
Improved VLC-Based Indoor Positioning System Using a
Regression Approach with Conventional RSS Techniques

Sherine Shawky, Mohamed A. El-Shimy, Ziad A. El-Sahn, Mohamed R M Rizk Moustafa H. Aly
Electrical Engineering Department

Faculty of Engineering, Alexandria University, Egypt
Alexandria, Egypt

College of Engineering and
Technology, AAST
Alexandria, Egypt

eng-sherine.shawkyMaster@alexu.edu.eg, mohamed.elshimy@alexu.edu.eg,
ziad.elsahn@alexu.edu.eg, mohamed.rizk@alexu.edu.eg

drmosaly@gmail.com

Abstract – There is a recent interest to develop an indoor
positioning system using visible light communications technology.
Based on received signal strength (RSS), this paper combines a
simple regression-based approach with linear and nonlinear least
square estimations (LLS & NLS). The performance of regression
approach is evaluated by different metrics such as the average,
standard deviation, and cumulative distribution function of the
localization error. In the system analysis, first reflection from
plaster walls (high reflectivity 0.8), thermal noise, and shot noise
are considered. The simulation results show that almost all the
room (99.4%) has error less than 0.6 m by using regression
approach instead of (72.19%) by using the classical approaches.
The maximum error decreases from 1.15 m to 0.73 m, the average
error from 0.37 m to 0.22 m, and the standard deviation from 0.28
m to 0.15 m. Thus, maximum error is improved by (36.5%),
average error by (41%), and standard deviation by (46%). A key
conclusion of this work is that, using the regression method
enhances the performance of VLC indoor positioning system.

Index Terms – Indoor positioning, received signal strength,
RSS, regression, visible light communication.

I. INTRODUCTION

Visible light communication (VLC) is a technology that
uses the visible light emitting diodes (LEDs) for illumination
and data transmission simultaneously. VLC has been an
attractive research field for academia and industry due to its
motivated features. These include high security, simple
deployment, low implementation cost, no radio-frequency
interference, and license-free operation [1]-[7]. VLC
technology is of great interest in many potential applications.
One possible scenario for such a technology is to be integrated
with the existing lighting infrastructure to locate a receiver in
indoor environments. That would be beneficial in places with
large areas such as in hospitals, mining fields, museums, and
shopping malls [8].

Generally, the global positioning satellite-based system
(GPS) is not an applicable technology to be used in indoor
environments because of its low positioning accuracy which
reaches up to several meters. This is due to the difficulty of the
satellite microwave signals to penetrate the walls of the
buildings [9]. Thus, alternative technologies have been
considered for indoor positioning based on radio-frequency
systems such as Wi-Fi and other techniques [10], [11].
Although, these techniques provide better position accuracy

compared to the GPS, they still have a relatively high location
error and may suffer from the need of additional infrastructure.

VLC-based indoor positioning system (IPS) is a promising
technology that can locate a receiver position more accurately
using the lighting infrastructure already installed inside the
buildings. Based on VLC, many algorithms can be used to
determine a receiver position such as trilateration, triangulation,
proximity detection, and scene analysis [9]. Trilateration based
on the received signal strength (RSS) is the most common used
localization techniques due to its simplicity. It uses the light
intensity levels received from at least three LED bulbs to
determine a location of a point [12]. This method requires a
prior knowledge of the lamps locations, the transmitter and
receiver parameters, and the propagation link model.

Typically, positioning accuracy suffers from the receiver
noise and from complicated indoor environments. Most of the
previous work on VLC-based IPS using RSS technique has
considered only a line-of-sight (LOS) link between the LED
bulb and the receiver. In reality, reflections from different
objects should be taken into account and thus non-line-of-sight
(NLOS) links should be considered in the measurements. It has
been shown in [13] that 45% of the total received power is
coming from NLOS links. In [13], linear least square method
has been employed to estimate the position which causes large
error and no solution was proposed in order to reduce the
reflection effects. In [14], nonlinear least square estimator has
been introduced which improves the accuracy by 2.7% only.

