
A Real-Time Big Data Analysis Framework on a CPU/GPU
Heterogeneous Cluster

A Meteorological Application Case Study

Mohamed Hassaan
Computer and Systems Engineering

Alexandria University
Alexandria, Egypt

muhammad.aboelhassan@gmail.com

Iman Elghandour
Computer and Systems Engineering

Alexandria University
Alexandria, Egypt

ielghand@alexu.edu.eg

ABSTRACT
It is important to analyze and predict meteorological phe-
nomena in real-time. Parallel programming by exploiting
thousands of threads in GPUs can be efficiently used to
speed up the execution of many applications. However,
GPUs have limitations when used for processing big data,
which can be better analyzed using distributed computing
platforms such as Hadoop and Spark. In this paper, we
propose DAMB a system that processes streamed data on
a heterogeneous cluster of CPUs and GPUs in real-time.
The core of DAMB is SparkGPU, a platform that extends
Apache Spark to allow it to manage a heterogeneous clus-
ter that has both CPUs and GPUs and to execute tasks on
GPUs. DAMB also provides data visualization tools that
present the analyzed data in an interactive way in real-time.
As a case study, we focus on a meteorological application
that analyzes lightening discharges. We show that DAMB
can successfully process and analyze the meteorological data
streamed to it and visualize the results in real-time on a clus-
ter of size 12 nodes, each is equipped with one or more GPU
cards. This is a speedup of two orders of magnitude as com-
pared to a sequential program implementation for the same
application.

CCS Concepts
•Computer systems organization → Heterogeneous
(hybrid) systems; •Computing methodologies→ Dis-
tributed programming languages;

Keywords
Heterogeneous clusters; GPU Programming; In-memory clus-
ter computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BDCAT’16, December 06-09, 2016, Shanghai, China
c© 2016 ACM. ISBN 978-1-4503-4617-7/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3006299.3006304

1. INTRODUCTION
The recent advancement in technology has enabled re-

searchers to capture and hence monitor data about meteoro-
logical phenomena in real-time, for example, lightining [17],
air quality [26], Tsunami [22], and precipitation [15, 23]. It is
becoming very important to monitor, understand, and pre-
dict these various meteorological phenomena because it can
help us reduce the damage they cause by taking additional
precautions. For example, every year, lightning strikes kill
people and wild animals, cause thousands of fires, and cause
damage to electrical infrastructures such as power lines. The
cost of these damages is estimated to be billions of dollars
per year in USA [5].

A typical scenario for many meteorological applications is
that devices such as interferometers [8, 11] and phased ar-
rays [15, 23] are used to capture signals (e.g. lightning dis-
charges) and digitize their values. Analysis and prediction
techniques, which are compute intensive, are then performed
on the collected data. In previous works, the main objective
was the accuracy of the concluded results of the analsysis
and/or prediction. However, it is also important to reduce
the lagging time between capturing the data and computing
the results of the analysis and/or prediction tasks [15] so the
concluded results will not lose their value. This latter ob-
jective is also referred at as achieving real-time or near-real
time analysis of the captured data. One common challenge
that needs to be addressed by many of these applications
is that they generate very large data per unit time interval,
which is usually one or few seconds. Therefore, we need to
use a system that can process large data streamed to the
system in real-time.

FPGAs have long been used to efficiently analyze data in
meteorological applications [6, 20]. However, FPGAs do not
cope with the very large data sizes, and real-time analysis
will not be guaranteed. Parallel programming by exploit-
ing the thousands of threads of a GPU has been efficiently
used in many applications [9, 14, 21]. However, it is not
the best solution for processing big data, which are bet-
ter analyzed using distributed computing platforms such as
MapReduce [7] (open source implementation Hadoop avail-
able at [2]) and Spark [24] (open source available at [4]).
Both of the parallel programming frameworks and the the
distributed computing platforms have their pros and cons.
Parallel programming frameworks that run on GPUs achieve
very high parallelism. However, they are not suitable for ex-
ecuting large data sets because of the limited memory size

of the on-chip memory of the GPUs. Additionally, the data
transfer between the host and the GPU and vice-versa in-
troduces high overhead, which is typically larger than the
on-chip data transfer. On the contrary, the current available
implementations of distributed computing platforms such as
Hadoop and Spark have been efficiently used for processing
very large data sets. However, the parallelism in Hadoop
and Spark is limited by the number of CPU cores available
at each node in the cluster.

A solution that integrates both parallel programming and
distributed computing is expected to encapsulate the pros
of both approaches and avoids their cons. However, new
challenges are introduced. Platforms such as Hadoop and
Spark are designed to manage a cluster of CPUs that have
similar specification. Spark initiates tasks on worker nodes
to execute an application on partitions of the data. If these
tasks are executed on GPUs rather than CPUs, how can
their code and data be transferred to the GPUs for execu-
tion. Therefore, a new communication mechanism between
the distributed computing platform, namely Spark and a
GPU is required to delegate code and data to be executed
on the GPU.

In this paper, we present DAMB, an end-to-end solution
that allows data to be streamed to it and process them on
a heterogeneous cluster of CPUs and GPUs. The outputs
of the analysis tasks are also visualized for better under-
standing of these results. The core component of DAMB
that executes its analysis tasks in real-time, SparkGPU, is
an extension of Spark that is capable of managing a cluster
of CPUs and GPUs and delegating tasks to be executed on
the GPU. Therefore, each time a new micro-batch of data is
streamed to DAMB, new tasks are created and are executed
on GPUs in the cluster.

