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Lemma 8: For any P € 3(2), we have

=) < 71(P) < 7). (65)
Proof: For P € A® et us define a function £(#) by
£ty = D(P|IP). —x < t < x. (66)
We have, by (28),
1
® — i) - ) ©7)
dt
and
d*E(t) _ d* o
ar = RO (%)

Hence, by Lemma 3, £() is a convex function of ¥, — x <t < x.
From (14) and (15), we see that some of P (i'|i), i. i € €, tend to
zero as ¢ goes to infinity or minus infinity. Thus, by the definition
of divergence, we have

tlim‘ﬁ(f) =, li1‘11 E(t) = x.

(69)

Therefore, from (69) and the convexity of £(#), there exists a unique
t with (dé(t)/dt) = 0, or, by (67), 7(t) = 7(P). Consequently,
from (35), we have (65) for P € A). By the continuity of 7(P),
Pe 3(2), (65) holds also for P € BN O

Proof of Theorem 3: Let us define a test function On by

1. if 7(Pun) < 7(x),

oplw™)y =4 & i T(Pun) =7(x), (70)
0. if 7(P.n)>71(x),
with
F exp(—rn) (71)

T Pofen T (Pon) = ()}

By Lemma 8, we see that the set {w" |7(P.n) > 7(5c)} is empty.
Hence, we have a(o, ) =exp(—rn). Since —Llog Py {w"|T(Pon )=
T(>)} converges to oo () (< r) by Lemma 6, we have 00 < d<1
for sufficiently large n’s. Therefore, for the most powerful test
function o}, we have

3(oh) < J(on)

P {,c”'T(Pw-w ) =7 }
Py |r(Pon) = 7{x)}

=1—exp(—rn)
which implies 7,(r) < r — 7(~x) by Lemmas 2 and 6.
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A Note on the Asymptotics of Distributed
Detection with Feedback

Hossam M. H. Shalaby, Member, IEEE, and
Adrian Papamarcou, Member, IEEE

Abstract—The effect of feedback on the performance of a distributed
Neyman —Pearson detection system consisting of 1 sensors, two-stage local
quantizers, and a global detector is investigated. Two feedback schemes
are discussed, only one of which yields an asymptotic gain in performance,
as measured by an appropriate error exponent.

Index Terms— Distributed detection, error exponents, feedback, hy-
pothesis testing, Kullback—Leibler divergence, quantization.

[. INTRODUCTION

A distributed (or decentralized) detection system is a network of
sensors which, together with a global detector (or data fusion center),
cooperatively undertake the task of identifying a random signal
source. Typically, the sensors compress their observations into low-
ratc data streams, which are then transmitted to the global detector
for processing and decision making. Compared to a conventional
detection system with passive sensors, the distributed setup offers the
advantages of reduced communication bandwidth, shared processing
and increased reliability, albeit at some expense of performance.

Most distributed detection models employed in the literature are
feedforward systems, in which the information flow from the sensors
to the global detector is unidirectional. Recently, there has been
some interest [1], [2], [9] in models with bidirectional flow, in which
feedback from the global detector to the sensors is allowed. In such
systems, the process of local data compression and transmission
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Fig. 1. Schematic representation of FB1. (a) First stage of feedforward transmission to global detector (GD). (b) Feedback from
global detector. (c) Second stage of feedforward transmission.
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Fig. 2. Schematic representation of FB2. (a) Feedforward transmission to intermediate detector (ID). (b) Feedback from intermediate
detector. (c) Feedforward transmission to global detector.

evolves in several stages, which are punctuated by the broadcast of
feedback information from the global detector. In this manner, each
individual sensor receives partial information about the observations
of the other sensors in the network, and can use this information
to improve on its data processing. Other things being equal, the
introduction of feedback and the resulting increase in available
information are beneficial; this was established through performance
evaluations of different feedback schemes in [1], [2], and [9]. On the
negative side, feedback requires a higher communication bandwidth
and entails a longer delay in making a final decision.

In this correspondence, we investigate the asymptotic gain in
performance resulting from introducing two distinct types of feed-
back in a distributed detection system consisting of n sensors. We
undertake an asymptotic (in the number of sensors n) analysis
because fixed-sample optimization and performance evaluation is
analytically intractable for a majority of distributed detection systems
(even in the absence of feedback), whereas asymptotically optimal
schemes have been successfully developed in many instances [5]-[8],
[10]. Although the feedback configurations discussed here are fairly
general, they are by no means exhaustive. In particular, we limit
ourselves to models in which the data sample size (per sensor) is
fixed as the number n of sensors varies, and all data are collected
before sensor-to-global detector communication commences (unlike
in [2] and [9]). The data are represented by Xy, - -+, Xn, where X,
denotes the observation of sensor S;.

