Efficient Subwindow
Search (ESS)

Object Localization - CVPR 2008

Agenda

Introduction

Efficient Subwindow Search
Applications

Conclusion

Agenda

e |ntroduction

o Overview - Object Recognition
o Sliding Window Object Localization

e Efficient Subwindow Search
e Applications
e Conclusion

Overview - Object Recognition

e Most successful object recognition systems
rely on binary classification.

e Binary classification can decide whether an
object is present in an image or not, but not
where exactly in the image the object is
located.

e To perform localization, one can take a
sliding window approach.

Sliding Window Object Localization

e Definitions of object localization according to how
the object location is represented, (center point,
contour, bounding box, pixel-wise segmentation)

e Sliding window approaches rely on evaluating a
quality function f (a classifier score), over many
rectangular subregions of the image and taking its
maximum as the object’s location.

Ropj = argmaxpc; f(R)

Sliding Window Object Localization

e Number of subimages grows as n4 for
Images of size nxn!

e Use heuristics to speed up the search.

e Such heuristics could introduce the risk of
mispredicting the location of an object or
even missing it.

Agenda

e Efficient Subwindow Search
e Applications
e Conclusion

Agenda

e Efficient Subwindow Search

o Branch-and-Bound Search
o Bounding the Quality Function

e Applications
e Conclusion

Efficient Subwindow Search

e ESS allows efficient maximization of a large
class of classifier functions over all possible
subimages.

e It converges to a globally optimal solution
typically in sublinear time.

Efficient Subwindow Search

e Intuition: Although there is a very large
number of candidate regions only very few of
them can actually contain object instances.

e One should target the search directly to
identify the regions of highest score, and
ignore the rest of the search space where
possible.

Branch-and-Bound Search

e The branch-and-bound framework hierarchically
splits the parameter space into disjoint subsets,
while keeping bounds of the maximal quality on all
of the subsets.

e This way, large parts of the parameter space can
be discarded early by noticing that their upper
bounds are lower than a guaranteed score from
some previously examined state.

Branch-and-Bound Search

e Rectangles are represented by their top, bottom,
left and right coordinate interval [T; B; L; R], where

17 = L. thigh], ... etc.

L = [|I0,I|hi] | R = [Vio,rni] .
T T T

Largest possible rectangle [tio,bhi,lio,rhi]

Smallest possible rectangle [thi,bio,lhi,tio]

Branch-and-Bound Search

e For each rectangle set, we calculate a bound
for the highest score that the quality function
f could take on any of the rectangles in the
set.

e ESS terminates when it has identified a
rectangle with a quality score that is at least
as good as the upper bound of all remaining
candidate regions.

Branch-and-Bound Search

® ESS organizes the search over candidate sets in a
best-first manner.

e The candidate set is split along its largest
coordinate interval into halves.

e The search is stopped if the most promising set
contains only a single rectangle.

e To find multiple object locations, repeat the search
after removing the object’s found bounding box.

Branch-and-Bound Search

Algorithm 1 Efficient Subwindow Search

Require: image [€ R™"*™
Require: quality bounding function f (see text)
Ensure: (fmax, bmax; lmax; "max) = argmaxp; f(R)
initialize P as empty priority queue
set [T, B, L, R] = [0,n] x [0,n] x [0,m] x [0, m]
repeat
Split [T, B, L, R] — [Tl, Bl, Ll, Rl] U [TQ, BQ, LQ, RQ]
push ([Tl, Bl, Ll, Rl], f:([Tl, Bl, Ll, Rl]) into P
push ([TQ, BQ, LQ, RQ], f([TQ, BQ, LQ, Rz]) into P
retrieve top state [T, B, L, R] from P
until (7", B, L, R] consists of only one rectangle
set (tmaxa bmaxs tmax Tmax) — [Ta B, L, R]

Bounding the Quality Function

e To use ESS for a given quality function f, we require
a function f* that bounds the values of f over sets of
rectangles. Denoting rectangles by R and sets of
rectangles by R, the bound has to fulfill the
following two conditions:

i) f(R) > max f(R),

RER
i) f(R)= f(R), ifRis the only elementin R.

Agenda

e Applications
e Conclusion

Agenda

e Applications
o Non-rigid Object Localization using bovw kernel.

o Rigid Object Localization using a Spatial Pyramid

Kernel
o |mage Part Retrieval using a x2 -Distance Measure

e Conclusion

App. 1: Non-rigid objects Localization
using bovw kernel

e Extract local image features (e.g SIFT/SURF) from
the training image set.

e The resulting descriptors are vector quantized using
a K-entry codebook.

e Each feature point can be mapped to its nearest
cluster (visual word) from the codebook.

e \We represent images or regions within images by
their cluster histograms.

App- 1: Non-rigid objects Localization
using bovw kernel (cont.)

e The histograms of the training images are used to
train an SVM classifier.

e To classify whether a new image or region contains
an object or not, we build its cluster histogram h
and decide based on the value of the SVM decision
function.

