_{sc}(y)$ was given previously as

$$Q_{sc}(y) = -qN_A W_m \approx -\sqrt{2\varepsilon_s qN_A [2\psi_B + V(y)]}$$

$$Q_n(y) \approx -[V_G - V(y) - 2\psi_B]C_o + \sqrt{2\varepsilon_s qN_A [2\psi_B + V(y)]}$$

The conductivity of the channel at position y can be approximated by $\sigma(x) = qn(x)\mu_p(x)$

For a constant mobility, the channel conductance is then given by

$$g = \frac{Z}{L} \int_0^y \sigma(x)dx = \frac{Z\mu_p}{L} \int_0^y qn(x)dx \quad \text{(31)}$$
The integral \(\int_{-}^{+} qn(x) dx \) corresponds to the total charge per unit area in the inversion layer and is therefore equal to \(|Q_n|\)

\[
g = \frac{Z \mu_n}{L} |Q_n| \quad (32)
\]

The channel resistance of an elemental section \(dy \) is:

\[
dR = \frac{dy}{gL} = \frac{dy}{Z \mu_n |Q_n(y)|}, \quad (33)
\]

and the voltage drop across the elemental section is

\[
dV = I_D dR = \frac{I_D dy}{Z \mu_n |Q_n(y)|} \quad (34)
\]

where \(I_D \) is the drain current, which is independent of \(y \).

Substituting eqn (29) into eqn 34 and integrating from the source \((y=0, V=0)\) to the drain \((y=L, V=V_D)\) yield

\[
I_D \approx \frac{Z}{L} \mu_n C_o \left(V_G - 2 \psi_B - \frac{V_D}{2} \right) V_D - \frac{2}{3} \frac{\sqrt{2e_q N_s}}{C_o} \left[(V_D + 2\psi_B)^{3/2} - (2\psi_B)^{3/2} \right]
\]

where

\[
V_T = \frac{\sqrt{2e_q N_s (2\psi_B)}}{C_o} + 2\psi_B.
\]

For small and very small \(V_D \), the above equation can be reduced to:

\[
I_D \approx \frac{Z}{L} \mu_n C_o \left(V_G - V_T - \frac{V_D}{2} \right) V_D \quad \text{for} \quad V_D < (V_G - V_T).
\]

\[
I_D \approx \frac{Z}{L} \mu_n C_o (V_G - V_T) V_D \quad \text{for} \quad V_D << (V_G - V_T),
\]
By plotting I_D versus V_G (for a given small V_D), the threshold voltage can be deduced from the linearly extrapolated value at the V_G axis.

In the linear region, the channel conductance g_D and the transconductance g_m are given as:

\[
g_D = \frac{\partial I_D}{\partial V_D} \bigg|_{V_G \text{ constant}} \approx \frac{Z}{L} \mu_C (V_G - V_T - V_D),
\]

\[
g_m = \frac{\partial I_D}{\partial V_G} \bigg|_{V_D \text{ constant}} \approx \frac{Z}{L} \mu_C V_D.
\]
Saturation Region (2)

- The saturation current can be obtained by substituting Eq. 40 into Eq. 35
 \[I_{Dsat} = \left(\frac{Z \mu_n C_x}{2L} \right) (V_G - V_T)^2. \]

- The threshold voltage \(V_T \) in the saturation region for low substrate doping and thin oxide layers is the same as that from Eq. 37

- At higher doping levels, \(V_T \) becomes \(V_G \) dependent

- For an idealized MOSFET in the saturation region, the channel conductance is zero, and the transconductance can be obtained from Eq. 41:
 \[g_m = \left. \frac{\partial I_D}{\partial V_G} \right|_{V_D \text{ constant}} = \frac{Z \mu_n C_x}{dL} (V_G - V_T). \]

The Subthreshold Region

- When the gate voltage is below the threshold voltage and the semiconductor surface is weakly inverted, the corresponding drain current is called the subthreshold current

- The subthreshold region is important when the MOSFET is used as a low-voltage, such as a switch in digital ICs, because it describes how the switch turns on and off

- In the subthreshold region, the drain current is dominated by diffusion instead of drift and is derived in the same way as the collector current in a bipolar transistor with homogeneous base doping. If we consider the MOSFET as an n-p-n(source-substrate-drain) bipolar transistor, we have
 \[I_D = -qA D_n \frac{\partial n}{\partial y} = -qA D_n \frac{n(0) - n(L)}{L}, \quad (43) \]
where \(A\) is the channel cross section of the current flow and \(n(0)\) and \(n(L)\) are the electron densities in the channel at the source and drain, respectively.