The first feedback scheme considered here (denoted by FB1 and
shown in Fig. 1) is perhaps the simplest in the class of all feedback
schemes. It involves data compression and transmission in two stages,
with feedback from the global detector after the first stage. Thus,
initially, each sensor S; quantizes its observations into a message
U;, and transmits this message to the global detector. Upon receipt
of U = (U').---.Uy), the global detector broadcasts a feedback
message Z. Each sensor then generates and transmits a second

message Vi, and the global detector uses the two vectors U and
V to make the final decision.

The second feedback scheme (denoted by FB2 and shown in Fig. 2)
is markedly different, in that the global detector does not participate
in the feedback process. In essence, here we have partial information
exchange between sensors before transmitting data to the global
detector. This exchange is affected via an intermediate detector,
which is distinct from—and not linked with—the global detector.
The process again evolves in two stages. Initially, the sensors
transmit messages U; to the intermediate detector. In response, the
intermediate detector generates a message Z and broadcasts it to the
sensors. The sensors then requantize their observations into messages
V; and transmit them to the global detector, which makes a decision
based solely on the vector V.

In our analysis, we assume that the n sensor observations are
independent and identically distributed, and we consider binary
detection (Ho : X ~ Px versus Hy : X ~ Qx) under the classical
(Neyman—Pearson) criterion. The problem is to minimize the type
II error probability ¢, subject to an upper bound (or level) € on the
type [ error probability p,. This is a joint minimization over all al-
lowable local (sensor) quantizers, feedback maps and global decision
rules. The resulting minimum value of ¢,, is denoted by 3. (¢). The
optimal error exponent of the detection problem is defined as the
quantity

9(6) = —lim —’11— log ﬂn(f)a

provided the limit exists. Whenever the error exponent is well defined,
we say that a sequence of detection schemes is asymptotically, or
exponentially, optimal if the associated type II error probability ¢»
satisfies

—lim % log g = 8(e).
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We proceed to present complete results on the optimal error ex-
ponents associated with the feedback schemes introduced previously,
under conditions which are fairly general for FB1 and somewhat
more restrictive for FB2. These results indicate that, in an asymptotic
sense, only one of the two feedback schemes is useful. More precisely,
the error exponent of FBI1 is no better than what is attainable by a
purely feedforward scheme in which the feedback stage (transmission
of Z) is altogether eliminated. In FB2, on the other hand, the
preliminary information exchange between sensors is quite valuable,
resulting in a net performance gain compared with a single stage
feedforward scheme in which only V' is transmitted by the sensors
to the global detector. The results are obtained under the following
four assumptions:

1) the i.i.d. observations .X; have finite alphabet;

2) the alphabets of the feedforward messages are fixed in 1, and
are binary in the case of FB2;

3) the same compression scheme is used by all n sensors; and

4) the alphabets of the feedback messages can grow at most
subexponentially in n.

As we argue briefly in Section V, assumptions 1-3 can be relaxed
in the case of FBI.

1I. PRELIMINARIES

Error exponents for detection systems are customarily expressed in
terms of the Kullback—Leibler informational divergence, or simply
divergence. Given two distributions Px and (Jx on a measurable
space (X. B), the divergence of Py relative to (Q v is given

Pr(u)
D(Px||QN) = St Pr-(u)log
(PxllQx) -rrs:lfl:‘\,. lg‘, R
1)<
Here, U{ rtepresents the alphabet of I” = f(X), and | -| denotes
cardinality. We define P~ by P-(u) = Px(f '{u}), and Qr-

similarly. The mapping f is assumed measurable.
If Py is absolutely continuous with respect to (Jx (written as
Py € Qyx), then

d P~
D(Px )= Epllog ——|.
(Px]|Qx) F [og 10 l
where d Py /dQ x is the Radon—Nikodym derivative. If Px € Qx,
then D(Px||Qx) = +x; the converse is also true if B is finite.
In the discrete case, where without loss of generality, 8 = 27 the
divergence has the simple expression

=D Pule)log O+ (:)

reX

D(Px||Qx)

The divergence functional plays an important role in hypothe-
sis testing. A key result is Stein’s lemma [3], which states that
D(Px||Qx) is the optimal Neyman—Pearson crror exponent for
testing a null hypothesis Ho : X ~ DPx versus an alternative
H,: X ~ Qy atany level ¢ € (0,1) on the basis of an i.i.d. sample
X = (X1.---.X,). A characterization of the optimal Bayesian error
exponent in terms of divergence functionals is also possible, but is
not of direct relevance to the problems presented here.

In deriving error exponents for hypothesis testing, one can gener-
ally apply results from the theory of large deviations. In this work,
we follow an alternative approach based on typicality arguments
[4, ch. 1, Section 2] which is suitable for finite sample spaces. The
underlying idea is that sequences of length n from a finite space X’
can be divided into polynomially (in n) many cquivalence classes
Tf\", each characterized by a fixed fype (composition, empirical
distribution). The probability of each 7% under the n-fold i.i.d.

extension of a measure Py (resp., Qv) on X' decays exponentially
in n, with rate (exponent) equal to the divergence of the associated
type relative to Py (resp., Qx ). Thus, in the context of testing Px
against Qx on the basis of an i.i.d. sample size n, each set TY has
two exponents associated with it. For Neyman—Pearson testing at
level ¢, the optimal null acceptance region A, can be approximated
by the union of all classes T? whose Py-exponent is smaller than
an arbitrarily small positive &; while the resulting error exponent
f(¢) is approximately given by the maximum of the corresponding
Q) x -exponents. The precise facts needed for our analysis are as
follows.