We use as a case study an application that detects light-
ning discharges [17]. This application generates 1.6 GB of
data per second. This data is logged into micro-batches and
streamed to DAMB for analysis in real-time. Each micro-
batch constitute the data generated per second. Upon the
arrival of new streamed data, tasks are created and are ex-
ecuted on GPUs in the cluster. We note that a sequential
implementation takes around 12 minutes to process the data
generated per second.

The main contributions of this paper are as follows:

• An end-to-end solution that takes data streamed from
weather measuring devices such as interferometers and
phased array radars, analyze these data, and finally
visualize the results.

• An extended version of Spark that is capable of man-
aging a heterogeneous cluster of CPUs and GPUs and
distribute tasks among them.

• Two approaches that allow applications written for
Spark to submit tasks to be executed on a GPU.

• A real-time solution for the lightning application pre-
sented in [17].

• An experimental study that evaluates our proposed
framework and approaches.

The rest of the paper is organized as follows. In section 2
we present an overview of the DAMB architecture. Next,
we describe SparkGPU in Section 3. We then present the

details of the lightning application that we use as our case
study and how we use DAMB for executing it in Section 4.
We present our performance evaluation study in Section 5.
Finally, we summarize the related work in Section 6 and
conclude in Section 7.

2. OVERVIEW OF DAMB
We used the following components to build DAMB and

to allow it to process streamed data in real-time: Apache
Kafka [3], spark streaming [4, 25], Spark [4, 24], Tachyon [12],
and D3.js library. Figure 1 shows the main components of
our solution and the flow of the data between them. The
data are generated by receiver devices such as antennas that
are located in an observation site. These data are then
streamed to an on-site server that is equipped with a dig-
itization card. The role of this card is to convert the col-
lected data into digital form (bytes) and stream them to our
DAMB cluster. We assume that data are streamed from the
on-site server to the DAMB cluster every unit interval (e.g.,
a second) as one chunk.

The streamed data are stored in Apache Kafka [3], which
allows us to partition the data and organize them into
messages that are distributed across the cluster machines.
Kafka is fully integrated with spark streaming [25], which
employs a technique called discretized streams or micro-
batches. Spark streaming reads Kafka messages each cer-
tain time interval as their input and trigger tasks to ex-
ecute the running application on them. Using Kafka and
Spark streaming enable us to partition the data streamed to
DAMB into micro-batches and divide and distribute them
among the nodes of the cluster to process them.

SparkGPU, which lies at the heart of DAMB, is responsi-
ble for executing applications on the streamed data. Every
time spark streaming submits a chunk of data to a node of
the cluster, a Spark task starts to process it. SparkGPU ex-
tends Spark by enabling it to execute its tasks on the GPUs
available on the cluster nodes. The main extensions to Spark
are: (1) a new interface that allows communication between
spark tasks and GPUs; and (2) a new programming style of
the Spark applications to specify the functions that are exe-
cuted on GPUs. Therefore, the data assigned to each Spark
task is executed on a GPU if one is available on the same
node that this task is running. Finally, the execution output
of each streamed micro-batch is persisted in the distributed
storage (e.g. HDFS) for further referencing.

The final phase of DAMB is to plot the outputs of an-
alyzing the data on charts. This helps scientists using the
meteorological application to better understand the analysis
results. Figure 2 shows one of the visualization charts that
we plot for the lightning application that we discuss in more
details in Section 4. These charts are the same ones used in
the studies presented in [11, 17]. However, our objective is
to display the results on the chart in real-time, and there-
fore, we use the sophisticated web development library D3.js.
Moreover, to pipeline the output between the SparkGPU
cluster and the visualization tool, we use Tachyon [12], which
is now distributed as Alluxio [1]. Tachyon is a memory cen-
tric distributed storage system, and therefore it allows us to
perform in-memory sharing of the analysis result between
the SparkGPU cluster and the visulaization tool. Using
Tachyon has enabled us to plot the analysis result while
it is being computed using the SparkGPU tasks, leading to
improved performance. Moreover, we have enabled the fol-

Figure 1: The flow of the data between the components of DAMB architecture.

Figure 2: An example of the charts that we plot to represent the analyzed output.

lowing features in our visualized charts: zooming, panning,
and snapshots. These features give the users more flexibility
when they try to understand the results of the analysis 1.

3. SPARKGPU: A HETEROGENEOUS REAL-
TIME BIG DATA ANALYSIS PLATFORM

At the heart of DAMB is the SparkGPU cluster. Every
time SparkStreaming submits a micro-batch of new data,
SparkGPU is triggered to schedule new tasks to process the
streamed micro-batch of data on its worker nodes. SparkGPU
extends Spark by adding functionality to it to manage a
cluster of worker nodes that are equipped with GPUs in ad-
dition to the CPUs and to assign tasks to be executed on
these GPUs.

Next, we give an overview of the SparkGPU architecture
in Section 3.1, and we then present the two approaches that
we propose to enable SparkGPU to assign tasks to the GPUs
that are available on the nodes of the cluster that it manages.

3.1 Overview of the SparkGPU
Similar to Apache Spark, SparkGPU has one master node

that runs a SparkContext and several worker nodes, each of
them runs an Executor. Any application has to run within
a SparkContext and when it is initialized, it is assigned re-

1Demo of DAMB is available at: https://youtu.be/
NKpVrGh67i8.

sources from the cluster in the form of Executors running
at worker nodes. Each executor is configured with the CPU
cores and GPUs that are available as resources on the node
that it runs on and that it can use to execute tasks.

