Efficient Subwindow Search (ESS)

Object Localization - CVPR 2008

- Introduction
- Efficient Subwindow Search
- Applications
- Conclusion

- Introduction
 - Overview Object Recognition
 - Sliding Window Object Localization
- Efficient Subwindow Search
- Applications
- Conclusion

Overview - Object Recognition

- Most successful object recognition systems rely on binary classification.
- Binary classification can decide whether an object is present in an image or not, but not where exactly in the image the object is located.
- To perform localization, one can take a sliding window approach.

Sliding Window Object Localization

- Definitions of object localization according to how the object location is represented, (center point, contour, <u>bounding box</u>, pixel-wise segmentation)
- Sliding window approaches rely on evaluating a quality function f (a classifier score), over many rectangular subregions of the image and taking its maximum as the object's location.

$$R_{obj} = \operatorname{argmax}_{R \subset I} f(R)$$

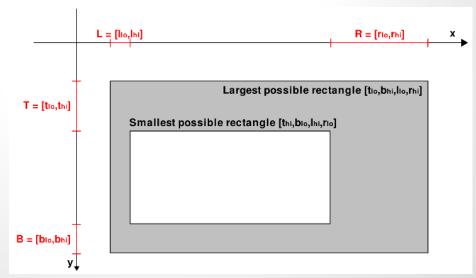
Sliding Window Object Localization

- Number of subimages grows as n⁴ for images of size nxn!
- Use heuristics to speed up the search.
- Such heuristics could introduce the risk of mispredicting the location of an object or even missing it.

- Introduction
- Efficient Subwindow Search
- Applications
- Conclusion

- Introduction
- Efficient Subwindow Search
 - Branch-and-Bound Search
 - Bounding the Quality Function
- Applications
- Conclusion

Efficient Subwindow Search


- ESS allows efficient maximization of a large class of classifier functions over all possible subimages.
- It converges to a globally optimal solution typically in sublinear time.

Efficient Subwindow Search

- Intuition: Although there is a very large number of candidate regions only very few of them can actually contain object instances.
- One should target the search directly to identify the regions of highest score, and ignore the rest of the search space where possible.

- The branch-and-bound framework hierarchically splits the parameter space into disjoint subsets, while keeping bounds of the maximal quality on all of the subsets.
- This way, large parts of the parameter space can be discarded early by noticing that their upper bounds are lower than a guaranteed score from some previously examined state.

 Rectangles are represented by their top, bottom, left and right coordinate interval [T; B; L; R], where
 T = [t_{low}; t_{high}], ... etc.

- For each rectangle set, we calculate a bound for the highest score that the quality function f could take on any of the rectangles in the set.
- ESS terminates when it has identified a rectangle with a quality score that is at least as good as the upper bound of all remaining candidate regions.

- ESS organizes the search over candidate sets in a best-first manner.
- The candidate set is split along its largest coordinate interval into halves.
- The search is stopped if the most promising set contains only a single rectangle.
- To find multiple object locations, repeat the search after removing the object's found bounding box.

```
Algorithm 1 Efficient Subwindow Search
Require: image I \in \mathbb{R}^{n \times m}
Require: quality bounding function \hat{f} (see text)
Ensure: (t_{\text{max}}, b_{\text{max}}, l_{\text{max}}, r_{\text{max}}) = \operatorname{argmax}_{R \subset I} f(R)
   initialize P as empty priority queue
   set [T, B, L, R] = [0, n] \times [0, n] \times [0, m] \times [0, m]
   repeat
     split [T, B, L, R] \rightarrow [T_1, B_1, L_1, R_1] \cup [T_2, B_2, L_2, R_2]
    push ([T_1, B_1, L_1, R_1], \hat{f}([T_1, B_1, L_1, R_1]) into P
    push ([T_2, B_2, L_2, R_2], \hat{f}([T_2, B_2, L_2, R_2]) into P
     retrieve top state [T, B, L, R] from P
   until [T, B, L, R] consists of only one rectangle
   set (t_{\text{max}}, b_{\text{max}}, l_{\text{max}}, r_{\text{max}}) = [T, B, L, R]
```

Bounding the Quality Function

 To use ESS for a given quality function f, we require a function f[^] that bounds the values of f over sets of rectangles. Denoting rectangles by R and sets of rectangles by R, the bound has to fulfill the following two conditions:

$$i)$$
 $\hat{f}(\mathcal{R}) \ge \max_{R \in \mathcal{R}} f(R),$

 $\hat{f}(\mathcal{R}) = f(R)$, if R is the only element in \mathcal{R} .

- Introduction
- Efficient Subwindow Search
- Applications
- Conclusion

- Introduction
- Efficient Subwindow Search
- Applications
 - Non-rigid Object Localization using bovw kernel.
 - Rigid Object Localization using a Spatial Pyramid Kernel
 - Image Part Retrieval using a χ2 -Distance Measure
- Conclusion

- Extract local image features (e.g SIFT/SURF) from the training image set.
- The resulting descriptors are vector quantized using a K-entry codebook.
- Each feature point can be mapped to its nearest cluster (visual word) from the codebook.
- We represent images or regions within images by their cluster histograms.

- The histograms of the training images are used to train an SVM classifier.
- To classify whether a new image or region contains an object or not, we build its cluster histogram h and decide based on the value of the SVM decision function.

SVM decision function:

$$f(I) = \beta + \sum_{i} \alpha_i \langle h, h^i \rangle$$

• Assuming a linear kernel, and because of the linearity of the scalar product, we can rewrite the expression as the sum of the per-point contribution with weights $w_j = \sum_i \alpha_i h_j^i$

$$f(I) = \beta + \sum_{j=1}^{n} w_{c_j}$$

- In the previous equation, c_j is the cluster index that the feature point x_j maps to, and n is the total number of feature points in the image/region *l*.
- This form allows the evaluation of f over subimages
 R by summing only over the feature points that lie within R.
- Since we want argmax(f), we can drop the bias term.