Let P, (.V') denote the set of distributions on .\’ assigning prob-
ability values that are multiplies of 1/n. Every sequence z € ™"
induces an empirical distribution on .\" that coincides with a Py in
P, (V). We then say that Py is the type of =z, or equivalently, that
PX is PPy —rypical. Given Py in P, (.V'), we represent the set of
all Py- -typical sequences in .\ by T,

We also use two concepts of approximate typicality defined with
reference to an arbitrary distribution Py on Y. We say that « is
(P\ n)-typical if the type of z is absolutely continuous with respect
to Py and also lies in a ball of sup-norm radius 1 centered at Py
We denote the sct of all (PPx.y)-typical sequences by Ty -

The second concept of approximate typicality is borrowed from
[6]. We say that z is ( Py . y)-divergent if the type Py of z satisfies

D(ﬁ\ HP\) <.

We denote the set of all ( Py . y)-divergent sequences by 5"'{;”.

We will use the notation P" for the n-fold i.i.d. extension of a
measure . The following lemma contains results which are essential
to our analysis.

Lemma I: Let X' be a finite space and P\ P\ and (Qn be
distributions on .\". Then

@) [P (V)] < (0 +1)

b) (n + 1)~V (‘.\'[)[—IID(P‘\ ||Q\>]

< Q4 (T%) < exp[-uD(Pxllov)]-

[yl

¢) If 5 > 0, then
| V]

dnn?’

Py (T%,) 21—

P (5\ ,,) >1—(n+ IS exp[—nn).

Proof: For a) and b) and the first inequality in c), see [4],
Lemmas 2.2, 2.6 and 2.12. For the second inequality in c), see, [6],
Lemma 2a).

Throughout the correspondence, we will assume that the sensor
observations X.---.X, take values in a finite alphabet X', i.e
|.¥] < >. This assumption is not critical for the analysis of FB1, and
can be relaxed—as will be outlined in Section V—to a boundedness
condition on a suitable moment generating function. It is, however,
needed for the analysis of FB2. The assumption that " is finite
implies that the set Q of possible quantizers is also finite.

HI. Two-STAGE COMPRESSION WITH FEEDBACK
FROM GLOBAL DETECTOR

In this section, we evaluate the optimal error exponent for FBI
under the simplifying assumption that all » sensors are identical, i.c.,
use the same compression scheme. We shall see in Section V that this
constraint is not restrictive as long as optimality is assessed in terms
of the error exponent, which is the case considered here. The common
compression scheme used by the n sensors is allowed to vary with the
value of n. This should be borne in mind in what follows, because
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the notation used for the local quantizers and feedback maps sup-
presses n.

In the first stage of the compression process, each sensor uses a
quantizer f : X — U to produce a message

Ui = f(Xi),

which is then transmitted to the global detector. It is assumed that
|t/] = My, where My is finite and independent of the number of
sensors n.

The global detector uses a mapping ¢ : U" — Z, to produce a
feedback message

Z =oU).

which it then broadcasts to the sensors. For simplicity we let
Z, = {0.---.L, — 1}, and assume that L, grows with n at a
subexponential rate, i.e.,

lim —1— logL, — 0. 3.1

n

To motivate this choice of constraint on the size of Z,, we argue
as follows. Clearly (3.1) makes it impossible to encode the sequence
U into Z, yet it allows Z to represent the type of U unambiguously:
the number of possible types is at most (n + 1)1 by Lemma 1a)
and thus satisfies (3.1). Knowledge of the type of U would be as
good as knowledge of U itself, if each sensor S; were to perform
an optimal hypothesis test based solely on its observation X; and
the first-stage outputs Uy, -+, Ui—1, Uiy1.- - - Un of the remaining
sensors. Indeed, since the U;’s are i.i.d., a sufficient statistic for
this test would consist of X; and the type of U. We conjecture
that this sufficiency extends to the overall detection scheme FB1
under the assumption of identical sensors. That is, if the size of 2,
is unconstrained (without loss of generality, L, = |U/|"), then the
optimal second-stage quantizer depends on U only through its type.
This conjecture leads us to adopt (3.1) as a reasonable constraint on
L,.

In the second stage of the compression process, each sensor S;
quantizes X; according to the received value of Z, and transmits
the resulting message 1; € V to the global detector. The size of
the alphabet V equals My < oc and is independent of n. It is
convenient to regard V; as one of L, messages W .-, Vl/'fL" -b,
which are generated during the first stage by means of quantizers
g(o). LRI g(L" ‘1), respectively. Thus,

0<i<L,-1) W =49x.

and upon receipt of Z,
Ln—1
Vi=w® =Y wirz=1.
=0

where I denotes the indicator function.