The applications running on SparkGPU use the Spark
programming interface. The Spark driver program is struc-
tured as follows:

• We create a SparkContext object, which coordinates
the spark tasks that run on the cluster.

• We setup KafkaUtil, which is a class provided by the
Spark streaming library with the parameters required
to allow Spark streaming to stream data from Kafka.
These parameters include port numbers, Kafka topics,
and number of partitions. Figure 3 shows an example
of how we setup Kafka in the Spark driver code with
the parameters that are named kafkaParams.

• Data are stored on the Kafka cluster in the form of
partitions, which are a sequence of data records. We
us the Spark streaming API to connect to Kafka and
stream data from its partitions. We setup the cluster
so the Kafka data partitions are locally read by the
Spark tasks.

• Spark streaming discretizes the data partitions read
from Kafka and creates RDDs from them.

Figure 3: A code fragment from the Spark driver
showing the setup of the Kafka cluster and the call-
ing of the AnalysisFunction that processes the RDDs
on GPUs.

• We execute our application on the RDD as UDF (User
Defined Function) in a map function. In Figure 3, the
RDD name is message and the application that we run
is implemented in the AnalysisFunction. For allowing
the code to be executed on GPU, we have researched
two approaches that we discuss next. The implementa-
tion of the AnalysisFunction differs according to the
approach that we use.

3.2 Communication between Spark and GPUs
via JNA

Spark applications are written in Java, python, or Scala,
and the code running on the GPU are written in CUDA or
openCL. Therefore, the Spark tasks requires an interface to
communicate with the GPU and to delegate its work to it.
One of the approaches that SparkGPU adopts to delegate
the Spark task work to a GPU on the same cluster node
uses the Java Native Access (JNA) library. We first compile
the functions of the application that we would like to run
on the GPU (written in CUDA) into a native shared library.
Next, we write the Spark application to call functions from
the shared native library using JNA. Therefore, we define
a Java interface that defines the access to the shared na-
tive library as shown in Figure 4. Moreover, we implement
AnalysisFunction, which will run on each worker node as
follows:

• We create a new configuration object that includes in-
formation about the size of data and the location of
the CUDA shared library.

• We use the Java native access interface (Figure 4) to
call the entry method defined in the interface. This
entry method calls the suitable function from the JNA
shared library that we want to execute for a specific
application. Figure 5 shows an example calling for the
entry method.

• The code compiled and stored as shared library defines
the CUDA kernel code, copies the data from the mem-
ory of the node to the memory of the GPU, starts the
kernel code on the GPU, and finally copies the result
to the memory of the node.

• We store the final results on Alluxio.

Figure 6 shows the architecture of SparkGPU that uses
JNA to interface with the GPUs available on the cluster
nodes. When a spark task starts running, each time it in-
vokes a function from the native shared library, a new pro-
cess is created with a CUDA context. For multiple tasks
running on the same node and trying to call functions from
the native shared library to execute on the GPU available

Figure 4: A code fragment showing how we use JNA
as our interface to call CUDA native shared library.

Figure 5: A code fragment showing how we call the
native shared library.

on this node, each one of them will create a separate process
with a separate CUDA context. Therefore, these processes
will compete to access the GPU, only one of them will man-
age to access it at any time, and the other processes will
have to block. Given that Spark is designed to assign small
blocks to each task, the GPU is underutilized and an un-
necessary overhead is introduced due to switching between
CUDA contexts. To overcome these challenges we introduce
another approach for establishing communication between
Spark tasks and the GPU in the next section.

3.3 Communication between Spark and GPUs
via a Node Manager

To avoid the overhead introduced by using JNA for the
communication between SparkGPU and the GPUs on the
same cluster node, we introduce a new approach that lever-
ages the multiple kernels execution capability of GPUs. Mod-
ern GPUs are able to simultaneously run different operations
from different threads in different execution streams. This
can significantly improve the utilization of the GPU cores.
To adopt this approach in SparkGPU, we need to guaran-
tee that all the concurrent Spark tasks that delegate their
work to a GPU are starting threads to execute on the GPU
from one process rather than starting a separate process per
task. This would guarantee that all these threads are run-
ning within the same CUDA context.

For each executor at a worker node, we create a new pro-
cess called node manager. The node manager listens on
a certain port waiting for messages coming from different
Spark tasks. Each message consists of the chunk of data
to be processed and the CUDA kernel function to execute.
The node manager is now responsible for starting threads
to concurrently run on the GPU. Each thread is assigned
to run on one of the GPUs available on the nodes is run-
ning on. Besides, It defines the kernel function, copies the
data from its memory to the GPU memory, starts running
the CUDA kernel function on the GPU, and copies the re-
sult back to the memory of the node. This requires that a
user of SparkGPU to write the CUDA kernel functions and
add their declaration to a special header file that is linked
by the node manager. Figure 7 shows the architecture of
SparkGPU that uses a node manager to interface with the
GPUs available on the cluster nodes.

Note that the node manager handles the assignment of
received message on multiple GPUs if the cluster node that
it runs on is equipped with more than one GPU. All the tasks

Figure 6: System architecture of SparkGPU that
uses JNA to interface with GPUs in the cluster.

