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ABSTRACT 

We introduce a queuing subsystem to an optical random 
access CDMA protocol, namely, the round robin 
receiver/transmitter (R3T) protocol. A detailed state 
diagram is outlined and a mathematical model based on 
the equilibrium point analysis (EPA) is presented. In 
addition, the steady state system throughput, the average 
packet delay, and the blocking probability are derived and 
evaluated under several network parameters. We prove 
by numerical analysis that significant improvement in the 
protocol's performance can be achieved by only adding a 
single buffer to the system. The blocking probability is 
significantly reduced by a factor of 50 %. Our results also 
reveal that the modified R3T protocol can support higher 
traffic loads. Further, queuing delays that added to the 
total network latency are acceptable. 
 
Keywords: Chip-level receivers, code division multiple access, 
on-off keying, optical CDMA protocols, optical networks, 
queuing, random access protocols. 
 

1. INTRODUCTION 

Optical code division multiple access (CDMA) networks 
are now receiving more attention because they combine 
the large bandwidth of the fiber medium with the 
flexibility of the CDMA technique to achieve high-speed 
connectivity [1]-[7]. Most of the research in optical 
CDMA has focused on the physical layer [1], and [2]. 
However, a few authors have examined the data link 
layer of optical CDMA networks [3]-[6]. In [3] and [4] 
Hsu and Li have studied slotted and unslotted optical 
CDMA systems. Shalaby has proposed two protocols 
with and without pretransmission coordination for slotted 
optical CDMA packet networks in [5]. The effect of 
multi-packet messages, connection establishment and 
corrupted packets haven’t been taken into account. In [6] 
Shalaby answered these questions by introducing the 
round robin receiver/transmitter (R3T) protocol, which 
was based on a go-back n  automatic repeat request 
(ARQ). He assumed that each node is equipped with a 
single buffer to store only a single message (the message 
that is being served); any arrival to a nonempty buffer 

was discarded. This of course gives rise to a blocking 
probability, which was not examined in [6]. 
In this paper we aim at enhancing the performance of the 
R3T model by introducing a queuing system, namely 
increasing the number of available buffers. Our second 
aim is to investigate the blocking probabilities for R3T 
with and without (w/o) queuing buffers and compare the 
performance of both systems. 
The rest of this paper is organized as follows; Section 2 is 
devoted to a general description of our network 
architecture, and the optical CDMA protocol. The 
mathematical model is then presented in Section 3 using a 
detailed state diagram. In Section 4 we introduce the 
theoretical analysis based on the equilibrium point 
analysis (EPA). In our analysis, focus is oriented towards 
multiple access interference (MAI) only, where the effect 
of both receiver's shot and thermal noises are neglected. 
Section 5 is maintained for the simulation results. Finally 
our conclusions are given in Section 6. 
 

2. SYSYTEM ARCHITECTURE 

Optical CDMA Network 
In a typical optical CDMA broadcast and select star 
network there would be N  transmitter and receiver pairs 
(nodes or users). Each node is equipped with a queuing 
system followed by a fixed CDMA encoder and a tunable 
CDMA decoder. The transmitter generates an optical 
ON-OFF keying CDMA (OOK-CDMA) signal 
(according to its signature sequence) that represents its 
data. Users are assigned these signature codes randomly 
from a set of direct-sequence optical orthogonal codes 
(OOCs); denoted by ( )cawL λλφ ,,, , where L  is the code 
length, w  is the code weight, and 

aλ  and 
cλ  are the auto-

correlation and cross correlation constraints, respectively. 
A code may be given to more than one user. Further a 
code is randomly cyclic shifted around itself upon 
assignment in order to reduce the effect of MAI. Chip-
level receivers [2] are implemented at the physical layer. 
Considering a message that is composed of 0>  packets, 
each having 0>K  bits and taking only the effect of MAI 
into account, the packet success probability )'(rPS

 given 

},,2,1{' Nr …∈  active users can be found in [6]. 



  

 

Fig. 1.  Complete state diagram of the R3T optical CDMA protocol with a single buffer in the queue. 
 
Optical CDMA Protocol 
In the R3T protocol many assumptions were imposed [6]. 
The drawback of the R3T is that any message that arrives 
will be dropped unless the buffer is empty. This gives rise 
to a high blocking probability. In this paper we introduce 
a queuing subsystem that is able to store one more 
message (message waiting to be served) if the main 
buffer is busy. We impose the following assumptions in 
our model for optical CDMA protocol: 
• A maximum of 1 message can arrive at each time slot 

to a station with probability A  (also called user 
activity) and is stored in the queue if the server is busy. 