The global detector declares Ho to be true, if and only if the
pair (U, V) lies in the null acceptance region A, C U™ x V". In
evaluating the probabilities p,, and g, of the error events, it.is-¥elpful
to note that the feedback mapping ¢ induces a partition of /™ into
L, sets FO . .fﬁL"_l), where

(0<I<L,-1) Fl=9¢ {1}
R A RN

Under each hypothesis, the probability of Wh&\@%n
by

Pr{(U.V)€ A} = er Pr{ (U.W“)) €A Z = 1} |

=0

Ln—1

(1) (1)
ZO; Pr{(U,W )eAn,Uef,, }
Ln—1

v Pr{(U,W(”) € An 0 (7 v}

=0
(3.2)

The probability equals 1 — p, (resp., ¢») when Pr is the measure
corresponding to Ho (resp., Hi).

An optimal detection scheme for n sensores is a quadruple
(f. {g(’)}.q). A,) that minimizes ¢, subject to p, < e. Our main
result is that when the feedback message alphabet is constrained by
(3.1), it is always possible to find an exponentially optimal sequence
of schemes in which the feedback message is degenerate, i.e., Z is
identically equal to 0. Thus feedback in FB1 does not result in an
improvement on the error exponent.

Theorem 1: If the sequence {L,} satisfies (3.1), then the optimal
error exponent of FB1 for testing at level € € (0,1) is given by

8 (M My .e) = D(Puv||Quv).

max
U=f(Xy). 9

V=g(Xxy
[f(X) =My, la(X)|=

(X1)
=My

(33)

Furthermore, this exponent is achieved by a sequence of schemes
employing no feedback.

Proof: To prove that the error exponent in (3.3) is achievable
without feedback, we consider two mappings f and g that achieve
the maximum in (3.3). We then let, for every n and every i < n,

U, = f(Xi).

and ¢ = 0. Thus, V; = g(X,), and the pairs (U1, V1).- - (Un, Va)
are i.i.d., each with distribution Prv (under Ho) and Quv (under
H,). By Stein’s lemma [3], the optimal error exponent for testing on
the basis of this i.i.d. sample exists, and is equal to D(Prv||Quv ).
This concludes the proof of the achievability of 8 (M. My .€).

For the converse results, we need to show that the optimal type II
error probability of FB1 satisfies

3n(€) > exp[—n(D(Puv||Quv) + )l

“,,'1(0) = g(Xi).

(3.4)

where U (resp., V') is a function of X; with alphabet size My (resp.,
My-), and ¢, — 0. The quantizers generating U and V' from X; may
vary with n, in which case the distributions Pr-v- and Quv will also
vary with n.

Let the optimal detection scheme for n sensors consist of quantizers
£ and {¢g("}, feedback map ¢ and null acceptance region A,,. From
(3.2) and the type I error constraint

P{U.V)E A} >1—¢

we deduce the existence of {* such that

() ("), yn | s
P{(U.W )eAnﬁ(fn V') >
For simplicity, we let W; = W'l(l‘) and g = g(l*). Then, U; =
f(X;) and W; = g(X;), hence the pairs (U, W1), -+, (Un, Wa)
are i.i.d. This allows us to rewrite (3.5) as

Phy (.A',,) > 2exp[—né,],

(3.5)

(3.6)

where A, = A, 1 (FL ) x V") and by (3.1), 6, — 0 as n — x.
We emphasize that the encoders f and g, as well as the resulting
distributions P and Qurw, are implicitly dependent on n.

We, thus, suppress the presence of feedback by isolating a subset
A’ of the null acceptance region whose probability under the n-fold
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iid. extension of P decays subexponentially in n. The converse
result (3.4) will follow from (3.2) if we find ¢, — O such that

Q?'W(Aln) > exp[—n(D(Prw||Quw) + ¢n))-

Since X is finite, for every n there are at most finitely many
choices for the pair (Prw . Quw ). Thus, we obtain a finite partition
of the positive integers N into sets N, with the property that
(Prw.Quw) is fixed for n € N.. It clearly suffices to establish
(3.7) for n ranging over each separate index set N, that is infinite.
The case D(Prw ||Quyv) = x is trivial, hence we will assume that
D(Prw||Quw) < =, or equivalently, Py < Quw.

In what follows, we let n € N, for some i, and use “—" to denote
convergence as n approaches infinity along N ;. From Lemma 1c), the
set of (P . np)-divergent sequence pairs (w.v) in " x V" satisfies

Plw (Szl'utn) >1—-(n+ MM exp [—nny).

3.7)

If we choose

MM
7

n=ap =26, + —;;log(lr +1).

then 1, — 0 and
Pl (A4, N Sti) > Py (AL) + Pl (Stw) =1
> 2explonta] — expl-2,]
> exp[—né] - Pt (Sitwy)-
By the definition of Sty this implies that
Pl (-Alu n Ti"’\i') > exp[—néda] - PIT!H'<T{EH')- (3.8)

for some type Prw € P (U4 x V) that satisfies
D(H‘u HH'\\') <
and clearly also
Pryw <« Pow € Qu.