Figure 7: System architecture of SparkGPU that
uses a node manager at each worker node.

are expected to take an equal execution time on the GPU.
Therefore, for balancing the load across all the GPUs, we use
round robin to assign the requests that the node manager
receives on all the GPUs.

In this approach, we implement AnalysisFunction as fol-
lows:

• We create a new configuration object that includes in-
formation about the size of data and the port that the
node manager listens to.

• We send the data to the node manager.

4. CASE STUDY: MONITORING AND AN-
ALYZING LIGHTNING

In this section, we describe the lightning analysis appli-
cation [17] that we use as our case study. We show that
DAMB is capable of executing this application in real-time
on gigabytes of data streamed per second to it. We first
describe the application and its C implementation in Sec-
tion 4.1. Next we discuss two simple parallel implementa-
tions in Section 4.2. Finally, we describe our solution using
DAMB in Section 4.3.

4.1 Overview of Detecting Lightning Dis-
charges

Lightning is associated with static electrical discharges.
Several interferometric lightning mapping have been devel-

oped at Osaka University [11, 17, 19]. The technique em-
ployed by these systems is based on gathering broadband
VHF (Very High Frequency) lightning discharges using mul-
tiple antennas that are carefully aligned with certain angles
between each pair of them. Given the data read by each
antenna and the setup information about the locations of
these antennas, the phase differences between these anten-
nas is calculated and then the azimuth and elevation are
calculated. The calculated values indicate how the lightning
is progressing through its occurrence time interval, which
is usually less than a second. In our case study, we focus
on the broadband digital VHF interferometers (DITF) pro-
posed in [17].

In [17], to identify whether an electrical discharge cap-
tured by the antennas represent the occurence of lightning or
not, two assumptions are made [17]: (1) discharges captured
by one antenna within a short time (nanoseconds) are gener-
ated by the same lightning strike source; and (2) a lightning
discharge that has many branches or is horizontally spread
across a long distance is simultaneously captured by multi-
ple antennas. Therefore, to confirm the occurrence of light-
ning, a lightning discharge has to be captured by multiple
antennas within a very short time. The proposed approach
continuously records signals from three antennas aligned on
the apexes of obtuse angle triangle. Given that each antenna
reading can be represented in 2 bytes, the total amount of
data accumulated per second is 1.6 GB. To analyze this data,
they are divided into windows of 128 records each. Each of
these records consists of three readings, one from each an-
tenna, and a time occurrence value.

The analysis algorithm applies the following operations on
each sample window (128 records):

• The sample data is assembled into three vectors, each
represent the readings from one antenna during the
window interval.

• Fast Fourier Transform (FFT) is computed for each
vector.

• The phase difference is calculated between each pair of
antennas for each frequency component.

• We are only concerned about the frequencies in the
bandwidth 30 to 80MHz, therefore, the slope of phase
difference for each frequency component in that band-
width is calculated.

• Finally, the azimuth and elevation are calculated for
each frequency component.

Optimally, when the signal captured by all antennas is
a lightning discharge, the calculated phase difference is the
same for all frequency components. However, to consider the
effect of noise, the algorithm calculate standard deviation
of the phase differences of all frequency components, and
therefore, only those signals associated with small standard
deviation of their phase difference are considered to indicate
lightning discharges.

Note that the computations are performed on each win-
dow of data independent from other windows, and that each
window is pretty small (128 records, each is composed of
readings from three antennas). This deems the algorithm
as being embarrassingly parallelizable. However, since the
original solution presented in [17] used a sequential C pro-
gram for analyzing the data, 1473.96 s (24 minutes) were

Figure 8: The performance of running the multi-
thread version of the lightning application on an
EC2 machine with eight cores.

taken to process the data captured by the antennas in two
seconds [11] 2.

We conclude that using a sequential program is far from a
real-time solution and that a better solution can be achieved
through processing data in different windows in parallel.
Next, we discuss why simple parallel solutions will not reach
a real-time processing performance and we then present our
solution using DAMB.

4.2 Parallel Algorithms for the Lightning De-
tection Application

As discussed in the previous section, the data captured
by the antennas are partitioned into windows of 128 records
each, and the records in each window are analyzed indepen-
dent from the other windows. We study two approaches for
parallelizing the analysis of the data.

The first approach is to use threads. We create N threads.
Each thread, reads a window of data (128 records) and per-
forms the analysis steps described in Section 4.1. Using
threads has better performance as compared to the sequen-
tial implementation because it exploits the multiple cores on
the machine running the application. However, this solution
is limited by the number of cores on the machine. Figure 8
shows the execution time of the lightning application on a
machine with eight cores3. Note that the execution time of
the application reduces when the number of threads is in-
creased until it reaches the number of cores of the machine.
For eight cores, the analysis time of the data captured in
one second by the antennas took 67 seconds. This solution
is certainly limited and will not lead to real-time execution
unless there are hundreds of cores on the machine.

Since the multithread implementation for the lightning
application can reduce the execution time but is limited to
the number of cores on the machine running the application,
we explore using GPUs to exploit their thousands cores. We
use the CUDA framework to execute the analysis operations

2We made simple optimization to the code to eliminate un-
necessary disk reads/writes and matrix operations, and we
managed to reduce the execution time to around 14.5 min-
utes.
3More details about the setup of the experiments is pre-
sented in Section 5.