In order to further reduce the effect of the NLOS links on
the RSS measurements, in this paper we introduce for the first
time the use of a simple regression-based approach to the VLC-
based IPS. It is used with the classical RSS technique. It does
not need complicated calculations or long processing time to
implement [15]. Considering only a first reflection, the
regression approach has introduced a great improvement in the
localization accuracy by 41%.

The rest of the paper is organized as follows. Section II
describes the indoor VLC propagation link model. Section III
mentions the RSS-based positioning algorithm with linear and
nonlinear estimators. Section IV presents the proposed
regression-based algorithm. Section V shows the results and
discussions. Finally, section VI provides the conclusions.
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II. INDOOR VLC LINK MODEL

A. Link Model

Figure 1 presents a general example of LOS and NLOS
indoor VLC links. The optical power received from the LOS
link can be obtained from [17] as
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where Pt is the transmitted power, m is the mode number of
LED pattern, A is the receiver physical area, Ts() is the optical
filter gain, and g() is the concentrator gain. As shown in Fig.
1,  is the radiation angle with respect to the transmitter normal
axis,  is incidence angle with respect to the receiver normal
axis, d0 is the Euclidean distance between the transmitter and
receiver, and FOV is the receiver field of view. Assuming that
the normal axis to the transmitter is parallel to that of the
receiver, thus the received power can be written as
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where h is the vertical distance between the transmitter and the
receiver as shown in Fig. 1. Define R as the receiver
responsivity, then the output electrical power is obtained from
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Since the total received power Pelec comes from both the
LOS and NLOS links, therefore, an error arises in the
calculation of d0 when considering only LOS link. This has
been studied before in [13], [14]. The received NLOS power
can be obtained analytically [17] by
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where Nref is the number of reflections, S is the reflector surface
area, L is the path-loss, and Γ(k) is the power of the reflected rays
after k reflections [18].
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Fig. 1. LOS and NLOS links between the transmitter and receiver.

It should be noticed that only the first reflection from the
four walls is considered in this paper. In addition to the NLOS
power, the noise power N at the receiver also contributes to the
total power such that

2 2 ,thermal shotN    (5)

where 2
thermal is the thermal noise variance, and 2

shot is the
shot noise variance [20].

Therefore, because of the fluctuations in Pelec, we get dest
instead of d0 where dest is the estimated direct distance between
the transmitter and receiver taking into accounts the effect of
noise and the NLOS component of the channel. The goal of the
paper is to get dest close to d0 by minimizing the effects of noise
and NLOS power.

B. Link Geometry

For comparison with previous work, an empty room with
dimensions 5 5 3m m m  is chosen, shown in Fig. 2. Four LED
luminaires are used as the transmitters (access points) mounted
at 2.5 m height where each is considered to have a unique ID
to differentiate between them. The luminaires are located at
positions (1.25, 1.25, 2.5), (1.25, 3.75, 2.5), (3.75, 1.25, 2.5),
and (3.75, 3.75, 2.5) m. The number of LEDs in each luminaire
is 100 (10 10) where each LED is transmitted a power of 0.45
W with mode number m=1. A single photodiode is used as a
receiver at the desk level of 0.85 m height with area 1 cm2 and
field of view 70°. The responsivity of the receiver is R=0.4, the
concentration gain is g()=1, and the filter gain is Ts()=1. The
walls are assumed to be made of plaster with 0.8 reflectivity
where they are divided into small squares of area (0.2 m × 0.2
m) and each acts as a source. These values provide both
convenient lighting and communication functions [16].
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Fig. 2. The proposed VLC indoor positioning system.

III. RSS-BASED INDOOR POSITIONING ALGORITHM

To get the receiver position, the conventional trilateration
technique is employed based on the measured RSS from at least
three luminaires. Two estimation approaches are used: linear
and nonlinear least square methods [21].
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A. Linear Least Square Approach.