As sequences of the same type are equiprobable under any i.i.d.
measure, (3.8) implies that

‘.A;] N1y u"

' ’z'!wi
and thus also
Qiw (.A,,, n Tz"'u') > exp[—ndn] - Q}I"“(T{{“)'
Lemma 1b) then gives

Qi (A O T ) 200+ 17

. oxp[—n (D(p('u'HQ('u') + (’")]4

To establish (3.7), it is sufficient to show that if D(Pm ||szn-> <
e — 0, then the difference D(Pz'u‘”Q('u) — D(P, H'HQ('\\')
goes to zero as n tends to infinity. This is easily accomplished using
the inequality

. 12 1
[D(P('H'HP(,'H')} > 3

(w.v)EUXY
(cf. [4, p. 58]) together with the fact that for fixed Q(w, the di-
vergence D(I vy [|Quw ) is continuous in the space of distributions
Py such that Prw < Quw. O

> exp[—nbdy].

'f)t'w(“- v) — Prw(u.e)

Remark: In the characterization (3.3) of the error exponent
D (M- My €), it is clearly legitimate to replace the pair (f.g)
by a single quantizer with M- - M, output levels.

S, |
Uy Vi
S2 U AV,
2 |'p >z |GD
: . V.
Sn
Fig. 3. Schematic representation of FF2.

1V. TwWO-STAGE COMPRESSION WITH FEEDBACK
FROM INTERMEDIATE DETECTOR

We now turn to the asymptotic analysis of FB2, using a simi-
lar formulation. After observing X, sensor S; generates L and
Ii'fo). sl U'l( !»=1 " defined as in previous section. It then transmits
[", to the intermediate detector. The intermediate detector generates
a feedback message Z = o(U) and communicates it to the sensors.
Bach sensor S, then transmits V; = U“(Z) directly to the global
detector. The alphabet sizes of ', 1. and Z are constrained as
previously, and all n sensors employ a common compression scheme
which is allowed to vary with n.

It is important to realize that the only information available to the
global detector is the vector V, and thus the null acceptance region
A, is a subset of V" (not of 44" x V"). Using the partition of I4,
into sets . introduced in the previous section, we now have
L —t ’

Y op{z=1w"e A

1=0

Ln—1

3 Pr{U e FO.w e An}. @.1)

=0

Pr{VeA.}=

The main result of our analysis is that the asymptotic performance
of FB2 is the same as that of a two-stage feedforward scheme in
which the output Z of the intermediate detector is sent forward to
the global detector, rather than back to the sensors. In this scheme
(denoted by FF2 and shown in Fig. 3), the messages Ui = f(Xi)
and 17 = ¢(X,) are generated simultaneously. Thereafter:

1) the [;’s are sent to the intermediate detector, which relays a
message Z to the global detector (only);
2) the 1’s are transmitted directly to the global detector.

The exponential equivalence of the two schemes is not immediately
obvious, nor is a direct comparison of the two feasible: in the
feedforward scheme, the global detector receives an extra message Z,
while in the feedback scheme, each sensor receives extra information
(again in the form of Z) about the observations of the remaining
sensors. Yet, as we shall see in the discussion that follows, these
differences have an asymptotically vanishing effect.

The feedforward scheme is closely related to—and is, in a certain
sense, the space time dual of —the distributed detection schemes
considered in [5] and [7]. Results from the latter body of work can
readily be applied in the analysis of FF2. Thus, if the quantizer pair
(f.g) is fixed and such that Qv > 0, then the best feedforward error
exponent attainable by varying the global decision rule is given in
Theorem 2 of [7]. It would be a simple matter to obtain the absolute
optimum by varying (f.g) over the finite domain Q?, were it not
for the difficulty that some choices of (f.g) yield Quyv(u™.0") =0
for one or more pairs (u*.v") in I X V, in which case the error
exponent is not known. Fortunately, this obstacle is not encountered
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with binary quantizers (My = My = 2), and thus, we will restrict
our attention to this case. The following lemma, adapted from [7],
will be needed in the converse part of Theorem 2.

Lemma 2: Let U and V be binary sets, and Pyv, Quv be fixed
distributions on U4 x V such that D(Puv ||Quv) < oo. If B, C U™
and Cn, C V" satisfy

lim % log Piv(Bn x Cn) =0, (4.2)
then

lim inf %log Qiv(Bn x Cy)
n

v
|

min D(PUVHQUV).
Puv
Py=Py,Py=Py

4.3)

Proof: 1If Quv(u,v) > 0 for all (u,v) € U X V, then the
statement of the lemma is a special case of Theorem 3 in [7].

