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ABSTRACT OF THE DISSERTATION

Learning the Manifolds of Local Features and Their Spatial

Arrangements

by Marwan Torki

Dissertation Director: Ahmed Elgammal

Local features play an important role for many computer vision problems; they are highly

discriminative and possess invariant properties. However, the spatial configuration of local fea-

tures plays an essential role in recognition. Spatial neighborhoods capture local geometry and

collectively provide shape information about a given object. In this dissertation we studied

explicit and implicit ways to exploit the joint feature-spatial arrangement in images for recog-

nition problems. We introduce a framework to learn an embedded representation of images that

captures the similarity between features and the spatial arrangement information. The frame-

work was successfully applied in object recognition and localization context. The framework

was also applied for feature matching across multiple images. We also showed the viability

of the framework in regression from local features for viewpoint estimation. We also studied

implicit ways to exploit the feature-spatial manifold structure in the data without explicit em-

bedding and within a transductive learning paradigm for object localization. We learned the

labels of the local features from an object class in a manner that providesspatial and feature

smoothing over the labels. To achieve that we adapted the Global and LocalConsistency Solu-

tion for Label Propagation to our implicit manifold model to infer the labels of local features.

We showed excellent accuracy rates with very low false positive rates onthe learned features

labels in the test images.

ii



Acknowledgements

I would like to thank my family for their love and support all along. It was a dream of us

all and we can finally feel it. I want to express my deepest gratitude to my advisor, Prof.

Ahmed Elgammal, who was guiding me along this path for full five years. His advices and

encouragements were more than valuable and his support was unlimited. I would like to thank

my committee Prof. Casimir Kulikowski, Prof. Vladimir Pavlovic and Dr. Sanjiv Kumar of

Google research for their very useful comments to improve the quality of my dissertation

iii



Dedication

To Parents and Family

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1. Fusing Feature Similarities and Spatial Arrangements of Local Fea-

tures in a Common Embedding Space . . . . . . . . . . . . . . . . . . 5

1.2.2. Defining Similarity Measure between Images . . . . . . . . . . . . . . 5

1.2.3. Solving The Out-of-Sampling Problem Embedding New Features . . . 6

1.2.4. Learning Image Manifolds from Local Features . . . . . . . . . . . . .7

1.2.5. Regression Framework from Local Features . . . . . . . . . . . . . .. 7

1.2.6. Scalable Multi-Set Feature Matching . . . . . . . . . . . . . . . . . . 7

1.2.7. Implicit Feature-Spatial Manifold . . . . . . . . . . . . . . . . . . . . 8

2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1. Local Features in Object Recognition . . . . . . . . . . . . . . . . . . . . . .9

2.1.1. Feature Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2. Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3. Performance of Detectors and Descriptors . . . . . . . . . . . . . . . .10

2.1.4. Bag of Visual Words Models . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Encoding Shape based on Local Features . . . . . . . . . . . . . . . . .. . . 12

v



2.2.1. Grouping of Local Features within Spatial Neighborhood . . . . . . .. 12

2.2.2. Part Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Manifold Learning for Object Recognition . . . . . . . . . . . . . . . . . . .. 14

2.3.1. Linear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2. Nonlinear Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3. Unified View of Dimensionality Reduction Methods . . . . . . . . . . 16

2.3.4. Large Sale Dimensionality Reduction . . . . . . . . . . . . . . . . . . 17

2.3.5. Applications for Manifold Learning in Object recognition . . . . . . . 17

3. Feature-Spatial Embedding Framework. . . . . . . . . . . . . . . . . . . . . . 19

3.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3. Intra-Image Spatial Structure . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.4. Inter-Image Feature Affinity . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5. Solving the out-of-sample problem . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1. Populating the Embedding Space . . . . . . . . . . . . . . . . . . . . 26

4. Image Embedding from Local Features . . . . . . . . . . . . . . . . . . . . . . 27

4.1. From Feature Embedding to Image Manifold Embedding . . . . . . . . . . . . 27

4.2. Image Manifold Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1. Visualizing View Manifold . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.2. Shape Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3. TUD/ETHZ Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.4. Caltech Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5. Applications: Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. Results: Object Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1. Shape Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2. Caltech 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



5.3. Results: Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4. Results: Unsupervised Object Categorization . . . . . . . . . . . . . . . .. . 39