Figure 9: The performance of running the lightning
application on different data sizes on one GPU.

for each window of data in a separate thread. The execution
time of data captured in one second, which has the size
of 1.6 GB, took 13.7 seconds on an EC2 machine that has
one GPU (details of the setup of machines are presented in
Section 5.1). This approach also has its limitation. GPUs do
not scale well with data and do not guarantee fault tolerance.

To increase the parallelism provided by GPUs, we can
divide the data into chunk and execute each chunk on a
separate GPU. Figure 9 shows the time needed to execute
the lightning application on data of different sizes on one
GPU. This experiment gives us an indication about the size
of a data chunk to send to each GPU to reach real-time
processing performance for the entire data generated in one
second by the application. The experiment shows that a
chunk size has to be smaller than 200MB to be suitable for
real-time processing. Next, we show how the solution can
be scaled using DAMB to leverage multiple GPUs.

4.3 Real-Time Solution for the Lightning De-
tection Application using DAMB

We show in the previous section that using GPUs al-
low employing many parallel threads at any time, however
this solution does not scale well with the increase of data
size 4. Furthermore, distributed computing platforms such
as Spark guarantee scalability and fault tolerance but do
not provide the required degree of parallelism for our so-
lution due to the limited number of cores on CPUs. We
describe the architecture of DAMB, which leverages the ad-
vantages of GPUs and distributed computing platforms in
Section 2. It is worth noting that DAMB is also capable of
stream processing of data and therefore it perfectly fits our
solution.

The data captured by the antennas are logged and sent
in micro-batches to DAMB. We choose the batch size to be
one second because this is the minimum streaming rate by
Spark streaming. Therefore, a 1.6 GB of data are streamed

4We note that even though the memory of a modern GPU
can be enough for executing the entire data streamed per
second for the application we are studying, we were able
to enhance the performance of the application and reach
real-time analysis performance by dividing the work among
multiple GPUs. Moreover, our objective is to build a generic
framework that is capable of executing hundreds of gigabytes
of data in real-time.

to DAMB every second. Upon their arrival, new tasks are
created to execute the lightning application.

We write the application using Java, which is one of the
programming interfaces for Spark. The code that is run
on the GPU is written in C using the CUDA framework.
For communication between SparkGPU, which is the dis-
tributed execution platform of DAMB, and the GPUs, we
implemented the two approaches described in Section 3. To
prepare the code for each of them, we do the following:

• Using JNA. In this approach, we write the analysis
code for each window of data in CUDA and we com-
pile it as a CUDA native shared library (*.so). Our
Spark code calls this library as illustrated by the code
fragment shown in Figure 4.

• Using Node Manager. We write the lightning analysis
code as CUDA Kernel functions. The node manager
code is written in C and therefore it can simply link
to the CUDA kernel functions and call them from its
code. When the node manager receives a message from
a Spark task with the data and function to run on the
GPU, the node manager copies the data in the message
to the GPU and calls the requested Kernel function.

After finishing the analysis of each partition of the data,
we write its result (time of occurrence, azimuth, and eleva-
tion) to a file stored on Tachyon. This output is momentar-
ily pulled by the visualization tool and plotted as shown in
Figure 2.

5. EXPERIMENTS

5.1 Experimental Setup
We implemented DAMB using Kafka version 0.8.2 and

SparkGPU that extends Spark version 1.5.1. We conducted
our experiments on AWS EC2 instances5 of two types:

• g2.2xlarge instances. Each instance has 8 virtual CPUs
(vCPUs), 15 GB of memory, and one Nvidia GPU with
1536 CUDA cores and 4 GB of video memory.

• g2.8xlarge instances. Each instance has 32 virtual CPUs
(vCPUs), 60 GB of memory, and four Nvidia GPU
with 1536 CUDA cores and 4 GB of video memory.

Each instance runs Amazon Linux and uses the Nvidia
CUDA compiler version 6.5. We setup Spark and SparkGPU
on the instances in the standalone mode.

For evaluating the performance of DAMB, we use the
lightning detection application described in Section 4. We
got a real dataset of lightning signals and the sequential C
implementation that are described in details in [17] from Os-
aka University. Each record in the data represent readings
from three antennas and a GPS reading to identify the time.
Each reported result is based on the average execution time
of three runs. We mainly rely on the measured execution
time as our metric to compare the performance of various
implementation versions of the DAMB platform. The exe-
cution times reported are also for processing data streamed
to DAMB in one second, which has the size of 1.6 GB.

5Available at: https://aws.amazon.com/ec2/.

5.2 The Execution Performance of DAMB on
One Machine

In this section, we demonstrate the effectiveness of exe-
cuting the lightning application using DAMB as compared
to alternative approaches. We compare DAMB with the
sequential C version and the multithreaded version of the
lightning application discussed in Sections 4.1 and 4.2, re-
spectively. We also compare two versions of DAMB: (1)
the executing platform is Spark; and (2) the executing plat-
form is SparkGPU. We chose to execute this experiment
on one machine because the sequential C version and the
multithreaded version of the lightning application does not
scale-out to multiple nodes. In this experiment we use one
EC2 instance of type g2.8xlarge that has 32 vCPUs. For
this experiment, we vary the number of threads of the mul-
tithreaded implementation of the application between one
thread and 32 threads, and we vary the configuration of
Spark to use one core to 32 cores. For the SparkGPU setup,
we set it to use only one GPU.