Let (xi, yi, zi) be the coordinates of the ith LED luminaire,
(xR, yR, zR) be the coordinates of the receiver positions, and desti
be the estimated distance between the receiver and the
luminaire. Thus, we have

2 2 2 2( ) ( ) ( ) ,
iR i R i R i estx x y y z z d      (6)

where i = 1, 2, or 3. The distance desti can be obtained from the
measured RSS from the ith luminaire. Solving at least three
equations of the luminaries with highest RSS [15], the receiver
position can be obtained using LLS estimation as

1( ) ,T TX A A A B (7)
where

2 1 2 1

3 1 2 1

, ,R

R

xx x y y
A X

x x y y y
    

        
(8)

1 2

1 3

2 2 2 2 2 2
2 2 1 1

2 2 2 2 2 2
3 3 1 1

( ) / 2
.

( ) / 2
est est

est est

d d x y x y
B

d d x y x y

     
 
      

(9)

B. Nonlinear Least Square Approach.

Although LLS estimation is considered a direct way to
determine the receiver position, it causes large localization
error. Another approach is to use NLS estimation by
minimizing the measurement error function [22] given by

 22 2 2( ) ( ) ( ) ,
iR i R i R i est

i

e x x y y z z d       (10)

This approach has shown in [7] to give a better performance but
it is more complicated and takes more processing time than
LLS.

IV. REGRESSION-BASED LOCALIZATION ALGORITHM

This section aims to explore the use of regression technique
in order to get an estimated distance dREG closer to the real one
d0. Regression approach is a predictive technique which
investigates the relationship between a dependent (target) and
one or multiple independent variables (predictor). It can be
classified into different types [15]. Here, a polynomial
regression is applied that describes the relation between dREG
and d0. First, M training data points {destk} are measured and fit
into a curve [23] such that

2
0 1 2  ,

k k k k

n
REG est est n estd a a d a d a d    (11)

where k = 1, ..., M, and n is the degree number. Second, by
knowing the exact distance {d0k} for the measured training data,
then the error function is given by
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To obtain the a’s coefficients, least squares
approximation is used which minimizes the sum of the error
squares, such that
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Then, taking the partial derivatives to zero with respect to the
coefficient aj, we get
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where j= 0, 1, ..., n. Rearranging (15), we get
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Finally, by using the Gaussian elimination, the coefficients can
be directly obtained.

In this paper, regression method has been studied for two
cases named class A (Reg A) and class B (Reg B). In class A,
the regression method is applied on all the room where the
coefficients are calculated using 676 training points. However,
in class B, the regression method is applied on the outer region
only, shown in Fig. 3, where the coefficients are calculated
using 352 training points. It should be noticed that the effect of
reflections increases near the walls which causes large
localization error. Thus, the outer region is considered in the
study. For both classes, second order degree n=2 is used in (11)
to determine dREG.
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Fig. 3 The outer region used in Regression class B.

V. RESULTS AND DISCUSSION

In this section, we evaluate the effectiveness of our
proposed regression approach on the localization error and
compare it to the classical approach using both LLS and NLS.
Starting with the localization error distribution around the room
followed by its histogram, then a table shows some statistical
parameters, and finally the cumulative distribution function of
the localization error.

Fig. 4 shows the localization error distribution around the
room by linear least square method without regression, with
regression class A, and class B respectively. It is shown that the
localization error at the center of the room is minimum and
increases gradually as moving towards the walls without using
regression. This is due to the reflections beside the walls is
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higher than that at the center of the room. Classical curve has
localization errors higher than that in the Reg A and B curves.
This is because an optimization formula (11) is used in Reg A
and B unlike the classical approach which find the position
without any optimization. Looking at Reg B, it is observed that
the inner region of the room is similar to the classical and the
outer region has a behavior like the Reg A. This is because it is
a combination between the classical and Reg A as the regression
optimization method applied only on the outer region but the
inner remains without optimization. Figure 5 represents the
histogram of localization error using the classical, Reg A, and
Reg B LLS respectively. It shows that most of the errors are
lower than 0.6 m in the case of using regression either A or B
but they are distributed till 1 m in the case of the classical.

The localization error distribution around the room by
nonlinear least square method without regression, with
regression class A, and with regression class B is shown in Fig.
6 respectively. The behavior of NLS is similar to LLS, the only
difference is that localization errors in the case of NLS are
slightly lower. Figure 7 represents the corresponding histogram
of the localization error using the classical, Reg A, and Reg B

NLS respectively. It is cleared that most of the errors are below
0.6 m in case of Reg A and below 0.5 m in case of Reg B while
climb up to 0.9 m in case of not using regression.

