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Overview - Object Recognition

● Most successful object recognition systems 
rely on binary classification.

● Binary classification can decide whether an 
object is present in an image or not, but not 
where exactly in the image the object is 
located.

● To perform localization, one can take a 
sliding window approach.



Sliding Window Object Localization

● Definitions of object localization according to how 
the object location is represented, (center point, 
contour, bounding box, pixel-wise segmentation)

● Sliding window approaches rely on evaluating a 
quality function f (a classifier score), over many 
rectangular subregions of the image and taking its 
maximum as the object’s location. 



Sliding Window Object Localization

● Number of subimages grows as n^4 for 
images of size nxn!

● Use heuristics to speed up the search.
● Such heuristics could introduce the risk of 

mispredicting the location of an object or 
even missing it.
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Efficient Subwindow Search

● ESS allows efficient maximization of a large 
class of classifier functions over all possible 
subimages. 

● It converges to a globally optimal solution 
typically in sublinear time.



Efficient Subwindow Search

● Intuition: Although there is a very large 
number of candidate regions only very few of 
them can actually contain object instances. 

● One should target the search directly to 
identify the regions of highest score, and 
ignore the rest of the search space where 
possible.



Branch-and-Bound Search

● The branch-and-bound framework hierarchically 
splits the parameter space into disjoint subsets, 
while keeping bounds of the maximal quality on all 
of the subsets. 

● This way, large parts of the parameter space can 
be discarded early by noticing that their upper 
bounds are lower than a guaranteed score from 
some previously examined state.



Branch-and-Bound Search

● Rectangles are represented by their top, bottom, 
left and right coordinate interval [T; B; L; R], where 
T = [tlow ; thigh], ... etc.



Branch-and-Bound Search

● For each rectangle set, we calculate a bound 
for the highest score that the quality function 
f could take on any of the rectangles in the 
set. 

● ESS terminates when it has identified a 
rectangle with a quality score that is at least 
as good as the upper bound of all remaining 
candidate regions.



Branch-and-Bound Search

● ESS organizes the search over candidate sets in a 
best-first manner.

● The candidate set is split along its largest 
coordinate interval into halves.

● The search is stopped if the most promising set 
contains only a single rectangle.

● To find multiple object locations, repeat the search 
after removing the object’s found bounding box.



Branch-and-Bound Search



● To use ESS for a given quality function f, we require 
a function f^ that bounds the values of f over sets of 
rectangles. Denoting rectangles by R and sets of 
rectangles by R, the bound has to fulfill the 
following two conditions:

Bounding the Quality Function
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App. 1: Non-rigid objects Localization 
using bovw kernel
● Extract local image features (e.g SIFT/SURF) from 

the training image set.
● The resulting descriptors are vector quantized using 

a K-entry codebook.
● Each feature point can be mapped to its nearest 

cluster (visual word) from the codebook.
● We represent images or regions within images by 

their cluster histograms.



App. 1: Non-rigid objects Localization 
using bovw kernel (cont.)
● The histograms of the training images are used to 

train an SVM classifier.
● To classify whether a new image or region contains 

an object or not, we build its cluster histogram h 
and decide based on the value of the SVM decision 
function.



App. 1: Non-rigid objects Localization 
using bovw kernel (cont.)
● SVM decision function:

● Assuming a linear kernel, and because of the 
linearity of the scalar product, we can rewrite the 
expression as the sum of the per-point contribution 
with weights                            :



App. 1: Non-rigid objects Localization 
using bovw kernel (cont.)
● In the previous equation, cj is the cluster index that 

the feature point xj maps to, and n is the total 
number of feature points in the image/region I.

● This form allows the evaluation of f over subimages 
R by summing only over the feature points that lie 
within R.

● Since we want argmax(f), we can drop the bias 
term.



App. 1: Non-rigid objects Localization 
using bovw kernel (cont.)
● To construct a function f^ that bounds f over a set of 

rectangles R:

● Note that the above f^ preserves the desired 
properties i and ii

● Using integral images, f+ and f- can be evaluated in 
O(1), hence calculating f^ a constant time operation 
and independent of the number of rectangles in R.



App. 1: Non-rigid objects Localization 
using bovw kernel (cont.)
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App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
● For rigid objects, hierarchical spatial pyramid of 

features is a better representation than bovw.
● Spatial pyramids have successfully been used for 

localization, but they were restricted to a small 
number of pyramid levels (typically 2 or 3).



App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
● ESS overcomes this limitation and allows efficient 

localization with pyramids as fine-grained as 10 
levels and more!



App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
● For linear SVM, the decision function is:

● It can be rewritten as:

                                                     



App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
●                                                     if the feature point 

xm has cluster label c and falls into the (i, j)-th cell of 
the l-th pyramid level of R. Zero, otherwise.

● A comparison with Equation (2) shows that 
Equation (5) is a sum of bovw contributions, one for 
each level and cell index (l, i, j). 



App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
● We bound each of these cells as explained in the 

previous section: for a given rectangle set R, we 
calculate the largest and the smallest possible 
extent that a grid cell R(l,i,j) can have (call them Rmax
(l,i,j) and Rmin

(l,i,j)).
● An upper bound for each triplet (l,i,j) is obtained by 

adding all weights of +ve feature points in Rmax
(l,i,j) 

and the weight of -ve feature points in Rmin
(l,i,j).



App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
● An upper bound for f is obtained by summing the 

bounds for all levels and cells.
● If we make use of two integral images per triplet (l,i,

j), evaluating f(R) becomes an O(1) operation. 



App. 2: Rigid Object Localization with a 
Spatial Pyramid Kernel
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Conclusion

● ESS allows fast object localization with results 
equivalent to exhaustive search in sliding window 
approach.

● ESS retains global optimality.
● The gain in speed and robustness allows the use of 

better local classifiers (e.g. SVM with spatial 
pyramid kernel, nearest neighbor with χ2 -distance)



Conclusion (cont.)

● Paper’s future work: 
○ Studying the applicability of ESS to further 

kernel-based classifiers. 
○ Extend to other parametric shapes, like groups 

of boxes, circles and ellipses. 



Thank You!

Questions?


