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DeepCReg: Improving Cellular-based Outdoor
Localization using CNN-based Regressors

Karim Elawaad
Alexandria University, Egypt
E-mail:kelawaad @ gmail.com

Abstract—In this paper, we propose DeepCReg, a convo-
lutional neural network based regressor, that leverages the
ubiquitous cellular data to estimate the location of the user
in an outdoor environment. We formulate the problem of
outdoor localization of a user as a regression problem. This
formulation overcomes the limitations of other neural network
based classification methods which estimates the position using a
grid cell of pre-specified dimensions. We regress on the position
directly which leads to better scalability when the testbed area
is increased. Moreover, we introduce the usage of convolutional
neural networks instead of fully connected neural networks to
add more robustness to small changes in the environment.

We evaluate our system on two different datasets to emphasize
on the scalability of our regression approach. The testbeds are
of size 0.147 km? and 1.469 km>. Our system achieves median
localization error of 2.06m and 2.82m on each dataset respec-
tively, outperforming current state-of-the-art outdoor cellular
based systems by at least 877% improvement in the median
localization error.

Keywords— Outdoor Localization, Neural Networks, CNN-
based regressors

I. INTRODUCTION

With the rise of outdoor location-based services such as
location-based social networks [1], [2] and emergency systems
[3], the need for robust and efficient localization systems have
emerged. Currently GPS is the main method used to provide
such services [4], however, GPS is power intensive [5], [6],
requires to have direct line of sight with the satellites and is
not supported by low-end phones which are still widely used
in certain regions. For a localization system to be ubiquitous, it
should not rely on sensors available only in high-end phones,
should provide acceptable accuracy, should not consume a lot
of battery power and should be relatively easy to deploy while
being robust.

To overcome these issues, several approaches were pro-
posed that leverage either embedded sensors in smartphones,
WiFi signals, cellular networks or an ensemble of these
methods.

Embedded sensors in smartphones (accelerometer, gyro-
scope, camera, etc.) have been used for outdoor localiza-
tion systems [7]-[11] using dead-reckoning and have been
shown to achieve good localization accuracy. This approach
consumes significantly less power, however, these methods
usually require continuous calibration, are more sensitive to
changes in the environment and are only available in high-end
phones.
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Due to their ubiquity, several approaches were proposed
that leverage cellular signals. One important advantage of
these approaches is that they can serve low-end phones when
deployed by the network operators. These approaches fall
into one of two categories, propagation models or fingerprint-
based techniques. Propagation model approach [12] offers low
overhead deployment since it does not require calibration but
it achieves low localization accuracy.

On the other hand, fingerprint-based techniques [13]-[17]
can achieve very good localization accuracy, but with signifi-
cant overhead, where it requires a surveyor to manually collect
the received signal strength (RSS) in the area of interest,
along with the location, which is usually obtained from the
GPS, to build a fingerprint database. In the online phase,
the collected database is used to infer the location of the
user using deterministic techniques like K-Nearest Neighbor
(KNN) [15], where the RSS vector in the online phase is
compared to all the points in the fingerprint database and K
nearest reference points according to some distance measure
are averaged to find an estimate of the user’s location.

The fingerprinting approach requires a surveyor to manually
collect RSS samples at multiple points in the area of interest
while standing for several minutes at each point. This adds
a huge overhead in the data collection phase, limiting the
scalability of this approach.

Another alternative proposed in [16] is superimposing a
virtual grid on the area of interest, where instead of standing
at an exact point for several minutes, the surveyor collects
the RSS samples by freely walking in the grid cell, each
grid cell is then identified by its geometric center, or more
optimally by the center of mass of the points that fall in it, the
problem then becomes a classification problem, where given
the received signal strength from different cell towers, we wish
to assign this sample a certain cell in the grid. The approach
in [16] builds histograms of RSS values for each cell tower in
each grid cell. A probabilistic model is then used to estimate
the location of the user. A downside to this approach is that
it assumes the independence of readings from different cell
towers to reduce the sparsity in the data. This assumption
simplifies the problem but discards the inherent correlation
between readings from different cell towers. To alleviate this,
[17] proposed using a Deep Neural Network (DNN) in a deep
learning classification framework to capture this information.
They propose using a DNN that takes as input an RSS vector



and outputs a probability distribution over the grid cells.