We further evaluate the accuracy of the proposed
regression algorithm using a set of statistical parameters as
shown in Table I. It reduces the localization error largely, i.e.,
the maximum error achieves an improvement of 29.7%, 36.5%,
25.4%, and 34.4% using LLS Reg A, LLS Reg B, NLS Reg A,
and NLS Reg B respectively. It can be observed that the average
localization error in case of Reg A LLS outperforms classical
LLS by 36% and in the case of Reg B LLS is 40.5%. Reg A
NLS improves the average error by 35% and Reg B NLS
improves it by 33.3%. In addition, the improvement on standard
deviation (STD_DEV) is 41%, 46.4%, 32%, and 46.2% using
LLS Reg A, LLS Reg B, NLS Reg A, and NLS Reg B
respectively. These statistical parameters demonstrate that
regression approach enhances the localization error due to using
an optimization equation (11) for the estimated distance
between the transmitter and receiver in order to make it close to
the real one.
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Fig. 4 Localization error distribution around the room using LLS only (classical), LLS with regression class A and B respectively [m].
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Fig. 5 Histogram of localization error using LLS only (classical), LLS with regression class A and B respectively.

907



0.
4

0 1 2 3 4 5
X-axis [m]

Classical
Y

-a
xi

s [
m

]

0

1

2

3

4

5

0.
4

0 1 2 3 4 5
X-axis [m]

Classical
Y

-a
xi

s [
m

]

0

1

2

3

4

5

0 1 2 3 4 5
X-axis [m]

Regression class A

0 1 2 3 4 5
X-axis [m]

Regression class A

0 1 2 3 4 5
X-axis [m]

Regression class B

0 1 2 3 4 5
X-axis [m]

Regression class B

Fig. 6 Localization error distribution around the room using NLS only (classical), NLS with regression class A and B respectively [m].

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 o

cc
ur

an
ce

Localization error [m]
0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 o

cc
ur

an
ce

Localization error [m]
0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 o

cc
ur

an
ce

Localization error [m]

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 o

cc
ur

an
ce

Localization error [m]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

N
um

be
r 

of
 o

cc
ur

an
ce

Localization error [m]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

N
um

be
r 

of
 o

cc
ur

an
ce

Localization error [m]

Fig. 7 Histogram of localization error using NLS only (classical), NLS with regression class A and B respectively.

TABLE I
MAXIMUM, ROOT MEAN SQUARE AND STANDARD DEVIATION OF

LOCALIZATION ERROR IN METER [m]
LLS NLS

Classical Reg A Reg B Classical Reg A Reg B
Maximum 1.1532 0.8112 0.7336 0.9067 0.6767 0.5907
Average 0.3721 0.2383 0.2243 0.3620 0.2340 0.2467

STD_DEV 0.2896 0.1713 0.1581 0.2620 0.1774 0.1439

Fig. 8 demonstrates a comparison between all methods
using LLS and NLS respectively by measuring the cumulative
distribution function of the localization error. It can be shown
that the proposed regression approach significantly outperforms
the other classical methods. This is because getting a distance
between the transmitter and receiver close to the real one by
using an optimization relation between them (11). This distance
is used to get the receiver position either by LLS (7) or NLS
(10). Thus, decreasing the difference between the real distance
and the estimated one will improve the localization accuracy.
Regression class A and B have a similar performance either by
LLS or by NLS but Reg B has lower processing time and less
training points as the optimization process occurs only on the
outer region.
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Fig. 8 Comparison between different approaches using a) LLS and b) NLS.

VI. CONCLUSION

In this paper, an indoor visible light positioning system
taking account of multipath reflections has been investigated
for a typical room where the localization error is obtained
employing a novel regression-based approach. The positioning
error is compared with traditional solutions employing the
classical lateration method. Comparison has shown that the
regression-based approach significantly improves the
localization accuracy. Regression approach achieves an average
error of only 22 cm with 99.4% of the room having localization
errors less than 0.6 m.
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