5.4.1. Equal Cardinality -Caltech . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.2. Different Cardinality -Caltech . . . . . . . . . . . . . . . . . . . . . . 40

5.4.3. Different Cardinality TUD/ETHZ . . . . . . . . . . . . . . . . . . . . 41

6. Regression From Local Features. . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2. Kernel-based Regression from Local Features: . . . . . . . . . . .. . . . . . . 44

6.2.1. Kernel Regression Framework . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2. Enforcing Manifold Locality Constraint . . . . . . . . . . . . . . . . . 45

6.2.3. Feature Embedding based Regression . . . . . . . . . . . . . . . . . . 46

6.2.4. Image Manifold-based regression: . . . . . . . . . . . . . . . . . . . . 48

6.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3.1. Regression on a single car example . . . . . . . . . . . . . . . . . . . 48

6.3.2. Multi-View Car Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3.3. Face Pose Estimation in Uncontrolled Environment . . . . . . . . . . . 53

6.3.4. Arm Posture Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 55

7. Multi-Set Feature-Spatial Matching . . . . . . . . . . . . . . . . . . . . . . . . 56

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.1. Matching Under Geometric Constraints . . . . . . . . . . . . . . . . . 58

7.2.2. Shape Vs. Appearance Based Matching Approaches . . . . . . . .. . 60

7.2.3. Spectral Correspondences as Graph Matching . . . . . . . . . . . .. . 60

Graph Matching and Problem Size . . . . . . . . . . . . . . . . . . . . 61

7.2.4. Learning Graph Matching: . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.5. Matching Multiple Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3. Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3.1. Matching Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



7.3.2. Matching Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.4.1. Non-Rigid Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.4.2. Comparative Evaluation: 3D Motion (Wide Baseline Matching) . . . . 66

7.4.3. Robustness: INRIA datasets . . . . . . . . . . . . . . . . . . . . . . . 69

8. Implicit Feature Spatial Manifold Learning through spatial consistent label prop-

agation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.3. Background on Label Propagation Algorithms . . . . . . . . . . . . . . . .. . 77

8.4. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4.1. Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4.2. ConstructingW for SVLP . . . . . . . . . . . . . . . . . . . . . . . . 80

8.4.3. Objective Function for SVLP . . . . . . . . . . . . . . . . . . . . . . 81

8.4.4. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.5.1. Caltech-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.5.2. Generalization to Subsets of LabelMe . . . . . . . . . . . . . . . . . . 86

8.5.3. TUD / ETHZ Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.5.4. Object Parts Localization . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.5.5. Multiple Base-Learners . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



List of Figures

1.1. Examples of view manifold learned from local features for toy example .. . . 6

2.1. Different part models. Left:Constellation model. Right:Pictorial Structure(Tree).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Left: Linear structure where the data lies on a low dimensional subspace.Right:

Non-Linear structure where the data lies on a low dimensional manifold. . . . .14

2.3. Geodesic distance on the manifold between the points A and B is not equivalent

to the Euclidean distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1. Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . .28

4.2. Examples of view manifolds learned from local features . . . . . . . . . .. . . 30

4.3. Manifold Embedding for 60 samples from Shape dataset using 60 GB local

features per image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4. Embedding 9 samples from three classes Motorbikes and Car-Side view(TUD)

and Giraffes(ETHZ) based on the common feature embedding framework. The

clustering is very clear, only one sample is mis-clustered in this example . . . . 32

4.5. Example Embedding result of samples from four classes of Caltech-101. Top:

Embedding using our framework using 60 Geometric Blur local features per

image. The embedding reflects the perceptual similarity between the images.