- The electron densities are given by
 \[
 n(0) = n_i e^{\theta (V_s - V_B)/kT}, \\
 n(L) = n_i e^{\theta (V_L - V_D)/kT},
 \]

- Substituting eq (44) in eq (43) gives
 \[
 I_D = \frac{qA L n_i e^{-\psi_s / kT}}{L} \left(1 - e^{-qV_D/kT}\right) e^{\theta V_s/kT} (45)
 \]

- The surface potential \(\psi_s\) is approximately \(V_G - V_T\)

- Therefore, the drain current will decrease exponentially when \(V_G\) becomes less than \(V_T\)
 \[
 I_D \sim e^{\theta (V_G - V_T)/kT} (46)
 \]

- A typical measured curve for the subthreshold region is shown
- Note the exponential dependence of \(I_D\) on \((V_G - V_T)\) for \(V_G < V_T\)
- An important parameter in this region is the subthreshold swing, \(S\), which is defined as \(\ln(10)[dV_G/d(\ln I_D)]\)
- This parameter quantifies how sharply the transistor is turned off by the gate voltage and is given by the gate-voltage change needed to induce a drain-current change of one order of magnitude
- To reduce the subthreshold current to a negligible value, we must bias the MOSFET a half-volts or more below \(V_T\)
There are 4 types of MOSFET based on the substrate type (n or p) and the depletion region existence at $V_g = 0$.

- If at $V_g = 0$ a channel already exists, the MOSFET is called Depletion MOSFET, else it is called enhancement MOSFET.
- The most common is the enhancement MOSFET type.

One of the most important parameters of the MOSFET is the threshold voltage.

The ideal threshold voltage is given in Eq (37).

However, when we incorporate the effects of the fixed-oxide charge and the difference in work function, there is a flat-band voltage shift.

Additionally, substrate bias can also influence the threshold voltage. When a reverse bias is applied between the substrate and the source, the depletion region is widened and the threshold voltage required to achieve inversion must be increased to accommodate the larger Q_{SC}:

$$V_t = V_{IR} + 2V_{th} + \left(\frac{2e_qN_s(2\psi_{th} + V_{BS})}{C_o} \right).$$

(47)
Precise control of the threshold voltage of MOSFETs in an integrated circuit is essential for reliable circuit operation. Typically, the threshold voltage is adjusted through ion implantation into the channel region.

For example, a boron implantation through a surface oxide is often used to adjust the threshold voltage of an n-channel MOSFET (with p-type substrate). Using this method, it is possible to obtain close control of threshold voltage because very precise quantities of impurity can be introduced.

The negatively charged boron acceptors increase the doping level of the channel. As a result, V_T increases.

Similarly, a shallow boron implant into a p-channel MOSFET can reduce V_T.

We first consider the MOS capacitor, a core component of MOSFET.

Charge distributions at the oxide/semiconductor interface (accumulation, depletion, and inversion) in a MOS device can be controlled by the gate voltage.

The quality of an MOS capacitor is determined by the qualities of the oxide bulk and oxide/semiconductor interface. For commonly used metal electrodes, the work function difference $q\phi_{ms}$ is generally not zero, and there are various charges inside the oxide or at the SiO2-Si interface that will, in one way or another, affect the ideal MOS characteristics.

The qualities of the oxide bulk and oxide/semiconductor interface can be evaluated by capacitance-voltage and current-voltage relationships. We then introduced the basic characteristics and the operational principles of the MOSFET.
Summary (2)

- The MOSFET is formed when a source and a drain are placed adjacent to the MOS capacitor.
- Output current (i.e., drain current) is controlled by varying the gate and drain voltages.
- The threshold voltage is the main parameter that determines the on-off characteristics of an MOSFET.
- The threshold voltage can be adjusted by choosing suitable substrate doping, oxide thickness, substrate bias, and gate materials.