
S

Semi-Supervised

Learning

Ahmed Taha

Feb 2014

Content

S Concept Introduction

S Graph cut and Least Square solution

S Eigen vector and Eigen Functions

S Application

Concept Introduction

S Graph Cut

S Divide Graph Into two divisions

S Lowest Cut cost

?

Concept Introduction

S Degree Matrix / variation

Concept Introduction

S Object Representation

S 2D Point

S 3D Point

S Pixel

S Or even a Whole Image

S It is ALL nodes and Edges

Concept Introduction
Semi-supervised learning vs. Un-supervised learning

S Un-supervised Learning (No Labeled Data)

Concept Introduction
Semi-supervised learning vs. Un-supervised learning

S Semi-Supervised Learning (Labeled Data and structure of

unlabeled Data)

Graph Cut

Least square Solution

S Semi-Supervised Learning (Labeled Data)

S We have 3 Objects Now

This Should be a Fully Connected Graph

Graph Cut

Least square Solution

S Objective separate graph into two part

S (Red and Non-Red)

S Size if this Matrix is

S N^2

S Not sparse

This Should be a Fully Connected Graph

Graph Cut

Least square Solution

S We can after that divide the rest of graph into blue and not

blue and so on

S NP Problem ?

This Should be a Fully Connected Graph

Graph Cut

Least square Solution

S Current Situation , we have a fully connected Graph ,

represented in NxN Matrix = W (Similarity Matrix)

S We expect each object to be assigned {1,-1} {Red, non-

red} with lowest cost assignment cost

S But this is NP ???

Label Propagation

Least square Solution

S Weighted Average concept

S New Node

S (Red Now)1 * 1

S (Blue) -1 * 0.1

S Green -1 * 0.2

S 1-0.1-0.2 = 0.7 ,

S so it is probably a Red Object {1}

1 0.1

0.2

Label Propagation

Least square Solution

S Here comes the first Equation , Lets define

S Matrix W (NxN) , Similarity Between Objects

S Matrix D (NxN), degree of each Object

S Matrix L (Laplacian Matrix) = D – W

S Label vector F (Nx1), assignment of each object [-1,1] and

not {-1,1}

S Objective Function  Min ½

Least square Solution

S Objective Function  Min ½

S But this doesn't’t consider Label data yet

S After some Equation manipulation

Least square Solution

S We need to solve NxN

S NxN matrix Inverse

S NxN matrix multiplication

S Need to reduce dimensions by using Eigenvectors of Graph

Laplacian

EigenVector

S As mentioned before we want to have a Label vector f

S f = α U , so once we have U, we can get α and then we get f

S Laplacian Eigenmap dimension reduction

S L have the characteristic is this Graph

S Mapping the objects into a new dimension

1 0.1

0.2

EigenVector

S As mentioned before we want to have a Label vector f

S Get the EigenVectors (U) of Laplacian Matrix (L)

S f = α U , so once we have U, we can get α and then we get f

S We still need to work with NxN Matrix, at least we compute its Eigen vectors

Eigen Function

S Eigenfunction are limit of Eigenvectors as n  ∞

S For each dimension (2),

S we calculate the Eigenvector by

interpolating the Eigen function

from the histogram of this dimension

S Which takes a lot less than

S Need more explanation 

Eigen Function

S Eigenfunction are limit of Eigenvectors as n  ∞

S Notice solution of Eigenfunction is based on the number of

Dimensions, while Eigenfunction is based on number of

Objects

S Images Pixels as Object

S Images with local features as dimension

Application

Object Classification

S Coil 20 Dataset

S 20 Different Object

S Each Object has 72 different pose

Application

Object Classification

S Our Experiment

S Label some of these Images

S Both Positive and Negative Labels

S Use the LSQ , EigenVector,

EigenFunction to compute the labels of the

Unlabled data

Application

Object Classification

S Our Results

LSQ Solution EigenVector Solution

Eigenfunction Solution

Application

Object Classification

S Results Analysis

S LSQ solution is almost perfect since it is almost exact Solution

S EigenVector generate approximate solution but in less time,

which makes more sense it is just solving one NxN Matrix to

get Eigen Vectors

S Eigen Function method also generated an approximate

solution but its time was worse

Application

Object Classification

S Time Results Analysis

Application

Object Classification

S Results Explanation

S We have 4 (Object) * 36 (pose per object) so total of 144 Object

so Matrix laplaican is of size 144

S Each Image has 128*128 (gray scale) pixel so total of 16384 ,

so each object have 16384 dimension

S 144 Object vs 16384 dimension

Application

Object Classification

S Results Explanation

S 144 Object vs 16384 dimension

S So it is expected that LSQ , EigenVector method to finish

faster since Matrix L is not that big

S While Eigen-function will take a long time to compute the

Eigen-function for each dimension 16384

Thanks 

