
An XML Index Advisor for DB2

Iman Elghandour
∗

University of Waterloo
Waterloo, ON, Canada

ielghand@cs.uwaterloo.ca

Ashraf Aboulnaga
University of Waterloo
Waterloo, ON, Canada

ashraf@cs.uwaterloo.ca

Daniel C. Zilio
IBM Toronto Lab

Markham, ON, Canada
zilio@ca.ibm.com

Fei Chiang
†

University of Toronto
Toronto, ON, Canada

fchiang@cs.toronto.edu

Andrey Balmin
IBM Almaden Research

Center
San Jose, CA, USA

abalmin@us.ibm.com

Kevin Beyer
IBM Almaden Research

Center
San Jose, CA, USA

kbeyer@us.ibm.com

Calisto Zuzarte
IBM Toronto Lab

Markham, ON, Canada
calisto@ca.ibm.com

ABSTRACT

XML database systems are expected to handle increasingly com-
plex queries over increasingly large and highly structured XML
databases. An important problem that needs to be solved for these
systems is how to choose the best set of indexes for a given work-
load. We have developed an XML Index Advisor that solves this
XML index recommendation problem and is tightly coupled with
the query optimizer of the database system. We have implemented
our XML Index Advisor for DB2. In this demonstration we show-
case the new query optimizer modes that we added to DB2, the
index recommendation process, and the effectiveness of the recom-
mended indexes.

Categories and Subject Descriptors

H.2 [Database Management]: Physical Design

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

XML Databases, Automatic Physical Database Design, Index Ad-
visor

1. INTRODUCTION
XML support has been added to most commercial relational data-

base systems, and these systems all employ different types of struc-
tural and value XML indexes to improve performance, potentially
by orders of magnitude. Users of these XML database systems
need to decide which set of indexes to create for a given XML data-
base and query workload, which is not a simple task. This task is

∗Supported by an IBM CAS Fellowship. Also affiliated with
Alexandria University, Alexandria, Egypt.
†This work was done while the author was at the IBM Toronto Lab.

Copyright is held by the author/owner(s).
SIGMOD’08, June 9–12, 2008, Vancouver, BC, Canada.
ACM 978-1-60558-102-6/08/06.

particularly difficult for XML database systems that allow for par-

tial indexing of XML documents, such as DB2 [2] and Oracle [6].
A partial index is an index on parts of an XML document that sat-
isfy index patterns specified by the user. These patterns can be
represented, for example, by XPath path expressions, in which case
only the XML elements that are reachable by these path expressions
are included in the index. However, users now face the problem of
choosing the set of XML patterns to index. In this demonstration,
we present an XML Index Advisor for DB2 that automatically rec-
ommends the best set of XML indexes and index patterns for a
given database and query workload, while taking into account the
cost of updating the index on data modification. Details about our
XML Index Advisor can be found in [4].

One of the key features of our Index Advisor is that it is tightly
coupled with the query optimizer of the XML database system, in
our case DB2. We rely on the query optimizer to enumerate the
candidate index patterns for a query, and to evaluate the benefit to
a query of having a particular index configuration. This tight cou-
pling with the query optimizer helps us leverage its index selection
and cost estimation capabilities, and provides a solid and easy way
for ensuring that the indexes that we recommend are actually used

by the optimizer in its generated query execution plans. Moreover,
we can easily support the different query languages supported by
the optimizer (XQuery and SQL/XML in the case of DB2).

In the next section, we present a high-level overview of the ex-
tensions that we made to the query optimizer to support our XML
Index Advisor. We also present an overview of the main steps of
the XML index recommendation process. More details are avail-
able in [4]. In Section 3, we describe our demonstration, which
showcases the extensions that we made to the DB2 query optimizer,
the details of the index recommendation process and how it is con-
trolled by the user, and the tools that we provide to analyze the
index recommendations and measure their effectiveness.