Bottom: Embedding based on Euclidean image distance (no local features, im-

age as a vector representation). Notice that Euclidean image distance based

embedding is dominated by image intensity, i.e., darker images are clustered

together and brighter images are clustered. . . . . . . . . . . . . . . . . . . . . 33

4.6. Manifold Embedding for all images in Caltech-4-II, Caltech-6. Only firsttwo

dimensions are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1. Optional caption for list of figures . . . . . . . . . . . . . . . . . . . . . . . .40

ix



6.1. Regression on a single car: (Left) Absolute Error computed using our approach

is plotted with the ground truth, they are very close to each other. (Right)

sample views of the car with features detected on it. . . . . . . . . . . . . . . . 44

6.2. Regression on a Multi-view car dataset: Top left corner shows how the arrows

reflect he estimated angle. The ground truth is shown along with the estimated

angle. Yellow arrows for ground truth and Magenta for our results, features are

shown as blue dots(Best viewed in color) . . . . . . . . . . . . . . . . . . . . . 52

6.3. Histogram of absolute error: Left: for Multi view car datset. Right: for face

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4. Regression on a Face Pose estimation dataset: Top left corner showshow the

arrows reflect he estimated angle. The ground truth is shown along with the

estimated angle. Green arrows for ground truth and Yellow for our results,

features are shown as blue dots(Best viewed in color) . . . . . . . . . . . .. . 54

6.5. Regression example for articulated body posture estimation: shown areframes

20,40,60,80,100,120,140,160 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1. Motivating Example on two faces . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2. Illustration of our framework entities and interaction between them . . . . .. . 64

7.3. Top: Results on non rigid walking sequence (matched pairwise). Bottom:Sam-

ple results on hand waving sequence matched on a 13 frames in one shot (mul-

tiset). Shown is the first image matches with the consecutive odd frames in the

13 frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4. Sample results on Caltech 101 images. Best seen in color. . . . . . . . . . .. 68

7.5. Matches obtained in 15 frames of the ‘Hotel’ sequence using one-shot multiset

matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.6. Number of matches affected by Different effects. left,middle) Increasing view

point Change(Bricks and Graf), right) Increasing Blurring (Trees). . . . . . . 71

8.1. The left image shows the SVM classification of the local features and theright

image shows the result of our localization approach. Red and green pointsare

foreground and background, respectively . . . . . . . . . . . . . . . . .. . . . 74

x



8.2. Learning Trend: changing the training size per class improves the results. . . . 84

8.3. Sample Results on ETHZ-Giraffes, TUD-Cows, TUD-Motorbikes andCaltech-

101. Every row represents the percentile at which the localization is inferred.

The top row shows the top80% percentile of the features are localized, second

row 20%. Red are foreground localized features. Green are background local-

ized features. Detected features are shown in cyan. Best viewed in color with

zooming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.4. Generalization to some example from LableMe dataset. Features with top 25%

confidence are shown. Red for foreground localized features. Green for back-

ground localized features. Detected features shown in cyan. Best viewed in

color with zooming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.5. Object part localization. Left: bounding boxes defining the parts used during

training. Middle and Right: some part localization results on TUD-cows and

Caltech-Motrobikes. Features with top 60% confidence are labeled. Red for

part 1 localized features. Green for part 2 localized features. Yellow for part 3

localized features. Blue for background localized features. Detected features

shown in cyan. Better Viewed in color and zooming. . . . . . . . . . . . . . . 89

8.6. Sample results from the challenging GRAZ02-Bikes dataset using 7 multiple

base learners. The top row shows the80% percentile and the bottom shows

the20% percentile. What may seem like a false positive bike detected in the

background of the left image is actually a bike wheel. Same color legend as

figure 8.5 Best viewed in color, with zooming. . . . . . . . . . . . . . . . . . . 90

xi



1

Chapter 1

Introduction

1.1 Overview

Visual recognition is a fundamental yet challenging computer vision task. Inthe recent years

there have been tremendous interest in investigating the use of local features and parts in generic

object recognition-related problems such as, object categorization, localization, discovering

object categories, recognizing objects from different views,etc. In this dissertation we present

a framework for visual recognition that emphasizes the role of local features, geometry and

manifold learning. The framework learns an image manifold embedding from local features

and their spatial arrangement. Based on that embedding several recognition-related problems

can be solved, such as object categorization, category discovery, feature matching, regression,

etc. We start by discussing the role of local features, geometry and manifold learning; and

follow that by discussing the challenges in learning image manifolds from localfeatures.