 To construct a function f[^] that bounds f over a set of rectangles R:

$$\hat{f}(\mathcal{R}) := f^+(R_{\text{max}}) + f^-(R_{\text{min}})$$

- Note that the above f[^] preserves the desired properties i and ii
- Using integral images, f⁺ and f can be evaluated in O(1), hence calculating f[^] a constant time operation and independent of the number of rectangles in R.

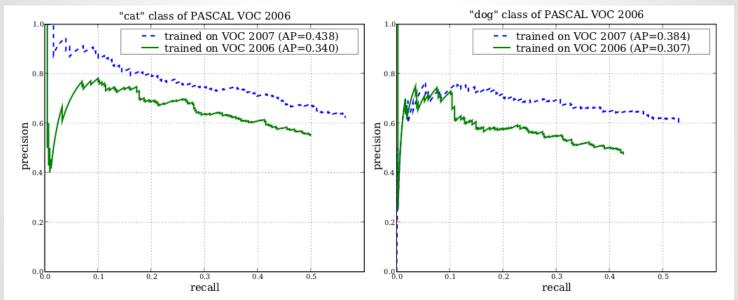
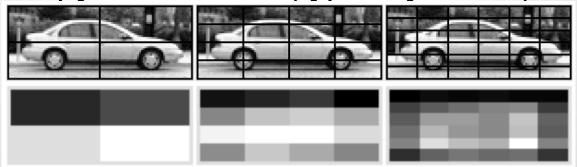



Figure 2. Recall–Precision curves of ESS *bovw* localization for classes *cat* and *dog* of the VOC 2006 dataset. Training was performed either on VOC 2006 (solid line) or VOC 2007 (dashed).

- Introduction
- Efficient Subwindow Search
- Applications
 - Non-rigid Object Localization using bovw kernel.
 - Rigid Object Localization using a Spatial Pyramid Kernel
 - Image Part Retrieval using a χ2 -Distance Measure
- Conclusion

- For rigid objects, hierarchical spatial pyramid of features is a better representation than bovw.
- Spatial pyramids have successfully been used for localization, but they were restricted to a small number of pyramid levels (typically 2 or 3).

 ESS overcomes this limitation and allows efficient localization with pyramids as fine-grained as 10 levels and more!

For linear SVM, the decision function is:

$$f(I) = \beta + \sum_{l=1}^{L} \sum_{\substack{i=1,\dots l\\j=1,\dots, l}} \sum_{k=1}^{N} \alpha_k^{l,(i,j)} \langle h_{l,(i,j)}, h_{l,(i,j)}^k \rangle$$

It can be rewritten as:

$$f(R) = \beta + \sum_{m=1}^{n} \sum_{\substack{l=1 \ j=1,\dots,l}}^{L} w_{c_m}^{l,(i,j)}$$

- $w_c^{l,(i,j)} = \sum_k \alpha_k^{l,(i,j)} h_{l,(i,j);c}^k$ if the feature point x_m has cluster label c and falls into the (i, j)-th cell of the l-th pyramid level of R. Zero, otherwise.
- A comparison with Equation (2) shows that Equation (5) is a sum of bovw contributions, one for each level and cell index (I, i, j).

- We bound each of these cells as explained in the previous section: for a given rectangle set *R*, we calculate the largest and the smallest possible extent that a grid cell R^(I,i,j) can have (call them R_{max} (I,i,j)) and R_{min} (I,i,j)).
- An upper bound for each triplet (I,i,j) is obtained by adding all weights of +ve feature points in R_{max} (I,i,j) and the weight of -ve feature points in R_{min} (I,i,j).

- An upper bound for f is obtained by summing the bounds for all levels and cells.
- If we make use of two integral images per triplet (I,i, j), evaluating f(R) becomes an O(1) operation.

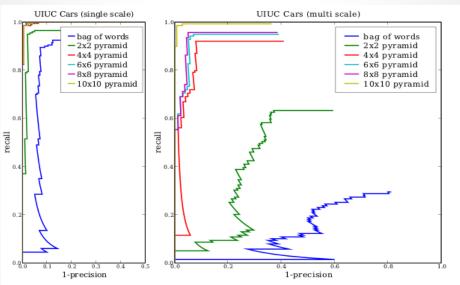


Figure 5. Results on UIUC Cars Dataset (best viewed in color): 1-precision vs recall curves for bag-of-features and different size spatial pyramids. The curves for single-scale detection (left) become nearly identical when the number of levels increases to 4×4 or higher. For the multi scale detection the curves do not saturate even up to a 10×10 grid.

- Introduction
- Efficient Subwindow Search
- Applications
 - Non-rigid Objects Localization using bovw kernel.
 - Rigid Objects Localization using a Spatial Pyramid Kernel
 - Image Part Retrieval using a χ2 -Distance Measure
- Conclusion

- Introduction
- Efficient Subwindow Search
- Applications
- Conclusion

Conclusion

- ESS allows fast object localization with results equivalent to exhaustive search in sliding window approach.
- ESS retains global optimality.
- The gain in speed and robustness allows the use of better local classifiers (e.g. SVM with spatial pyramid kernel, nearest neighbor with χ2 -distance)

Conclusion (cont.)

- Paper's future work:
 - Studying the applicability of ESS to further kernel-based classifiers.
 - Extend to other parametric shapes, like groups of boxes, circles and ellipses.

Questions?

Thank You!