A. Motivation and Contributions

Previously discussed classification approaches achieve good
results, however, by gridding the testbed to reduce the data
collection overhead, they introduce a ground truth error in the
collected data, as all the points in each grid cell are assigned to
a single point, namely the center. One way to alleviate this is
by decreasing the size of the grid cell, which leads to sparsity
in the data and a significant increase in the size of the model,
limiting their scalability to large testbeds.

To provide truly ubiquitous outdoor localization systems,
the systems should not rely on sensors or chips that are only
available in high-end phones and should scale well with large
areas without a significant increase in the size of the model.
Moreover, it is desirable that the system is robust to small
changes in the environments.

This work proposes a deep convolutional neural network
based regressor that leverages cellular signals while overcom-
ing the limitations of the classification approach, with relative
RSS readings in addition to absolute readings, to increase the
robustness of our system to RSS variations caused by multi-
path effect, shadowing and fading.

Our contributions are summarized as follows:

« We introduce the use of regression-based models to avoid
introducing ground truth error while scaling well with
larger testbeds.

o We use power normalized and absolute RSS values with
convolutional neural networks to increase the robustness
of the system and eliminate the need for preprocessing.

« We simplify the online phase by eliminating the need for
post-processing the estimated grid cells as we directly
regress on the position variables.

o We show a major improvement against competitive sys-
tems for outdoor localization using our DeepCReg sys-
tem. The relative improvement in median localization
error reaches up to 1400% for two different testbeds.

We implemented our system on two different devices and
evaluated it in two different regions, one of area 0.147km? and
the other of area 1.469km?, achieving a median localization
error of 2.06m and 2.82m respectively for each testbed.

The rest of the paper is organized as follows: Section 2 gives
the background, Section 3 gives an overview of our system,
Section 4 discusses the details of our approach, Section 5
presents the evaluation results, and the paper is concluded in
Section 6.

II. APPROACH
A. Overview

DeepCReg works in two phases: offline phase and online
phase. In the offline phase, cellular data is collected in the
area of interest along with the GPS coordinates. In the online
phase, the RSS readings on a user’s cellphone are sent to
a server. The data is passed to the previously trained model
which directly predicts the latitude and longitude of the user.

B. System Model

During the offline phase, a surveyor collects GPS-tagged
RSS readings using their cellphone by freely walking or
driving in the area of interest. The data collected is in the
form < [(CID,,RSSy),..,(CID,,RSS,)],Laps >, where
CID is the cell tower ID of one of —C— cell towers, where
C is the set of all cell towers heard in the collection process
and n is the number of values received in that scan.RS.S; is
RSS value received from that cell tower identified by CID;
and L is the coordinates of the user at the time the scan was
taken. The collected data is then used to train and fine-tune
our deep regressor model.

In the online phase during system operation, a user in the
area of interest sends (CID, RSS) pairs to our server, which
are then passed to a previously trained model and directly
predicts the location of the user.

It is worth mentioning that unlike other localization systems
[17], [18], our system provides an end-to-end system, directly
predicting the location of the user given the RSS information,
removing any need for post-processing, thus reducing the
overhead of the online phase.

C. Feature Extraction

To use the collected RSS information, we first have to
change it to a suitable format for training our neural networks.
Assume the number of cell towers heard in the offline collec-
tion phase is C, where each tower is identified by a unique
cell tower ID (CID). For each collected sample ¢, we form the
RSS vector x;, where the value z;; corresponds to the RSS
value from cell tower j. Since the testbed could be large, we
may not have RSS values for some cell towers, so for those
cell towers, we use the value A instead. For all our experiment
we use A = —108dB

For the classification approach, after overlaying the virtual
grid G, the network takes as input the RSS vector x; and
outputs a probability distribution over all the grid cells. To
achieve this, the output layer of the network uses a Softmax
activation function and the network is trained using cross-
entropy loss. The cross-entropy loss requires that the labels
are one-hot vectors, so we label each sample z; with the label
y;, where y; is the one-hot encoded vector with one at the grid
cell that z; belongs to, and zero elsewhere.

For the regression approach the label y; is the normalized
coordinates of the sample z;.