If Quv (u*,v*) = 0 for some pair (¢v*,v") € U x V, then we en-
counter the difficulty mentioned earlier, i.e., that the results in [7] do
not apply. We note, however, that the assumption D(Pyv ||Quv) <
oo also forces Puv(u®,v™) to be zero. It is then straightforward to
verify that for 4 and V binary, there is only one distribution Pyv
on 4 x V such that Py = Py and Py = Py, namely Pyy = Pyv.
Thus,

D (PUV [|Qu \) = D(Puv||Quv).

min
_ Ffuy
Py=Py.Py=Py
and (4.3) follows from (4.2) in the same way as (3.7) was obtained
from (3.6) in the proof of Theorem 1.

We are now ready to state our results on the error exponent of FB2.

Theorem 2: If My = My = 2 and {L,} satisfies (3.1), then
the optimal error exponent of FB2 for testing at level € € (0,1) is
given by

0(2)(22.6) = max

d(Py ., P .
B ) (Pu.Pv||Quv)

LX) =2,19(X)|=2

(4.4)

where

d(PL'.Pv”qu) = Iglin

D(PIQuv).
Py=Py .Py=Py
Furthermore, this exponent is achieved by a sequence of schemes in
which the feedback message is binary.
Proof: To establish that the error exponent of (4.4) is achievable
by binary feedback, we consider once again binary quantizers f and
g that achieve the maximum in (4.4), and let, for every n,

U = f(X,). Wi = g(Xi).

Upon receipt of the vector U, the intermediate detector conveys
to the sensors (via Z) whether or not U is (Py.n)-typical. In other

words,
0, ifU e Ty,
1. otherwise,

Z=¢(U)={

(¢ is also an exponentially optimal test for Ho versus H, on the basis
of U alone.) Each sensor S; then sets

Vi = {W,; if Z=0,
T e

if Z=1.
where v* is an element of V which is fixed across the sensors,
and which will be specified soon. In the notation developed earlier,
W'z-(n) = W; and W',(l) = ¢ with probability 1.

After receiving V/, the global detector declares that Ho is true, if
and only if the received sequence V is 7-typical with respect to Pw.
Thus, by (4.1), we have

Pr{V € A} =Pc{U € T, W € Ty, }
+PdU €T, v -1 €Tw,}

The second term can be easily made equal to zero by choosing v*
such that v*-1 ¢ Tw,,. This is possible for sufficiently small 5, since
at most one of the two constant v-sequences can lie in T ,,. Then

Pr{V € Au} =Pr{U € T}, W € T}y, }.

The pairs (U;, W;) are now i.i.d., and the probability of A, under
both hypotheses can be evaluated in a standard fashion (for details,
see [5] or [7]). Briefly, if = n~'/%, then by Lemma Ic), both
P (13,,) and P (Tiy,,) approach 1 as n tends to infinity. Thus,
Phw(T( , x Tiy,,) = 1 — pn also approaches unity, and the type I
error constraint is met for any £ € (0,1). For the evaluation of
an = Qtw (T8, x Ti.,), the set Tu , x Tw,, is expressed as a
union of sets Ty, where Py &~ Py and Py = Py. Application of
Lemma 1a), b) together with a continuity argument then yields
D(PUV”QUV)

1 .
—lim —log ¢, = min
non Puy

Py=Py.Py=Py
=d(Pu, Pv||Quv).

This completes the proof of the achievability of the error exponent.
Note that in the special case where Py is not absolutely continuous
with respect to Qx, ie., there exists A C X with Px(4) > 0
and Qx(A) = 0, the maximum in (4.4) equals infinity and can be
achieved without feedback. This is easily verified by letting f be
constant and g be such that it partitions X into A and A°.

The proof of the converse result proceeds as for Theorem 1. Given
an optimal acceptance region A,, we deduce from (4.1) and the type
1 error constraint the existence of I* such that

P{U e 77w eAn} >1i=€

4.5)

n

Letting W, = WI(P), B, = ]-',(11') and C,, = A,, we deduce from
(3.1) and (4.5) that

lim % log Py (Bn % Cn) = 0.

By the remark at the end of the previous paragraph, we only
need to consider the case Px <« Qx, and thus we may assume
D(Puwl||Quw) < D(Px||@x) < oo. Once again, the distribution
pair (Puw, Quw) will depend on n. As in the proof of Theorem 1,
we let n approach infinity over each finite index set N; defined by
the property that (Puw,Quw) is fixed over N;. We then apply
Lemma 2 to obtain

| n
lim inf —log Q3w (Bn X Cn) > —d(Pu, Pwl||Quw),
neN, n
and consequently,
lim inf llog QUw(Bn x Cy) >
neN; n
d(Pu, Pwl||Quw). 0

- max
U=f(X1).W=g(X1)
1£(2)i=2,19(X)|=2

In general, D(Puv||Quv) > D(Pv||Qv), which implies that
in most cases of interest, d(Py, Pv||Quv) > D(Pv||Qv). Taking
maxima on both sides of the inequality, we see that the error exponent
of FB2 is greater than that of a single-stage feedforward scheme

(denoted by FF1 and shown in Fig. 4) in which each sensor transmits
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Fig. 4. Single-stage feedforward scheme FFI.

a single binary message 17 to the global detector. It should be
emphasized that the same conclusion can be drawn for nonbinary
messages (M. My-) # (2.2)) using the lower bound established
in the direct (achievability) part of the previous proof:

9(2)(.\11,“\[‘.‘(,)> A(Pr. Py ||Quv).

max
U=f(X, Y V=g(X1)
[#C =21 ey 1= a1y

Whether the opposite inequality holds, however, is not known for
(M M) # (2.2).

