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Concept Introduction 

S Graph Cut 

S Divide Graph Into two divisions 

S Lowest Cut cost 

? 



Concept Introduction 

S Degree Matrix / variation  



Concept Introduction 

S Object Representation 

S 2D Point 

S 3D Point 

S Pixel  

S Or even a Whole Image 

 

S It is ALL nodes and Edges 



Concept Introduction 
Semi-supervised learning vs. Un-supervised learning 

S Un-supervised Learning  (No Labeled Data) 



Concept Introduction 
Semi-supervised learning vs. Un-supervised learning 

S Semi-Supervised Learning  (Labeled Data and structure of  

unlabeled Data) 



Graph Cut 

Least square Solution  

S Semi-Supervised Learning  (Labeled Data) 

S We have 3 Objects Now 

This Should be a Fully Connected Graph 



Graph Cut 

Least square Solution  

S Objective separate graph into two part  

S (Red and Non-Red) 

S Size if  this Matrix is 

S N^2 

S Not sparse 

 

This Should be a Fully Connected Graph 



Graph Cut 

Least square Solution  

S We can after that divide the rest of  graph into blue and not 

blue and so on 

S NP Problem ? 

This Should be a Fully Connected Graph 



Graph Cut 

Least square Solution  

S Current Situation , we have a fully connected Graph , 

represented in NxN Matrix = W (Similarity Matrix) 

S We expect each object to be assigned {1,-1} {Red, non-

red} with lowest cost assignment cost 

S But this is NP ??? 



Label Propagation 

Least square Solution  

S Weighted Average concept 

S New Node 

S (Red Now)1 * 1 

S (Blue) -1 * 0.1 

S Green -1 * 0.2 

S 1-0.1-0.2 = 0.7 ,  

S so it is probably a Red Object {1} 

1 0.1 

0.2 



Label Propagation 

Least square Solution  

S Here comes the first Equation , Lets define  

S Matrix W (NxN) , Similarity Between Objects 

S Matrix D (NxN), degree of  each Object 

S Matrix L (Laplacian Matrix) = D – W 

S Label vector F (Nx1), assignment of  each object [-1,1] and 

not {-1,1} 

S Objective Function  Min ½  

 



Least square Solution  

S Objective Function  Min ½  

S But this doesn't’t consider Label data yet 

 

 

S After some Equation manipulation  



Least square Solution  

S We need to solve NxN 

S NxN matrix Inverse 

S NxN matrix multiplication 

 

S Need to reduce dimensions by using Eigenvectors of  Graph 

Laplacian 



EigenVector 

S As mentioned before we want to have a Label vector f 

S f  = α U  , so once we have U, we can get α and then we get f 

S Laplacian Eigenmap dimension reduction 

S L have the characteristic is this Graph 

S Mapping the objects into a new dimension   

1 0.1 

0.2 



EigenVector 

S As mentioned before we want to have a Label vector f 

S Get the EigenVectors  (U) of  Laplacian Matrix (L) 

S f  = α U  , so once we have U, we can get α and then we get f 

 

 

 

S We still need to work with NxN Matrix, at least we compute its Eigen vectors 



Eigen Function 

S Eigenfunction are limit of  Eigenvectors as n  ∞ 

S For each dimension (2),  

S we calculate the Eigenvector by  

interpolating the Eigen function  

from the histogram of  this dimension 

S Which takes a lot less than 

S Need more explanation  



Eigen Function 

S Eigenfunction are limit of  Eigenvectors as n  ∞ 

S Notice solution of  Eigenfunction is based on the number of  

Dimensions, while Eigenfunction is based on number of  

Objects 

S Images Pixels as Object 

S Images with local features as dimension 



Application 

Object Classification 

 

S Coil 20 Dataset 

S 20 Different Object 

S Each Object has 72 different pose 



Application 

Object Classification 

 

S Our Experiment 

S Label some of  these Images 

S Both Positive and Negative Labels 

S Use the LSQ , EigenVector,  

EigenFunction to compute the labels of  the 

Unlabled data 



Application 

Object Classification 

 

S Our Results 

LSQ Solution EigenVector Solution 

 
Eigenfunction Solution 

 



Application 

Object Classification 

 

S Results Analysis 

S LSQ solution is almost perfect since it is almost exact Solution 

S EigenVector generate approximate solution but in less time, 

which makes more sense it is just solving one NxN Matrix to 

get Eigen Vectors 

S Eigen Function method also generated an approximate 

solution but its time was worse 



Application 

Object Classification 

 

S Time Results Analysis 



Application 

Object Classification 

 

S Results Explanation 

S We have 4 (Object) * 36 (pose per object) so total of  144 Object 

so Matrix laplaican is of  size 144 

S Each Image has 128*128 (gray scale) pixel so total of  16384 , 

so each object have 16384 dimension 

S 144 Object vs 16384 dimension 



Application 

Object Classification 

 

S Results Explanation 

S 144 Object vs 16384 dimension 

S So it is expected that LSQ , EigenVector method to finish 

faster since Matrix L is not that big 

S While Eigen-function will take a long time to compute the 

Eigen-function for each dimension 16384 



Thanks  