2. XML INDEX ADVISOR OVERVIEW
The architecture of the XML Index Advisor is presented in Fig-

ure 1. The high-level framework of the index recommendation
process is as follows: First, for every query in the workload, we
rely on the query optimizer to enumerate a set of candidate indexes
that would be useful for this particular query. Next, we expand the

Candidate

indexes for

queryi

Input

- Query workload

- XML Database

- System information

- Disk space constraint

Index Advisor

application

(Client-side)

Output

Recommended index

configuration

Basic set of

candidates

Candidate

generation using

//* virtual index

Cost estimation

using DB

statistics

Expanded

set of

candidates

queryiRecommending

basic set of

candidates

Candidate

configuration

Candidate

generalization

Estimated

cost for
queryi

Configuration

enumeration

Query Optimizer

(Server-side)

Enumerate

Indexes

 mode

Evaluate

Indexes

mode queryi

Creating virtual

indexes for

configuration

Figure 1: XML Index Advisor architecture.

enumerated set of candidate indexes to include more general in-
dexes, each of which can potentially benefit multiple queries from
the current workload or from future, yet-unseen workloads. Fi-
nally, we search the space of possible index configurations to find
the optimal configuration, which is the one that maximizes the per-
formance benefit to the workload while satisfying the disk space
constraint provided by the user.

Much of the functionality of the advisor is implemented in a
client-side application. However, to be able to use the query op-
timizer for index recommendation, we need to extend it with two
new query optimizer modes, implemented as EXPLAIN modes in
DB2. In the first mode, which we call the Enumerate Indexes mode,
the optimizer takes a query and enumerates the indexes that can
help this query. In the second mode, which we call the Evaluate

Indexes mode, the optimizer simulates an index configuration and
estimates the cost of a query under this configuration.

In the new modes, the optimizer needs to work with hypothet-
ical indexes that do not exist, but are still needed to accomplish
its task. To enable this, we modify the query optimizer to allow it
to create virtual indexes that can then be used during query opti-
mization. These virtual indexes are added to the database catalog
and to all the internal data structures of the optimizer, but they are
not physically created on disk and no data is inserted into them.
Virtual indexes are used in relational index advisors to enable the
optimizer to estimate the cost of candidate index configurations [8].
In our XML Index Advisor, we use virtual indexes for cost estima-
tion, but a novel feature of our work is that we also use them for
enumerating candidate indexes for workload queries.

2.1 Basic Set of Candidates
The first step of the index recommendation process is to enu-

merate a set of candidate indexes for each query. The DB2 query
optimizer supports XQuery and SQL/XML, which are fairly com-
plex languages. In these languages, XML patterns can appear in
different parts of the query, but indexes cannot be used for some
of them because of certain language features [1]. In addition, in-

dex matching, which is the process that decides which indexes are

useful for which parts of the query, is dependent on the query op-
timizer implementation. Thus, it is best to tightly couple candidate
enumeration with the query optimizer, which we do in our advi-
sor. To obtain the basic set of candidate indexes that are useful
for a given query, our Enumerate Indexes optimizer mode creates a
virtual index with index pattern //* . This //* virtual index hy-
pothetically indexes all elements in an XML document and hence
can be matched with any XPath pattern in the query that can be
answered using an index. The process of index matching in the op-
timizer determines the XML patterns in the query that match this
//* virtual index, and we use these patterns as the basic set of can-
didate indexes for the current query. Essentially, we have enabled
the query optimizer to answer the question: “If all possible indexes
were available, which query patterns would benefit from them?”
The next step in the index recommendation process is to expand
this basic set of candidate indexes.

2.2 Generalizing the Candidates
The optimizer helps us identify index patterns specific to each

query. However, it is unable to identify index patterns that can ben-
efit multiple queries in the current workload and also future queries
with similar patterns. To address this shortcoming of relying on the
optimizer for candidate enumeration, we expand the set of candi-
date indexes generated by the optimizer by applying a set of gener-

alization rules. These rules allow us to generate more general can-
didate index patterns that can be useful for multiple queries from
the specific index patterns enumerated by the optimizer for individ-
ual queries. For example, assume that these two patterns appear in
the input workload: /regions/namerica/item/quantity
and /regions/africa/item/quantity. These two queries
ask about item quantities in the North America and Africa regions.
An index that includes the item quantities in all regions helps these
two queries as well as other similar queries that are inquiring about
item quantities in different regions. Hence, our generalization rules
generate the pattern /regions/*/item/quantity. If the work-
load also contains: /regions/samerica/item/price, then
we perform another step of generalization to generate a new pattern
that indexes all items’ specifications that are available in all regions:
/regions/*/item/*. We then expand the list of candidate in-
dexes by adding the two generated general indexes.