D. Channel Representation

The RSS from a given cell tower varies across time due
to several reasons: multi-path effect, fading, weather effects,
changes in the network topology, varying loads [19]. To
provide a more robust performance, we use three represen-
tations created from the RSS vectors, namely: Ratio Channel,
Difference Channel and Tile Channel. The intuition of relative
power channels is to make use of the fact that the change in
the RSS from one cell tower is often accompanied by changes
in the RSSs from other cell towers, making the ratio/difference
more robust to changes. Moreover, we present the raw RSS
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Fig. 1: Different Channels: Three channels extracted from the original RSS vector. The power ratio and power difference
channels compute relative quantities. The tile channel tiles the original RSS vector to match the dimensions of the power ratio

and power difference channels.
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Fig. 2: Ground-truth error (meters) introduced by gridding the
testbed, and number of grid cells for different cell sizes

information to the network in the 7ile Channel as not to lose

any information.

Ratio Channel

Similar to the approach used in [20], we use relative RSS

values instead of the absolute values. For each sample x €

RI€l we form a 2D matrix R4, € RICI*IC

s where Rratioij = l‘i/l‘j.

Difference Channel

Another channel that leverages the concept of relative power

is the difference channel which stores the difference in RSS

values between different cell towers. For each training sample

x € RI°l, we form Rg;ss, where Ryipf,, = x; — ;.

Tile Channel

In order to avoid losing any information, we retain the absolute

RSS values by tiling the vector x —C— times to form Ry;j..
For each training sample x we form the corresponding

three channels which are then used in training the CNN. An

example of the three channels is shown in Figure 1.

E. Classification Approach

The problem of outdoor localization is usually solved using
classification methods. A virtual grid is overlaid on the area
of interest, where all cells in the grid are of a predefined
size, which is usually a hyperparameter that needs to be set
to trade-off between the complexity of the employed model
and the performance of the system. Each cell in the grid is
represented by a point, which could be the geometric center
of the cell or the average of coordinates of the points that
belong to the cell. A neural network then takes as input the
RSS vector and outputs a probability distribution over all the

grid cells, where the predicted location is said to be the center
of mass of the grid cell with the highest predicted probability.

However, because of the gridding, the points in each grid
cell are represented by their respective center of mass, intro-
ducing an inherent ground truth error. This ground truth error
gives a soft lower bound on the localization error that can be
achieved by a classifier. To clarify, this the lowest localization
error that can be achieved given a classifier that achieves
a 100% classification accuracy, where this error increases
proportionally as the grid cell size increases.

Figure 2 shows the computed ground truth errors for the two
testbeds we used in our experiments. Since we use similar grid
sizes, it is expected that we see very close ground truth errors
for the two testbeds. The number of cells grows quadratically
with the size of the grid cell. For a grid cell of 200m x 200m
area, the number of cells in Testbed 1 is 4 cells. But for a
grid cell of 25m x 25m area, the number of cells grows to be
2380 cells.

One way to reduce the effect of this error is to decrease
the size of the grid cell, which in turn will lead to sparsity
in the data and increase the size of the output layer of the
model, making the model more prone to overfitting while also
requiring more computational resources for training.

Moreover, systems that employ the gridding approach offer
coarse grained accuracy since their prediction can only be one
of the centers of the grids.

F. Regression Approach

As a more intuitive approach, we propose solving the
problem of localization using regression. Namely, we regress
directly over the latitude and longitude of the user. In particu-
lar, we use a deep learning model that takes as input the RSS
information and predicts the coordinates of the user. Figure 3
shows an example of the architecture we use.

The advantages of our approach are twofold. First, we avoid
introducing ground truth error caused by gridding the testbed.
Second, since we predict directly the coordinates of the user,
the size of the output layer is fixed regardless of the size of
the testbed and the predictions are fine-grained compared to
the classification approach.

In order to train the deep learning model, we first normalize
the coordinates to be in the range [0,1], we then train the
network using the RSS information and the normalized coor-
dinates. In the online phase, we de-normalize the network’s
output to get the predicted location of the user.



Fig. 3: DeepCReg Architecture: The input layer corresponds to the three features channels (Ratio, Difference and Tile): The

output layer corresponds to the longitude and latitude variables.

III. PERFORMANCE EVALUATION

In this section, we describe the two testbeds used in our
experiments. Next, we show a comprehensive set of results
using different alternatives such as classification and regres-
sion approaches with different feature sets. Then, we position
our system against competitive systems. Finally, we show a
discussion of the results of different settings. !

Probability

= CNN 3 Channels Regressor
DNN Regressor
e DINN Classifier (cell=23m)

! S Med?)an Loc;izatlor{ﬂérror (feters) = "
Fig. 4: Localization Error CDF: Localization error CDF of
CNN regressor with three channels against DNN regressor and
DNN classifier with grid cell size 25m on the Large testbed.

