Semi-Supervised Learning

Ahmed Taha Feb 2014

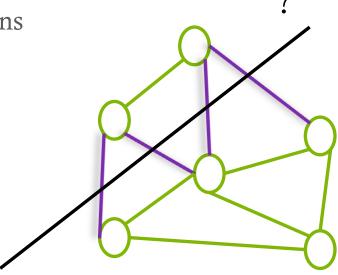
Content

- Concept Introduction
- Graph cut and Least Square solution
- Eigen vector and Eigen Functions
- Application

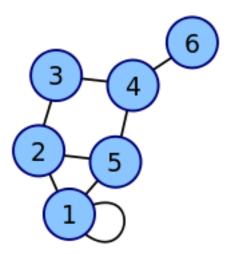
Graph Cut

Divide Graph Into two divisions

Lowest Cut cost

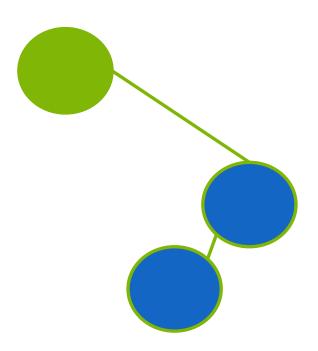


Degree Matrix / variation



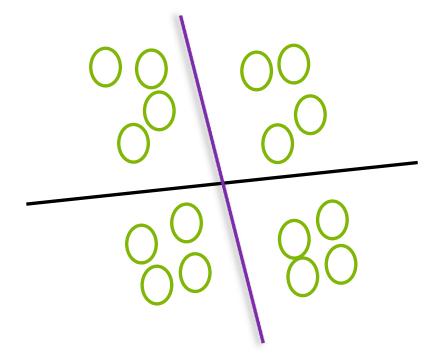
/4	0	0	0	0	0\
0	3	0	0	0	0
0	0	2	0	0	0
0	0	0	3	0	0
0	0	0	0	3	0
$\begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0	0	0	0	1/

- Object Representation
 - ♦ 2D Point
 - ♦ 3D Point
 - Pixel
 - Or even a Whole Image



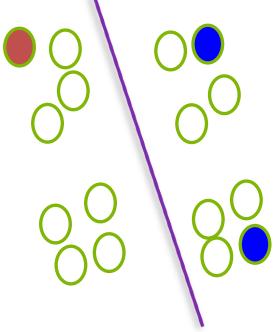
Semi-supervised learning vs. Un-supervised learning

Un-supervised Learning (No Labeled Data)

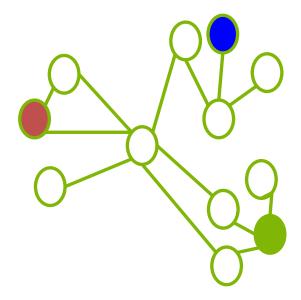


Semi-supervised learning vs. Un-supervised learning

 Semi-Supervised Learning (Labeled Data and structure of unlabeled Data)

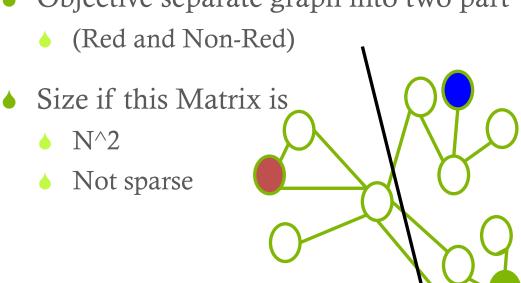


- Semi-Supervised Learning (Labeled Data)
 - We have 3 Objects Now



This Should be a Fully Connected Graph

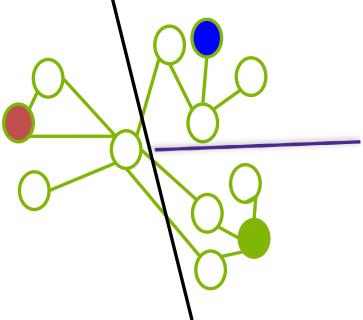
• Objective separate graph into two part



This Should be a Fully Connected Graph

• We can after that divide the rest of graph into blue and not blue and so on

♦ NP Problem?

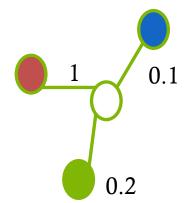


This Should be a Fully Connected Graph

- Current Situation, we have a fully connected Graph, represented in NxN Matrix = W (Similarity Matrix)
- We expect each object to be assigned $\{1,-1\}$ \rightarrow {Red, non-red} with lowest cost assignment cost
- ♦ But this is NP ???