During generalization, we construct a Directed Acyclic Graph

(DAG) of the candidate indexes. Each node in the DAG represents
an XML pattern, and has as its parents the possible generalizations
of this pattern, based on our candidate generalization algorithm.
At the end of the generalization phase, we have a DAG rooted at
the most general indexes that can be obtained from the workload.
Figure 4 shows an example of this DAG.

2.3 Searching for the Optimal Configuration
After the candidate enumeration and generalization steps, we

have in hand an expanded set of candidate indexes. We need to
search the space of possible index configurations consisting of in-
dexes from this candidate set to find the index configuration with
the maximum benefit to the workload, subject to a constraint spec-
ified by the user on the disk space available for the configura-
tion. This combinatorial search problem can be modeled as a 0/1
knapsack problem [8]. A greedy approximation of the 0/1 knap-
sack problem has been used in [8]. The greedy search starts with
an empty configuration and adds candidate indexes to the recom-
mended configuration until the space budget is exhausted. This
greedy approximation of the 0/1 knapsack problem, as well as other
search approaches (e.g. [3]) were not suitable for our XML Index
Advisor. Hence, we propose two novel search strategies [4].

Our XML Index Advisor allows the user to choose between two
search algorithms. The first is a greedy search augmented with
heuristics to detect redundant indexes (indexes whose index pat-
terns are already covered by other indexes) as soon as possible and
reclaim the space that they use so that we can include more use-
ful, non-redundant indexes in this reclaimed space. The second
algorithm is a top down (root-to-leaf) search through the DAG con-
structed in the candidate generalization step. The goal of this al-
gorithm is to recommend the most general set of indexes that fits
within the available disk space budget.

Greedy Search with Heuristics. Greedy search relies only on
the benefit and size of candidate indexes when selecting the recom-
mended configuration so it can select general indexes that can be
used for path expressions that are already covered by other indexes
in the configuration. This can result in some indexes chosen by
the advisor never being used by the optimizer. To address this in-
dex redundancy problem, we add one more objective to our search
problem: maximizing the number of workload XPath path expres-
sions that use indexes in the recommended configuration. This ob-
jective guarantees that every index recommended by the XML In-
dex Advisor will be used by at least one query in the workload.
The greedy search algorithm with heuristics maintains a bitmap of
XPath patterns in the workload queries that have indexes on them.
Then, before adding any general index to our configuration, we use
this bitmap to make sure that this index will not be a replication of
others already chosen.

Top Down Search. The recommendations of the XML Index
Advisor are highly dependent on the input workload. A possible
scenario is that the DBA has assembled a representative training
workload, but the actual workload may be a variation on this train-
ing workload. Thus, the workload presented to the XML Index Ad-
visor is a representative of a larger class of possible workloads. In
this case, we posit that the goal of the advisor should be to choose
a set of indexes that are as general as possible while still benefit the
workload queries. We start with the roots of the DAG constructed
in the generalization step as our current configuration. Since gen-
eral indexes are typically large in size, this starting configuration is
likely to exceed the available disk space budget, but it potentially
has the maximum benefit that can be achieved. We progressively
replace a general index from the current configuration with its spe-
cific (and smaller) children in the DAG until the configuration that
we have fits within the disk space budget.

During our greedy or top down search, we need to estimate the
benefit to the workload of candidate index configurations. For this
purpose, we use the query optimizer in the Evaluate Indexes mode.
In this mode, the indexes in the configuration are created as vir-
tual indexes, and the queries in the workload are optimized with
these indexes in place to measure the improvement in estimated
cost. When estimating a configuration benefit, we take into account
that the benefit of an index can change depending on which other
indexes are available (index interaction).