• Any arrival to a non empty queue is blocked. 
• The queue is freed once the stored message is moved to 

the server for being transmitted. 
• A station scans for connection requests only after a 

successful transmission or reception or when it is idle. 
• A priority is given for the reception mode than for the 

transmission mode. 
 

3. MATHEMATICAL MODEL 

The detailed state diagram of the R3T protocol with a 
single buffer in the queue is illustrated in Figs. 1, 2, and 
3. States marked with a '0' indicate that the buffer is 
empty while a '1' indicates that the buffer is full. 
Transition between states is on a slot basis. Users move 
from states marked with '0' to states marked with '1' if 
there is a message arrival. Messages will be blocked if 
users have their queues full and there is a message arrival 

except for these cases; after successful transmission or 
reception and after request. In these cases users will move 
to the requesting mode marked with a '1'. A user in the 
initial state scans across codes for connection requests. If 
a request is found (event with probability σ ), the user 
proceeds to send an acknowledgement and enters the 
reception mode. If no requests are found and there is a 
message arrival, the station moves to the requesting 
mode. Users move to the transmission mode only if a 
positive acknowledgement is received (event with 
probability γ ), otherwise the user is timed-out (after τ  
time slots). After successful transmission, reception, and 
if timed-out a user will enter either the initial state or the 
acknowledgement mode or the requesting mode, 
depending on the user activity and the connection 
requests found at that time. 
 

4. THEORETICAL ANALYSIS 

Because of the complexity of the mathematical model 
described above, our analysis will be based on the 
equilibrium point analysis (EPA) to measure the 
performance of this random access protocol. By writing 
down the flow equations for all the states, we can derive 
the steady state system throughput, the average packet 
delay, and the blocking probability. 
 
Transmission Mode 
This mode involves states },,,,,,,{ 2121 …… TxTxTxrrr ttt ++

. 
From   Figs.   1 and  3b,  we  have   the   following   flow  



 

Fig.2  (a) Acknowledgement mode; (b) Requesting mode. 
 
equations for 
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Similarly, for the waiting states 
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Let the set of variables [ ]YYY ,, 10

 denotes the total 
number of users in state Y  with either empty buffer, or 
full buffer or regardless of the state of the buffer, 
respectively. We define the following variables: 
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Performing the above summations (only for 
0Y  and Y ), 

which involve mathematical series, we obtain: 
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Reception Mode 
From Figs. 1 and 3a, we can write the flow equations for 
states },{ 1,0, ii ss , for },,2,1{ …∈i  as follows: 
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Relating the reception mode to the transmission mode, we 
assume that the number of users transmitting the first 
packet must be equal to the number of users receiving the 
same packet, yielding 
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Fig. 3.  (a) State RX i ; (b) State rn ; (c) State Txt+i ; (d) State WXi. 

 
Next we write the flow equations for the waiting states 
for }1,,2,1{ −∈ tj …  as follows: 
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Similarly we define the following variables: 
( )

0,0 1
11

t
S

a
P

s ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
χ
χχ  , ( )1,10,1 rrs +=                                                                                                 

( ) ( ) ( )( )
0,

1

0
111

1
11

t

t

S

Ss a
A

AA
P

P
W ⋅⎥

⎦

⎤
⎢
⎣

⎡ −−−
⋅

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−

χ
χχ  

( )( )( )1,10,111 rrPtW S
S +−−=                     (7) 

 
Acknowledgement Mode 
Again by writing the flow equations for the states in this 
mode, described in Fig. 2a, we can rewrite equation (6) as 
follows: 
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Requesting Mode 
Figure 2b illustrates the requesting states and waiting 
states in the requesting mode. We write down the flow 
equations for these states as follows: 
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Considering the waiting states for which { }τ−∈ tk ,,2,1 …  
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To relate the requesting mode to the transmission mode, 
we write the flow equations into state 1r  as follows: 
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Substituting from equations (1) and (11) in (12) we get: 
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From Fig. 1 we can also write the flow equations into 
states },{ 1,10,1 aa , as follows: 
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Solving the above two equations simultaneously, the 
initial state can be written as: 
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The probability that a request is found by a scanning user 
is equal to the probability that another user is in the 
requesting mode, yielding 
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To evaluate σ  and γ  we need another equation relating 
them to be solved with equation (17). This relation is 
obtained by solving the following two equations: 
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Steady State Throughput 
The steady state system throughput ),,,,( τβ tAN  is 
defined as the average number of successful received 
packets per slot. It can be calculated as follows: 
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Here 'r  denotes the number of users either in 
transmission states or retransmission states and is given 
by: 
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It is clear that the number of users in the network must be 
equal to the total number of users in all the states. Using 
equations (4), (7), (9), (14), (16), and from (19) we get: 
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That is 'r  is the solution of the above equation. 
 