App. 1: Non-rigid objects Localization
using bovw kernel (cont.)

e SVM decision function: |
fl) =0+) ;aih,h')

e Assuming a linear kernel, and because of the
linearity of the scalar product, we can rewrite the
expression as the sum of the per-point contribution
with weights w; = » |, a;h’

f) =6+ we

App- 1: Non-rigid objects Localization
using bovw kernel (cont.)

e In the previous equation, G, IS the cluster index that
the feature point X, maps to, and n is the total
number of feature points in the image/region /.

e This form allows the evaluation of f over subimages
R by summing only over the feature points that lie
within R.

e Since we want argmax(f), we can drop the bias
term.

App. 1: Non-rigid objects Localization
using bovw kernel (cont.)

e [0 construct a function f that bounds f over a set of
rectangles R:

f(R) : = f+(RmaX) =+ f_(Rmin)
e Note that the above f* preserves the desired
properties | and Ii
e Using integral images, " and f can be evaluated in
O(1), hence calculating f* a constant time operation
and independent of the number of rectangles in R.

App. 1: Non-rigid objects Localization
using bovw kernel (cont.)

o “cat" class of PASCAL VOC 2006 o "dog" class of PASCAL VOC 2006
1 T .
'y - = trained on VOC 2007 (AP=0.438) == trained on VOC 2007 (AP=0.384)
:/ "nov KA . — trained on VOC 2006 (AP=0.340) | — trained on VOC 2006 (AP=0.307)

precision
e
precision
=

0. [6,0 0‘.1 0.2 0.3 0.4 0.5 U'?).D 0.1 0.2 0.3 0.4
recall recall

Figure 2. Recall-Precision curves of ESS bovw localization for
classes cat and dog of the VOC 2006 dataset. Training was per-
formed either on VOC 2006 (solid line) or VOC 2007 (dashed).

Agenda

e Applications

o Rigid Object Localization using a Spatial Pyramid
Kernel
o |mage Part Retrieval using a x2 -Distance Measure

e Conclusion

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

e For rigid objects, hierarchical spatial pyramid of
features is a better representation than bovw.

e Spatial pyramids have successfully been used for
localization, but they were restricted to a small
number of pyramid levels (typically 2 or 3).

_—

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

e ESS overcomes this limitation and allows efficient
localization with pyramids as fine-grained as 10
levels and more!

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

e Forlinear SVM, the deC|S|on function is:

5+Z Z Z o gy B)

llzl

e |t can be rewritten as:

RS S S > wl

llzl

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

o we'") =2 i Q 7 uﬂ)hk@ 7);cif the feature point
X has cluster label ¢ and falls into the (i, j)-th cell of
the I-th pyramid level of R. Zero, otherwise.

e A comparison with Equation (2) shows that
Equation (5) is a sum of bovw contributions, one for
each level and cell index (I, i, j).

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

e \We bound each of these cells as explained in the
previous section: for a given rectangle set R, we
calculate the largest and the smallest possible
extent that a grid cell R can have (call them R .

(LL) and Rmm(l IJ)
e An upper bound for each triplet (l,i,j) is obtained by
adding all weights of +ve feature points in R__ ()

ax

and the weight of -ve feature points in Rmin("‘%.

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

e An upper bound for fis obtained by summing the
bounds for all levels and cells.

e |f we make use of two integral images per triplet (l,i,
]), evaluating f(R) becomes an O(1) operation.

App. 2: Rigid Object Localization with a
Spatial Pyramid Kernel

UIUC Cars (single scale) UIUC Cars (multi scale)
1.0z 1.0 -
—bag of words — bag of words
— 2x2 pyramid —— 2X2 pyramid
— 4x4 pyramid — 4x4 pyramid
. 6x6 pyramid 6x6 pyramid
: — 8x8 pyramid —— 8x8 pyramid
10x10 pyramid 10x10 pyramid
0.6
E E
o o
2 2

\.a 1 \ 13) 5 %95 0.2 0.3

2 3 0.6 0.8 1.0
1-precision

l-precision
Figure 5. Results on UIUC Cars Dataset (best viewed in color):
1 — precision vs recall curves for bag-of-features and different
size spatial pyramids. The curves for single-scale detection (left)
become nearly identical when the number of levels increases to
4 x 4 or higher. For the multi scale detection the curves do not
saturate even up to a 10 x 10 grid.

Agenda

e [ntroduction
e Efficient Subwindow Search

e Applications
o Non-rigid Objects Localization using bovw kernel.

o Rigid Objects Localization using a Spatial Pyramid
Kernel
o Image Part Retrieval using a x2 -Distance Measure

e Conclusion

Agenda

Introduction

Efficient Subwindow Search
Applications

Conclusion

Conclusion

e ESS allows fast object localization with results
equivalent to exhaustive search in sliding window
approach.

e ESS retains global optimality.

e The gain in speed and robustness allows the use of
better local classifiers (e.g. SVM with spatial
pyramid kernel, nearest neighbor with x2 -distance)

Conclusion (cont.)

e Paper’s future work:
o Studying the applicability of ESS to further
kernel-based classifiers.

o Extend to other parametric shapes, like groups
of boxes, circles and ellipses.

Questions?
Thank Youl!