The superior performance of FB2 compared to FF1 can be also
explained heuristically. In FF1, each sensor transmits 1 = W, yet
the global detector only needs to know whether W' is ( Py i)-typical
or not. Thus in essence, the available sensor-to-global detector band-
width is underutilized. In the exponentially optimal FB2 constructed
in the previous proof, part of the bandwidth is cooperatively used by
the sensors to encode the feedback message Z. Thus in the end, the
global detector learns quite a bit more from V, namely whether or
not both U and W are i-typical under the null hypothesis.

As for the relative merits of FB2 and FF2, we conclude from
the previous theorem and from Theorem 2 in [7] that both schemes
have the same optimal error exponent, and are thus exponentially
equivalent. One may wonder what happens if the two schemes are
combined, i.e., Z is sent both forward (to the global detector) and
back (to the sensors). In that case, the decision of the global detector
is based on (Z.V), and thus the null acceptance region A, is a
subset of Z, x V™. The probability of deciding in favor of Ho is
then given by

Ln—1

S p{z=i(z W) el

=0

Pr{(Z.V)e A} =

L

o —1
Y Pr{U e FO.wh e C:',”}. (4.6)

=0

where ¢ = A, N ({1} x V)". Using (4.6) instead of (4.1) in the
proof of the converse part of Theorem 2, we conclude by an identical
argument that the error exponent of this scheme cannot be greater than
#12)(2.2. ¢). Thus the combination of FB2 and FF2 is exponentially
equivalent to either of the two individual schemes.

Finally, we compare the performance of the two feedback schemes
FB1 and FB2 (without reference to feedfoward schemes) in the case
where the message alphabets I/ and V are binary. Upon minimizing
D(PL'\'HQV\') under the constraints ;- = P and Py = Py (in
the binary case this involves only one free parameter), we obtain
d(Py. Pr||Quyv) < D(Prv||Quy). Taking a suitable maximum
on both sides of the inequality, we conclude that 8(*)(2.2.¢) <
0(”(2. 2.¢), i.e., FB1 outperforms FB2. This is not surprising, since
FB2 can also be realized by merging the intermediate and global
detector, and requiring that the latter discard all information about U
after transmitting the feedback message Z. In other words, FB2 is

just a special case of FB1 in which the global decision is based only
on the second-stage transmission V.

V. EXTENSIONS

1) Nonidentical Sensors: Our results for FB1 and FB2 were
obtained under the assumption that the sensors are identical, ie.,
all use the same quantizer in a given stage. A natural question to
ask is whether nonidentical sensors can yield an improvement in the
error exponent. The answer is known to be negative (as long as X
is finite) for Neyman—Pearson and Bayesian distributed detection
problems using the single-stage feedforward scheme FF1 [10].

As it turns out, the same answer can be obtained for FB1. We give
a sketch of the converse argument. Since the sensors are nonidentical,
the independent pairs (I';. ;) in (3.5) have different distributions,
and thus the results of Lemma 1 are not directly applicable. However,
by considering

_ vy e, DUW (20)
SUW.n _{(u.v) cU" x V" l]()g QUw(‘u.v)

- Z D(Peow, [|Qu.wy)| < 717]:;}-
=1

(instead of Si*y-,,) and using moment generating functions, one can
show that

1 - Pyw (Suw.,) < expl-2n8.] (5.1)

for suitable 7, = 7, (6, ) — 0. An inequality similar to (3.8) follows,
and the converse result is readily obtained from the definition of
SUW .-

The exponential optimality of identical sensors in FB2 is a much
more difficult problem and remains open. It should be added that
once nonidentical sensors are allowed in either FB1 or FB2, our
conjecture as to the sufficiency of feedback messages with alphabet
sizes constrained by (3.1) is no longer defensible.

2) Infinite Observation Spaces: In this case, the set of possible
quantizer pairs (f.g) is also infinite, and the same holds for the
set of distribution pairs (Pi-w.Qu ) encountered in the converse
arguments for Theormes 1 and 2. As a result, these arguments are
not applicable to this case.

An alternative approach for FB1 is based on moment generating
functions as outlined in a). One can establish the exponential opti-
mality of identical sensors and obtain the result of Theorem 1 (with
supremum replacing the maximum in (3.3)) under the assumption
that, in a fixed neighborhood of the origin, the second derivative
of the moment generating function (under P) of the log-likelhood
ratio of (L".V") is uniformly bounded for all choices of U7 = f(X)
and 1" = ¢(X). An analogous condition was used in [10] for
Neyman—Pearson detection employing FF1. This method works well
for FBI1, but is not suited for FB2, whose optimum performance in
the case of infinite (.Y, 3) remains open.