1) The Role of Local Features:Object recognition based on local image features have shown

a lot of success recently for objects with large within-class variability in shape and appear-

ance [43, 78, 108, 135, 2, 15, 40, 124, 39]. In such approaches, objects are modeled as a

collection of parts or local features and the recognition is based on inferring the class of the

object based on parts’ appearance and (possibly) their spatial arrangement. Typically, such

approaches find interest points using some operator such as corners [55] and then extract lo-

cal image descriptors around such interest points. Several local image descriptors have been

suggested and evaluated [86], such as Lowe’s scale invariant features (SIFT) [78], Geometric

Blur [11], and many others. Such highly discriminative local appearancefeatures have been

successfully used for recognition even without any shape (structure)information,e.g. bag-of-

words like approaches [137, 112, 86].
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2) The Role of Geometry:The spatial structure, or the arrangement of the local features plays

an essential role in perception since it encodes the shape.

There is a fundamental trade-off in part-structure approaches in general: The more discrim-

inative and/or invariant a feature is, the less frequent this feature becomes. Sparse features

result in losing the spatial structure. For example, a corner detector results in dense but in-

discriminative features while an affine invariant feature detector like SIFTwill result in sparse

features that do not necessarily capture the spatial arrangement. The above trade-off shapes the

research in object recognition and matching. On one extreme, are approaches such as bag-of-

feature approaches [137, 112] that depend on highly discriminative features and end up with

sparse features that do not represent the shape of the object. Therefore, such approaches tend

to heavily depend on the feature distribution in recognition. Many researches recently have

tried to include the spatial information of features, e.g., by spatial partitioning and spatial his-

tograms, e.g. [81, 66, 50, 114]. On the other end of the trade-off, areapproaches that focus on

the spatial arrangement for recognition. They tend to use very abstractand primitive feature

detectors like corner detectors, which result in dense binary or orientedfeatures. In such cases,

the correspondence between features are established on the spatial arrangement level, typically

through formulating the problem as a graph matching problem, e.g. [9, 125].

3) The Role of Manifold:Learning image manifolds has been shown to be quite useful in

recognition, for example for learning appearance manifolds from different views [91], learning

activity and pose manifolds for activity recognition and tracking [36, 128], etc. Almost all the

prior applications of image manifold learning, whether linear or nonlinear, have been based on

holistic image representations where images are represented as vectors,e.g. the seminal work

of Murase and Nayar [91], or by establishing a correspondence framework between features or

landmarks, e.g. [28].

The Manifold of Local Features:

Consider collections of images from any of the following cases or combinations of them:

• Different instances of an object class (within-class variations);

• Different views of an object;
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• Articulation and deformation of an object;

• Different objects across-classes or within-class sharing a certain attribute.

Each image is represented as a collection of local features. In all these cases, both the

features appearance and their spatial arrangement will change as a function of all the above-

mentioned factors. Whether a feature appears in a given frame and where, relative to other

features, are functions of the viewpoint of the object and/or the articulation of the object and/or

the object instance structure and/or a latent attribute.

Consider in particular, the case of different views of the same object. There is an underly-

ing manifold (or a subspace) where the spatial arrangement of the features should follow. For

example, if the object is viewed from a view circle, which constitutes a one-dimensional view

manifold, there should be a representation where the features and their spatial arrangement are

expected to be evolving on a manifold of dimensionality at most one (assuming wecan factor

out all other nuisance factors). Similarly, if we consider a full view sphere, a two-dimensional

manifold, the features and their spatial arrangement should be evolving ona manifold of dimen-

sionality at most two.The fundamental question is what is such representation that reveals the

underlying manifold topology.The same argument holds for the cases of within-class variabil-

ity, articulation, and deformation, and across-class attributes; but in suchcases, the underlying

manifold dimensionality might not be known.

A central challenging question is how can we learn image manifolds from a bunch of local

features in a smooth way such that we can capture the feature similarity and spatial arrange-

ment variability between images. If we can answer this question, that will open the door for ex-

plicit modeling within-class variability manifolds, objects’ view manifolds, activity manifolds,

attribute manifolds; all from local features.

Why manifold learning from local features is challenging :

There are different ways researchers have approached the studyof image manifolds, which

are not applicable here. This points out the challenges for the case of learning from local

features.

1. Image vectorization based analysis:Manifold analysis require a representation of im-

ages in a vector space or in a metric space. Therefore, almost all the priorapplications
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for image manifold learning, whether linear or nonlinear, have been basedon wholistic

image representations where images are represented as vectors [91, 120, 129, 36]. Such

wholisitic image representation provides a vector space representation anda correspon-

dence frame between pixels in images.