Figure 10 shows a comparison of the execution time of
each implementation of the lightning application. The exe-
cution time of the sequential C implementation is the worst.
Additionally, this execution time does not improve when we
increase the number of cores on the machine, therefore it is
not a scalable solution. The multithreaded implementation
scales very well when the number of cores on the machine
increases. However, this solution does not scale-out and is
limited by the maximum number of cores that can exist on
any machine. When DAMB uses Spark at its core, the ex-
ecution time improves when the number of cores increase
on the machine, because Spark can efficiently exploit these
cores. Finally, the SparkGPU implementation achieved per-
formance that is better than any of the other implementa-
tions when the processing of the data is done on one GPU.

It is also shown in Figure 10 that the performance of
the multithreaded implementation of the application is very
close to that of the Spark implementation of the application.
This is mainly because Spark tasks are executed as threads
within one Executor on one machine. Besides, the memory
is big enough to hold the entire input data streamed in a
steaming window (set to one second in the experiments) and
any intermediate results. As for SparkGPU, even though it
also runs multiple tasks as an inherited feature from Spark,
its performance is limited by the number of GPUs allocated
for it as all these tasks compete to delegate their work to
these GPUs.

Thus, we note that DAMB with Spark or SparkGPU ex-
ecuting the applications have the best performance and can
also scale-up and scale-out well. The results of this exper-
iment show that we are still far from achieving real-time
analysis, therefore, we need to scale-out the computation
across many nodes that are equipped with GPU cards.

5.3 Performance of DAMB when Scaled-Out
to Multiple Machines

In this section, we evaluate the performance of SparkGPU
as compared to Spark when executing the lightning analysis
application. We use the two implementations of SparkGPU
that use JNA and a node manager to interface with the
GPUs as described in Sections 3.2 and 3.3, respectively. In
the experiment, we use EC2 g2.2xlarge instances to setup
the Spark and SparkGPU clusters, and we vary the number
of nodes in these clusters from one to 12.

Figure 10: Comparing the execution performance of
the lightning application when using a sequential C
program, a multithreaded C program, DAMB run-
ning Spark and DAMB running SparkGPU.

Figure 11 shows that the execution time required to ana-
lyze the data of the lightning application streamed to DAMB
per second is reduced when the number of the nodes in
the cluster increases. However, when the core of DAMB
is Spark, this performance improvement is limited and does
not lead to real-time performance when the number of nodes
in the cluster reaches 12 and each node has 8 cores.

When the executing platform of DAMB is SparkGPU, the
execution time is an order of magnitude less than Spark.
Moreover, the performance improves fast to achieves real-
time execution. This result is expected, because adding one
node equipped with a GPU can achieve performance equiv-
alent to adding several CPU cores.

In this experiment, we also compare the two communica-
tion interfaces between SparkGPU and the GPUs. Figure 11
shows that using a node manager lead to better performance.
This is because of the following: (1) the node manager uses
multiple threads to concurrently access a shared GPU while
the JNA uses multiple processes to access the GPU leading
to lots of context switching; and (2) the data transfer be-
tween Spark and JNA is much slower than the data transfer
between Spark and the node manager. We discuss the latter
reasoning in more details in the next experiment. However,
the figure shows that the performance difference between
SparkGPU two communication approaches is not that sig-
nificant. The main reason is that when there are many GPUs
in the cluster the opportunity of many Spark tasks delegat-
ing their work to the same GPU reduces. Moreover, the
execution time of each task submitted to the GPU is very
short, and therefore, other tasks waiting for their turn to
run on the GPU will not block for a long time.

Finally, note that we were able to achieve real-time analy-
sis of the lightning application when we scaled-out our clus-
ter and use the SparkGPU platform for executing the anal-
ysis tasks. This was not a feasible solution for other alter-
native implementations.

5.4 Data Transfer in SparkGPU
In this section, we discuss the effect of changing the parti-

tion size on the performance of SparkGPU. In the previous
section, we demonstrated that the two approaches we stud-
ied to enable SparkGPU to communicate with the GPUs in
the cluster lead to very close performance, and using a node
manager was slightly better than using JNA. We designed

Figure 11: Comparing the execution performance
of the lightning application when using Spark,
SparkGPU (JNA), and SparkGPU (Node Man-
ager).

Figure 12: Comparing the time required for trans-
ferring the data between SparkGPU and the GPU
when using JNA and a node manager for communi-
cation.

this experiment to closely examine the effect of changing
the block size on the data transfer overhead in both cases.
We change the size of blocks in SparkGPU and measure the
time required to transfer this block from the task running
by SparkGPU to the GPU. This transfer time is expected
to vary based on the communication interface that we use
and that are described in Section 3.

Figure 12 shows that the data transfer time linearly in-
creases when the block size increases. It also shows that
the time required for transferring the data is reduced when
we use a node manager. This means that the overhead in-
troduced by using JNA is much higher and that using the
node manager can always lead to better performance. Note
that even though the difference in the execution time is not
significant as shown in Figure 11, saving milliseconds is still
important for a real-time application.