3. DEMONSTRATION
Our demonstration illustrates: (1) the two new EXPLAIN modes

that we added to the DB2 query optimizer, (2) the steps of the
index recommendation process and how it can be controlled by
the user, and (3) the effectiveness of the index configurations rec-
ommended by our XML Index Advisor. The demonstration uses
XQuery and SQL/XML queries on XML data from standard bench-
marks such as XMark [7] and TPoX [5]. The workloads used con-
sist of the standard benchmark queries augmented with synthetic
queries. Users can also specify additional queries.

The first part of the demonstration illustrates the two new EX-

Figure 2: Basic candidate recommendation.

PLAIN modes that we added to the DB2 query optimizer. We use
a visual client to demonstrate the following two scenarios:

• Given an XML query (XQuery or SQL/XML), we invoke
the optimizer in the Enumerate Indexes mode to generate the
basic set of candidate indexes for this query (Figure 2).

• Given an XML query and an index configuration consisting
of a set of XML index patterns, we invoke the optimizer in
the Evaluate Indexes mode to estimate the cost of the query
for the given index configuration (Figure 3).

The second part of the demonstration focuses on the functional-
ity of our XML Index Advisor and the effectiveness of its recom-
mendations. We demonstrate the following aspects:

• For an input workload, we show the basic set of candidate in-
dexes and the DAG that represents the generalized candidate
indexes. This allows us to see the relationship between the
basic and generalized index patterns (Figure 4).

• We show how the two proposed search algorithms traverse
the generalization DAG to find the optimal configuration that
fits within the disk space budget (Figure 4).

• We provide the user with the ability to analyze the recom-
mendations of the XML Index Advisor. The recommenda-
tion analysis feature allows the user to graphically compare
three estimated costs for each query in the workload: (1) the
original cost with no indexes, (2) the cost with the index con-
figuration recommended by the advisor, and (3) the cost with
an index configuration consisting of all the basic candidate
indexes enumerated by the advisor for the input workload.
This last configuration is “overtrained” for the input work-
load and may be larger than the available disk space budget,
but represents the maximum benefit that we can achieve for
the given workload. The tool also allows the user to add
more queries beyond the input workload and evaluate the
benefit of the recommended configuration to these queries.
This will illustrate the benefit of recommending generalized
index configurations. The tool also allows the user to mod-
ify the recommended configuration by adding and removing

Figure 3: Estimating the benefit of an index configuration.

Figure 4: Searching the space of candidate indexes.

indexes and to see the effect of these modifications on query
performance (Figure 5).

• Finally, the tool allows the user to review the final recom-
mended index configuration and to create it. The actual exe-
cution time taken by the queries can then be displayed.

Figure 5: Analyzing the XML Index Advisor recommenda-

tions.

4. REFERENCES
[1] A. Balmin, K. S. Beyer, F. Özcan, and M. Nicola. On the path

to efficient XML queries. 2006.
[2] K. Beyer et al. DB2 goes hybrid: Integrating native XML and

XQuery with relational data and SQL. IBM Systems Journal,
45(2), 2006.

[3] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: a relaxation-based approach. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, 2005.
[4] I. Elghandour, A. Aboulnaga, D. C. Zilio, F. Chiang,

A. Balmin, K. Beyer, and C. Zuzarte. XML index
recommendation with tight optimizer coupling. In Proc. IEEE

Int. Conf. on Data Engineering (ICDE), 2008.
[5] M. Nicola, I. Kogan, and B. Schiefer. An XML transaction

processing benchmark. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 2007. Benchmark Available at:
https://sourceforge.net/projects/tpox/.

[6] Oracle Corp. Oracle Database 11g Release 1 XML DB

Developer’s Guide, 2007. Available at:
http://www.oracle.com/pls/db111/homepage.

[7] A. R. Schmidt et al. The XML benchmark project. Technical
Report INS-R0103, CWI, 2001.

[8] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and
A. Skelley. DB2 advisor: An optimizer smart enough to
recommend its own indexes. In Proc. IEEE Int. Conf. on Data

Engineering (ICDE), 2000.