A. Testbeds

We start off by describing both our testbeds. Two datasets

were used to evaluate our regression-based approach against
state-of-the-art existing approaches. Each dataset(fingerprint)
belongs to a different testbed.
Testbed 1 (small) is of dimensions 369m x 399m spanning
an area of 0.147km?2. It consists of 12980 samples with 20
unique cell towers, so each sample z; € RICI, where |C| = 20.
Testbed 2 (large) We found our approach to outperform
current state-of-the-art without the need for any form of
pre/post-processing, so we collected a new dataset on a
bigger area in a different location to test our approach for
location invariance and scalability. Testbed 2 is of dimensions
1689m x 870m spanning an area of 1.469km?. It consists of
89328 samples with 58 unique cell towers, so each sample
z; € RIC, where |C] = 58.

ICode is available on GitHub.
https://github.com/kelawaad/DeepCReg

B. Results

In this section, we report our results and contrast it with
the previous methods. We present the results of using our
proposed CNN with the three channels and each channel
separately. We also report the details of the training process
and the models’ architectures. All the results are summarized
in Table II. It is worth noting that these results are not absolute
but rather relative to the GPS since the training samples are
labeled using the coordinates obtained from the GPS.

Before training, we split each dataset randomly into train,
validation and test sets with ratios 0.7, 0.1, 0.2 respectively.
We train our models using the training set, choose the best set
of hyperparameters (number of hidden layers, size of filters,
initial learning rate, etc.) using the validation set, and finally
report the results on the test set.

Classification. For the classification approach, we quantify
the effect of changing the grid cell size and the effect of
power normalized channels on the localization accuracy. The
DNN architecture used for all the experiments consisted of
three hidden layers of size 256, 128, 256 nodes respectively.
The CNN architecture consists of three convolutional layers
of filter sizes —C—x3, 1x7, 1x9 respectively, followed by
three fully connected layers of size 256, 128, 64 nodes. The
output layer’s size in both networks varies depending on the
grid cell size used and the are of the testbed.

Regression. For the regression approach, we quantify the
effect of the power normalized channel and contrast the results
of the CNN with the DNN.

The DNN architecture is the same architecture used in the
classification networks, except the output layer consists only
of two nodes, corresponding to the latitude and longitude.

The CNN architecture consists of three convolutional layers
of filter sizes —C—x5, 1x5, 1x5 respectively, followed by
three fully connected layers of size 256, 128, 64 nodes and
the output layer consists of two nodes as well.

All the hidden layers were followed by a ReLU activation
function while the output layer was followed by a sigmoid
activation. The models were trained using mean squared error
between the predicted values and the ground truth as its loss
function.

In all our experiments, we use Adam optimizer [21] with
an initial learning rate of 10—, batch size of 64 batches, and
step learning rate scheduler which decreases the learning rate
by a factor of 10 every fixed number of epochs.



All the training parameters for each testbed are summarized
in Table I.

Testbed 1 | Testbed 2
Initial learning rate (Ir) 10—% 10—%
Epochs 500 150
Optimizer Adam Adam
Batch size 64 64
Decrease Ir every 100 epoch | 25 epoch

TABLE I: Training parameters

DeepCReg CDF is shown in Figure 4. We contrast it against
two other approaches. Namely, the classification approach
with grid cell size = 25m x 25m, and a regression approach
using the original RSS vector and a DNN architecture. The
comparison shows that DeepCReg outperforms the classifica-
tion approach with a large margin. Moreover, the CNN based
architecture for regression (DeepCReg) outperforms the DNN
architecture. This confirms our hypothesis about using power
normalized channels against the original RSS vector.

C. Comparative Evaluation

We position the localization accuracy of our system Deep-
CReg against DeepLoc [17] and CellSense [16] on the two
testbeds. Both systems were evaluated using their best re-
ported parameters. For DeepLoc, we did not perform any data
augmentation or post-processing on the output.

Localization Accuracy
Figure 5 shows the localization error CDF of DeepCReg
against other competitive systems. The figure shows that our
system (DeepCReg) outperforms other systems with large
margin.