5.5 Executing SparkGPU on Nodes with Mul-
tiple GPUs

One of the benefits of the node manager described in Sec-
tion 3.3 is that it allows multiple Spark tasks to concurrently
run on one GPU. Besides, if the cluster node is equipped
with multiple GPUs, it distribute the Spark tasks to work
on them. On the contrary, when we use the JNA approach
described in Section 3.2, a Spark task is queued and is as-
signed to one of the GPUs on the node when it becomes
available. The node manager guarantees that the tasks are

Figure 13: Comparing the JNA and a node manager
approached when SparkGPU runs on instances with
4 GPUs.

executed concurrently of the GPUs, therefore we expect that
they perform better as compared to using JNA for the com-
munication between the Spark tasks and GPUs. In the ex-
periment described in Section 5.3, we compared using node
manager and JNA when running sparkGPU on a cluster of
nodes where each only has one GPU. In this experiment,
we compare both approaches when we use cluster instances
that have multiple GPUs. Therefore, we use EC2 g2.8xlarge
instances that have 4 GPUs.

As expected, Figure 13 shows that real-time performance
is reached for this application when the number of cores
reaches 12 (3 nodes each has 4 GPUs). This indicates that
SparkGPU can successfully manage a heterogeneous cluster
where each node can be equipped with one or more GPUs,
and it can successfully exploit all the resources in the cluster.
Moreover, both JNA and node manager approaches have a
close performance. However, when using the node manager
approach, the execution time is relatively lower as compared
to when using the JNA approach. This is mainly due to the
concurrency achieved at each node. The difference is not
big because the execution time of each task on the GPU is
very short and therefore blocking spark tasks until the one
running on the GPU finishes and the GPU becomes available
would not significantly increase the execution time.

6. RELATED WORK
There has been several work that studied meteorological

phenomena for better understanding and prediction [11, 17,
19] studied analyzing lightning using the interferometric ap-
proach. Other work focus on predicting precepitation [15,
23], air quality [26], and Tsunami [22]. However, the fo-
cus of all this work is the accuracy of the solution rather
than the performance. In this paper, our main objective
is to achieve a real-time performance of the analysis pro-
cess. Even though we focus on the application proposed
in [17], we can claim that DAMB is capable of processing
other streaming applications in real-time.

The LIVE system introduced in [11] proposes hardware
and a new less accurate analysis approach for analyzing the
lightning. The objective of this work is to achieve real-time
performance. However, the time required to analyze the
data generated per second takes 28 seconds to 106 seconds
based on the quality of the results.

GPUs have successfully been used in simulating and mod-
eling lightning discharges [10, 16]. These work show how the

simulations can now be performed on commodity machines
with GPUs rather than requiring supercomputer power while
achieving good accuracy. In this paper, we show how we use
DAMB for processing lightning data that are continuously
streamed in real-time.

Few research works have studied employing Spark to man-
age the execution of applications on a heterogeneous clus-
ter [13, 18]. HeteroSpark [13] is a big data analysis frame-
work that extends Spark to allow it to manage a hetero-
geneous cluster of CPUs and GPUs. It benefits from the
presence of GPUs on worker machines to accelerate the com-
putations. Users of the system write their analysis code in
the form of Java code using the normal Spark APIs while
relying on the Java remote method invocation (RMI) mech-
anism to invoke tasks execution on GPUs available locally
on each machine or available on other machines in the clus-
ter through the network. The native methods implemented
as a shared native library can then be called to acceler-
ate the execution of code on the GPU. The system should
work transparently accelerating the performance depending
on the available resources in the cluster. The main compo-
nent of DAMB that performs the parallel execution is the
SparkGPU. Its architecture is close to HeteroSpark. How-
ever, we optimize this architecture in Section 3.3. More-
over, we compare these two approaches in the experiment
section: (1) communicating between Spark and GPU using
JNA (similar to HeteroSpark); and (2) communicating be-
tween Spark and GPU through a node manager. We show
that the latter approach performed better. SparkCL [18]
is another framework to provide heterogeneous computing
platform. SparkCL uses a more general approach to what
can be integrated into the existing big data frameworks by
designing the system to have the ability to also use FP-
GAs and DSPs in addition to GPUs. SparckCL provides a
new abstract layer that can call and work with the APIs of
Apache Spark and the hardware devices that can be used
as accelerators. Users of the system write the analysis code
using the higher level layer and then the framework will han-
dle the communications between this high level API with the
underlying APIs of spark and OpenCL. There is a trade-off
between flexibility as provided by SparkCL and tailoring an
optimized code as provided by SparkGPU. We relied on the
latter approach because our goal was achieving real-time ex-
ecution performance, and allowing the users to write their
code optimized for execution of GPUs appeared to us as
a better alternative. Moreover, we note that DAMB is a
platform for parallel processing of streamed data that has
SparkGPU at its heart.

7. CONCLUSION
In this paper we present DAMB, an end-to-end frame-

work that process streamed data on a heterogeneous clus-
ter of CPUs and GPUs in real-time and visualizes the re-
sult. DAMB leverages Kafka and Spark streaming for pro-
viding an efficient and fault tolerant mechanism to read
streamed data and start tasks to process them. DAMB
employs SparkGPU to execute the applications on cluster
nodes that are equipped with GPUs. Therefore, SparkGPU
enabled the Spark tasks to delegate their work to be exe-
cuted on GPUs instead of CPU cores. We present two ap-
proaches for the communication between Spark applications
and GPUs to delegate tasks to them. We use DAMB to run
a lightning application and show that using our platform,

we are able to reduce the execution time of the applications
from few minutes to less than one second.

Acknowledgment
We would like to thank Prof. Zen Kawasaki (Osaka Univer-
sity and HITACHI Critical Facilities Protection PTE LTD)
and Dr. Lotfy Samy (National Research Institute of As-
tronomy and Geophysics – NRIAG) for sharing lightning
datasets collected at Osaka University and the C analysis
code presented in [17] with us and for their support and
continuous feedback while developing our proposed frame-
work.