3) Randomization: When randomized quantizers are allowed, the
optimal error exponents for FB1 and FB2 are expressed in terms
of channels (conditional distributions) A¢-y |y instead of determin-
istic mappings f and g. By invoking convexity properties of the
divergence functional, it is straightforward to show that the best
channels are, in fact, deterministic. Thus, randomization is not useful
asymptotically.

4) Bayesian Detection: Although our emphasis has been on Ney-
man—Pearson (classical) detection, we believe that the bulk of our
results can be extended to the Bayesian framework to yield anologous
conclusions. The analysis should be fairly straightforward for FB1,
but rather less so for FB2 because of unresolved issues related to the
Bayesian error exponent of FF2 [6].
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Avoiding Decoder Malfunction in the Peterson—
Gorenstein—Zierler Decoder

Arne Diir, Member, IEEE

Abstract— BCH decoders based on the Peterson-Gorenstein-Zierler
algorithm can malfunction and produce output vectors that are no code-
words. To avoid this malfunction a simple additional check is proposed
that can be performed before the computation of the error locations. The
additional check consists of the minimum number of algebraic equations
in the syndrome components that are necessary over a general field to
obtain a bounded-distance decoder.

Index Terms— BCH coding, Reed-Solomon coding, Peterson—Goren-

stein-Zierler decoder, b ded-distance decoding, decoder malfunction.

I. INTRODUCTION

Let C be a linear code with minimum distance d”, and let ¢ be
a nonnegative integer such that 2t < d*. The decoding sphere of
radius ¢ around a codeword c is the set of all vectors at Hamming
distance at most ¢ from c. As 2t < d*, the decoding spheres around
the codewords of C are disjoint but, in general, do not cover the
whole space. An t-error-correcting bounded-distance decoder for C
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outputs the codeword c if the received vector lies in the decoding
sphere of radius ¢ around c, and announces a decoding failure if no
such codeword exists.

In a recent correspondence [1], Sarwate and Morrison have
pointed out that the Peterson-Gorenstein—Zierler (PGZ) decoder is
no bounded-distance decoder, and they have described a situation
where the output of the PGZ decoder is not a codeword but the
decoder does not announce a decoding failure. To avoid malfunction
the authors recommend to check whether the decoder output is a
codeword which, for a BCH code of designed distance d,"in general
requires the computation of d — 1 syndrome values. In Section II, we
show that this malfunction can be detected already at the beginning
of the PGZ algorithm by checking a few syndrome determinants, and
we prove that no other kind of malfunction is possible. This leads to
an extended version of the PGZ decoder that is a bounded-distance
decoder and is attractive for small designed distances because of
its explicit formulas. Answering another question posed in [1] we
remark that the Berlekamp—Massey decoder and the variation of the
Berlekamp-Massey decoder proposed in [2] are bounded-distance
decoders, and we refer to [2] for a proof and a discussion of the
decoding problem in terms of invariant theory of binary forms.

II. THE EXTENDED PGZ ALGORITHM

Let C be a BCH code over K = GF(q) of length n and designed
distance d where 2 < d < n. Then the generator polynomial of C'
has (b,Cb+1.---,C"+d_2 as roots where ( is a primitive nth root
of unity in some extension field of A" . By the BCH bound, the
minimum distance of C is at least d. Let t = {(d —1)/2]. Then a -
error-correcting bounded-distance decoder can based on the following
steps:

Let (Ro.Ry,--+.Rn._1) be the received vector, and let R(z) =
Ro+ Riz+ -+ Rn—12" " denote the corresponding polynomial.

Step 1)

Compute the syndrome sequence So, S1,- - -, Sa—2 Where

Si=R(¢"H),0<i<d-2

Step 2) Compute the coefficients A1, Az,---, Ay, v < t, of the
error locator polynomial A(x) =1+ Az +---+ Ay2”.

Step 3) Determine the reciprocals of the roots of A(x) to get the
estimated error locations X;, Xa2.---, X,

Step 4) Determine the estimated error values Y1,Y2,---,
Y.

Step 5) Correct the errors in the received vector: For i =
1,2,---,v subtract Y; from R; where j is determined
by ¢ = X,.

A decoding failure is declared whenever one of the following
events occurs:

1) the decoder is unable to compute the coefficients of the error
locator polynomial in Step 2);

2) the error locations determined in Step 3) are not v distinct nth
roots of unity;

3) the decoder is unable to compute the error values in Step 4),
or some of the error values are either zero or do not belong
to the symbol field.

Note that the steps 2) and 4) are still to be specified
in detail, and care has to be taken in order to obtain a
bounded-distance decoder. In [1], the authors show that, contrary
to the impression from the literature, the conventional PGZ
algorithm does not yield a bounded-distance decoder whereas the
Sugiyama—Kasahara-Hirasawa-Namekawa Euclidean algorithm does

0018-9448/93$03.00 © 1993 IEEE