Table III show the localization error of the three systems
at different percentiles. DeepCReg achieves a better median
localization error of 2.06m and 2.88m on Testbed 1 and
Testbed 2 respectively, outperforming DeepLoc by at least
877% and CellSense by 981%. Since both DeepLoc and
CellSense employ the gridding approach, their performance
is bounded by the ground truth error. On the other hand,
DeepCReg, regresses directly over the longitude and latitude.

Probability

= CNN 3 Channels Regressor
Deeploc (cell=100m)
. CeliSense (cell=100m)

0 1l 100 150 0 =0 300 &0 400
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Fig. 5: Localization Error CDF of DeepCReg using three
channels regressor, DeepLoc [17] and CellSense [16] with
grid cell size 100m on the Large testbed.

D. Discussion

The obtained results can shed light on the advantages of
DeepCReg in various aspects.

First, DeepCReg’s motivation was to overcome the draw-
backs and unscalability of previous methods that leverage clas-
sification techniques. DeepCReg achieves this by regressing
directly over the latitude and longitude without compromising
the localization accuracy as shown in Figure 4. This can be
contrasted against the gridding based classification systems
such as [16], [17]. Even though the classifier can learn to
classify every testing sample in its correct grid cell, it just
reports the center of mass of the grid cell as an estimated
location. Figure 6 shows that all colored samples will be
given the same label and hence the same location.

Fig. 6: Estimated labels and locations using gridding approach
is bound to an error on Testbed 1.

Second, as opposed to other methods, DeepCReg is an end-
to-end system, it performs well even with no data augmenta-
tion techniques. Also, no post-processing modules are applied
to improve its performance and robustness.

Third, the learned models using the DeepCReg are more
compact than those that use the classification methods. In clas-
sification methods, the size of the output layer is determined
by the number of grid cells. This number of grid cells grows
quadratically with the dimensions of the cell. On the other
hand, the output layer of the DeepCReg has only two output
nodes corresponding to the longitude and latitude.

IV. CONCLUSION

In this paper, we proposed DeepCReg, an end-to-end
cellular-based outdoor localization system. We showed the
drawbacks of the currently employed classification techniques,
namely introducing ground-truth error, less effective scala-
bility with larger testbeds and that it offers coarse-grained
accuracy.DeepCReg solves these issues by formulating the
problem as a regression problem, where it scales well with
larger testbeds and offers fine-grained accuracy, while also
outperforming classification-based techniques by a large mar-
gin.

We also showed how DeepCReg leverages absolute and
relative RSS values to increase its robustness to changes in
the environment.



Classification

Testbed 1 Testbed 2
CNN DNN CNN DNN
Size 3 Channels Ratio Difference Tile RSS 3 Channels Ratio Difference Tile RSS
200m 67.302 67.302 67.598 67.302 79.672 69.428 69.255 69.279 69.292 69.085
100m 29.467 29.339 29.697 29.436 32.639 28.191 28.146 28.220 28.146 28.128
50m 12.077 12.029 12.077 11.877 28.682 12.276 12.301 12.276 12.276 12.348
25m 6.252 6.516 6.538 6.158 6.574 6.510 6.592 6.539 6.546 6.614
Regression
Testbed 1 Testbed 2
CNN DNN CNN DNN
Size 3 Channels Ratio Difference Tile RSS 3 Channels Ratio Difference Tile RSS
- 2.062 3.649 2.083 2.333 2.372 2.844 3.570 2.824 3.002 3.580

TABLE II: Median localization error (meters) for DNN and CNN with different channel configurations for different grid cell

sizes. Top: Classification results. Bottom: Regression results.

Testbed 1
25t Median 75t
DeepCReg 0.77 2.06 4.16
DeepLoc  17.7(-2183%) 30.6(-1382%)  44.7(-974%)
CellSense  17.4(-2153%) 32.0(-1450%)  52.8(-1169%)
Testbed 2
2517 Median 75th
DeepCReg 1.13 2.88 6.42
DeepLoc  16.9(-1390%) 28.2(-877%)  41.3(-543%)
CellSense  18.2(-1512%) 31.2(-982%)  50.8(-691%)
TABLE III: Comparison between DeepCReg, and

DeepLoc [17], CellSense [16] classifiers with grid cell
size 100m. Number in parenthesis corresponds to the relative
improvement achieved by DeepCReg over competitive
systems.

We implemented our system on two different testbeds of
sizes 0.147 km?2, 1.469 km?2 and it achieved a median local-
ization error of 2.06m and 2.82m for each testbed respectively,
outperforming previous approaches by at least 877%.
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