8. REFERENCES
[1] Alluxio: Open Source Memory Speed Virtual

Distributed Storage. Available at:
http://www.alluxio.org/.

[2] Apache Hadoop. Available at:
http://hadoop.apache.org/.

[3] Apache Kafka. Available at: http://kafka.apache.org/.

[4] Apache Spark. Available at:
https://spark.apache.org/.

[5] Lightning Costs and Losses from Attributed Sources.
Available at: http://lightningsafety.com/nlsi lls/nlsi
annual usa losses.htm.

[6] J. Chen, Y. Wu, and Z. Zhao. The new lightning
detection system in China: Its method and
performance. In Asia-Pacific Int. Symp. on
Electromagnetic Compatibility, pages 1138–1141, 2010.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. USENIX
Conf. on Operating Systems Design and
Implementation (OSDI), pages 137–150, 2004.

[8] L. Elbaghdady, M. Akita, Z. Kawasaki, and M. Ragab.
One site three dimensions lightning location system
using VHF broadband interferometers. Journal of
Atmospheric electricity, 33(2):91–105, 2013.

[9] M. W. Govett, J. Middlecoff, and T. Henderson.
Running the NIM next-generation weather model on
GPUs. In Proc. IEEE/ACM Int. Conf. on Cluster,
Cloud and Grid Computing (CCGrid), pages 792–796,
2010.

[10] A. Gulyás and I. Kiss. The use of low-cost, efficient
GPU-based parallel computing in lightning modelling.
Electric Power Systems Research, 113:41–47, 2014.

[11] Z. Kawasaki, M. Stock, T. Ushio, and M. Stanley.
Lightning imaging via VHF emission. In AGU Fall
Meeting, 2015.

[12] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and
I. Stoica. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proc. ACM Symp.
on Cloud Computing (SoCC), pages 1–15, 2014.

[13] P. Li, Y. Luo, N. Zhang, and Y. Cao. HeteroSpark: A
heterogeneous CPU/GPU Spark platform for machine
learning algorithms. In IEEE Int. Conf. on
Networking, Architecture and Storage (NAS), pages
347–348, Aug 2015.

[14] J. Michalakes and M. Vachharajani. GPU acceleration
of numerical weather prediction. Parallel Processing
Letters, 18(04):531–548, 2008.

[15] S. Otsuka, G. Tuerhong, R. Kikuchi, Y. Kitano,
Y. Taniguchi, J. J. Ruiz, S. Satoh, T. Ushio, and
T. Miyoshi. Precipitation nowcasting with
three-dimensional space–time extrapolation of dense
and frequent phased-array weather radar observations.
Weather and Forecasting, 31(1):329–340, 2016.

[16] G. Pyrialakos, T. Zygiridis, N. Kantartzis, and
T. Tsiboukis. GPU-based three-dimensional
calculation of lightning-generated electromagnetic
fields. In Int. Conf. on Numerical Electromagnetic
Modeling and Optimization for RF, Microwave, and
Terahertz Applications (NEMO), pages 1–4, 2014.

[17] L. Samy, Y. Nakamura, A. Allam, T. Ushio, and
Z. Kawasaki. Ten minutes continuous recording
lightning using broadband VHF interferometer.
Advances in Space Research, 56(10):2218–2234, 2015.

[18] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and
M. Margala. SparkCL: A unified programming
framework for accelerators on heterogeneous clusters.
arXiv preprint arXiv:1505.01120, 2015.

[19] X. Shao, D. Holden, and C. Rhodes. Broad band radio
interferometry for lightning observations. Geophysical
Research Letters, 23(15):1917–1920, 1996.

[20] M. Showerman, J. Enos, A. Pant, V. Kindratenko,
C. Steffen, R. Pennington, W.-m. Hwu, et al. QP: a
heterogeneous multi-accelerator cluster. In LCI Int.
Conf. on High-Performance Clustered Computing,
2009.

[21] W. Vanderbauwhede and T. Takemi. An investigation
into the feasibility and benefits of GPU/multicore
acceleration of the weather research and forecasting
model. In Int. Conf. on High Performance Computing
and Simulation (HPCS), pages 482–489, 2013.

[22] Y. Wei, A. V. Newman, G. P. Hayes, V. V. Titov, and
L. Tang. Tsunami forecast by joint inversion of
real-time tsunami waveforms and seismic or GPS
data: Application to the tohoku 2011 tsunami. Pure
and Applied Geophysics, 171(12):3281–3305, 2014.

[23] E. Yoshikawa, T. Ushio, Z. Kawasaki, S. Yoshida,
T. Morimoto, F. Mizutani, and M. Wada. MMSE
beam forming on fast-scanning phased array weather
radar. IEEE Transactions on Geoscience and Remote
Sensing, 51(5):3077–3088, 2013.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In USENIX Conf. on Networked Systems
Design and Implementation (NSDI), 2012.

[25] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In Proc. ACM Symp.
on Operating Systems Principles (SOSP), pages
423–438, 2013.

[26] Y. Zheng, F. Liu, and H.-P. Hsieh. U-Air: When
urban air quality inference meets big data. In Proc.
ACM Int. Conf. on Knowledge Discovery and Data
Mining (SIGKDD), pages 1436–1444, 2013.