Label Propagation Least square Solution

- Weighted Average concept
 - New Node
 - ♦ (Red Now)1 * 1
 - **♦** (Blue) -1 * 0.1
 - ♦ Green -1 * 0.2
- \bullet 1-0.1-0.2 = 0.7,
- so it is probably a Red Object {1}



Label Propagation Least square Solution

- ♦ Here comes the first Equation , Lets define
 - Matrix W (NxN), Similarity Between Objects
 - Matrix D (NxN), degree of each Object
 - Matrix L (Laplacian Matrix) = D − W
- ▲ Label vector F (Nx1), assignment of each object [-1,1] and not {-1,1}
- Objective Function \rightarrow Min $\frac{1}{2}$ $\sum_{i,j} W_{ij} (f_i f_j)$

Least square Solution

- Objective Function \rightarrow Min $\frac{1}{2} \sum_{i,j} w_{ij} (f_i f_j)$
- ♦ But this doesn't't consider Label data yet

$$\frac{1}{2} \sum_{i,j} W_{ij} (f_i - f_j) + \sum_i \lambda (f_i - y)$$

♦ After some Equation manipulation

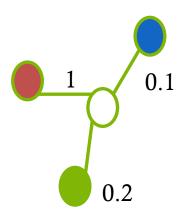
$$f = (L + \Lambda)^{-1} \Lambda Y$$

Least square Solution

- We need to solve NxN
 - NxN matrix Inverse
 - NxN matrix multiplication
- ♦ Need to reduce dimensions by using Eigenvectors of Graph Laplacian

EigenVector

- As mentioned before we want to have a Label vector f
- $f = \alpha U$, so once we have U, we can get α and then we get f
- ▲ Laplacian Eigenmap dimension reduction
- **♦** *Mapping the objects into a new dimension*



EigenVector

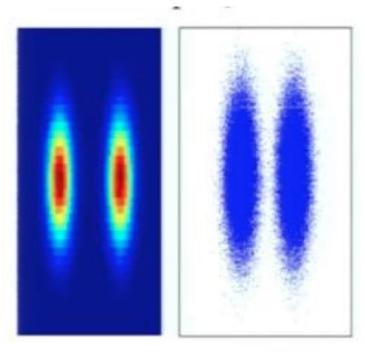
- As mentioned before we want to have a Label vector f
- ♦ Get the EigenVectors (U) of Laplacian Matrix (L)
- $f = \alpha U$, so once we have U, we can get α and then we get f

$$(\Sigma + U^T \Lambda U)\alpha = U^T \Lambda y$$

• We still need to work with NxN Matrix, at least we compute its Eigen vectors

Eigen Function

- ♦ Eigenfunction are limit of Eigenvectors as $n \rightarrow \infty$
- For each dimension (2),
 - we calculate the Eigenvector by interpolating the Eigen function from the histogram of this dimension
- Which takes a lot less than
- ♦ Need more explanation ☺



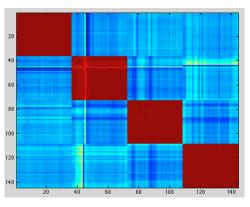
Eigen Function

- ♦ Eigenfunction are limit of Eigenvectors as $n \rightarrow \infty$
- Notice solution of Eigenfunction is based on the number of Dimensions, while Eigenfunction is based on number of Objects
 - Images Pixels as Object
 - Images with local features as dimension

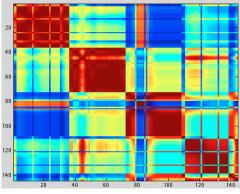
- ♦ Coil 20 Dataset
 - 20 Different Object
 - Each Object has 72 different pose

- Our Experiment
 - Label some of these Images
 - Both Positive and Negative Labels
 - Use the LSQ, EigenVector,
 EigenFunction to compute the labels of the
 Unlabled data

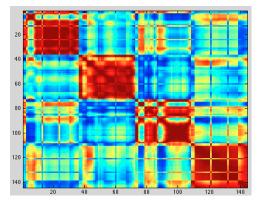
Our Results



LSQ Solution

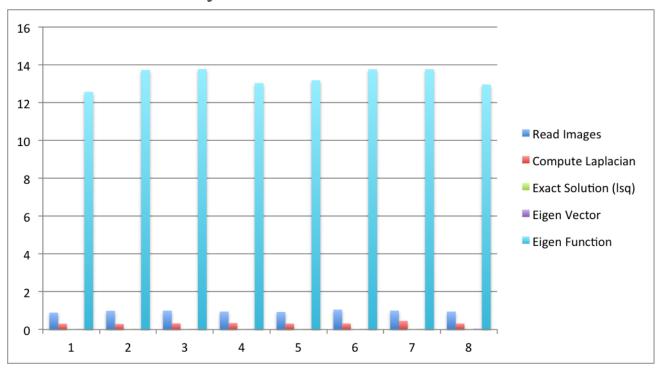


EigenVector Solution



Eigenfunction Solution

- Results Analysis
 - ♦ LSQ solution is almost perfect since it is almost exact Solution
 - EigenVector generate approximate solution but in less time, which makes more sense it is just solving one NxN Matrix to get Eigen Vectors
 - Eigen Function method also generated an approximate solution but its time was worse



- Results Explanation
 - We have 4 (Object) * 36 (pose per object) so total of 144 Object so Matrix laplaican is of size 144
 - Each Image has 128*128 (gray scale) pixel so total of 16384, so each object have 16384 dimension
- ▶ 144 Object vs 16384 dimension

- Results Explanation
- So it is expected that LSQ, EigenVector method to finish faster since Matrix L is not that big
- ♦ While Eigen-function will take a long time to compute the Eigen-function for each dimension 16384

Thanks ©