Blocking Probability 
The blocking probability is defined as the probability of 
an arrival being blocked. For convenience and sake of 
comparison we derive in this subsection the blocking 

probability for both R3T optical random access protocols; 
with and without transmission queue. 
 

The R3T without a Queue [6]: In this case the 
blocking probability is equal to the probability that the 
station is not in the initial state and there is a message 
arrival, or the station is in the initial state but there is a 
request for connection and at the same time there is a 
message arrival. Thus, we can write 
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The R3T with a Queue (Buffer): Here the blocking 
probability is equal to the probability that the station is 
not in the initial state, there is a message arrival and the 
queue is full in addition to: 
• After successful transmission / reception: If there is a 

connection request and there is a message arrival, 
blocking will occur. 

• After request: A message is blocked, if the station is 
timed-out, there is a message arrival and a connection 
request is found, or if the station got a positive 
acknowledgement and there is a message arrival. 

Therefore, the blocking probability can be given by 
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Average Packet Delay 
The average packet delay D  can be calculated from 
Little's theorem: 

( )
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where ( )BPNA −⋅ 1  denotes the average total offered 
traffic in the network. 
 

5. SIMULATION RESULTS 

Our results are plotted in Figs. 4-6. A set of OOCs 
denoted by ( )1,1,3,31φ  is used as the user signature codes. 
A chip rate of 4 Mchips/s for each user is held constant in 
our simulations. The near-far effect has been neglected 
since all nodes are uniformly located from the star 
coupler. We have also neglected the effect of the 
receiver's shot and thermal noises. Only, the effect of 
MAI has been taken into account, as it represents the 
major limitation in CDMA systems. A packet is assumed 
to fit in a time slot. 
Figure 4 shows the relation between throughput and the 
number of users for both R3T protocols with and without 
queuing system for different propagation delays (different 
interstation distances). General trends of the curves can 
be noticed. As the number of users in the network 
increases, more packets are available for transmission 
with low interference and thus the throughput increases 
till it reaches its peak. At a higher number of users and 
for the R3T protocol with queuing system (buffer),  some 
users  may have additional  packets  stored  in their buffer 



 
Fig. 4. Throughput vs. number of users. 

 

 
Fig. 5. Blocking probability vs. packet delay. 

 
(to be transmitted later on), yielding a slower decay in the 
throughput. It can be inferred that the throughput is lower 
for longer propagation delays, which is obvious. 
In Fig. 5, we have plotted the blocking probability against 
the average packet by varying the average user activity. 
To investigate the effect of the propagation delay on the 
performance, we also considered the case where 6=t . As 
the user activity increases, both the average packet delay 
and the blocking probability increase till the delay 
reaches its maximum value. From that instant the effect 
of the blocking probability will dominate and thus the 
delay starts to decrease according to equation (23). The 
results show that for longer interstation distances, the 
delay is larger. Also when considering a buffer a queuing 
delay is added to the total delay in the network. A 
tradeoff exists between the steady state system 
throughput, the average packet delay and the blocking 
probability. 
The protocol efficiency η  defined as the ratio between 
the number of successfully received packets and the 
number of packets available for transmission is also 
simulated in Fig. 6 for different values of activities, 

}9.0,1.0{∈A . It can be seen that both R3T protocols with 
and without buffer behave similarly for low population 
networks, while for larger population networks the 
system with buffer significantly outperforms the ideal 
R3T protocol. 

 
Fig. 6. Protocol efficiency vs. message length. 

 

6. CONCLUSIONS 

In this paper, we have proposed a queuing model to 
improve the performance of the previously proposed R3T 
protocol. A single buffer was added to each node. Only 
the effect of MAI was considered. Expressions for 
throughput, blocking probability, and average packet 
delay have been derived, simulated and compared with 
that of the R3T protocol without queuing. The following 
concluding remarks can be extracted from our results:  
• The proposed modifications to the R3T model exhibits 

better performance for high population networks and 
under high traffic loads. 

• The blocking probability is significantly reduced by a 
factor of 50 %. 

• The queuing delay is added to the total latency of the 
network, but it is still acceptable. 

• The enhanced R3T protocol provides a better efficiency 
over a wider dynamic range. 

• Of course the price to be paid for the improvement is 
the increased system complexity when adding a 
queuing subsystem. 
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