2. Histogram based analysis:On the other hand, vectorized representations of local features

based on histograms, e.g. bag-of-words alike representations, cannot be used for learning

image manifolds since theoretically histograms are not vector spaces. Histograms do not

provide smooth transition between different images with the change in the feature-spatial

structure. Extensions to the bag-of-words approach, where the spatial information is

encoded in a histogram structure, e.g. [81, 66, 114] cannot be used for the same reasons.

3. Land-mark based analysis:Alternatively, manifold learning can be done on local fea-

tures if we can establish full correspondences between these featuresin all image, which

explicitly establish a vector representation of all the features. For example,Active Shape

Models (ASM) [28] and alike algorithms use specific landmarks that can be matched in

all images. Obviously it is not possible to establish such full correspondences between all

features, since the same local features are not expected to be visible in allimages. This

is a challenge in the context of generic object recognition, given the largewithin-class

variability. Establishing a full correspondence frame between features isalso not feasible

between different views of an object or different frames of an articulated motion because

of self occlusion or between different objects sharing a common attribute.

4. Kernel-based analysis:Another alternative for learning image manifolds is to learn the

manifold in a metric space, where we can learn a similarity metric between images (from

local features). Once such similarity metric is defined, any manifold learning technique

can be used. Since we are interested in problems such as learning within-class variability

manifolds, view manifolds, activity manifolds, the similarity kernel should reflect both

the appearance affinity of local features and the spatial structure similarityin a smooth

way to be able to capture the topology of the underlying image manifold without distort-

ing it. Such similarity kernel should be also robust to clutter. There have been a variety

of similarity kernels based on local features, e.g. pyramid matching kernel [50], string
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kernels [33], etc. However, to the best of our knowledge, none of these existing similarity

measures were shown to be able to learn a smooth manifold representation.

1.2 Contributions

In this section we highlight the key contributions of the dissertation.

1.2.1 Fusing Feature Similarities and Spatial Arrangements of Local Features

in a Common Embedding Space

The first contribution in this dissertation is to learn a low-dimensional representation from a

bunch of local features from different images. The learned embeddingrepresentation preserves

both the spatial arrangements of local features within an image and the feature similarities be-

tween features from different images. To achieve such representationwe propose an objective

function solution of which can be computed in a closed form using eigenvector decomposition.

This new low-dimensional representation fuses both the feature similarities and spatial arrange-

ments of local features from different images in a common embedding space, which enhances

the task of learning a similarity measure between images. Details on the embedding will be

presented in chapter 3.

1.2.2 Defining Similarity Measure between Images

The dimensionality reduction provides a global embedding for the feature points as the whole

embedding is affected by all the feature points and thus the distances in the embedding space

are affected by all the points embedded. This makes the task of learning an image to image

kernel in the new embedding space smoother than computing a kernel that relies only on the

features from two images. Here comes another contribution of the dissertation, we provide a

distance measure in the embedding space obtained by dimensionality reduction on the feature

points. This measure reflects the feature and spatial similarities between feature points as in-

tended and moreover it provides smooth distance measure between images which will correctly

capture smooth image manifolds. Fig. 1.1shows a view manifold example which is correctly

captured using our similarity measure.Details on the image to image distance will be presented
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in chapter 4.

Figure 1.1: Examples of view manifold learned from local features for toy example

1.2.3 Solving The Out-of-Sampling Problem Embedding New Features

In manifold learning, embedding large number of features can be prohibitive in certain situa-

tions. Usually this problem is tackled in two steps. First, data is sampled and an embedding

for sample points is computed to form an initial embedding. Second, the remainingpoints are

out-of-sampled using some approximation technique [117]. Out-of-samplingis also needed

when it is required to embed test data for recognition purposes. However, for either of the

two cases current approximation methods do not consider the case wherethe out-of-sampled

features are structured in groups like our case where every set of features belongs to a single

image are structured via the spatial structure within that set. Our contribution isto solve the

out-of-sample problem where the features that belong to the same image are embedded in a

way that respects the spatial structure within an image and, in same time, reflectsthe feature

similarity between the features of the new embedded image and the already embedded features

in the initial embedding. We provide a closed form solution in chapter 3.
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1.2.4 Learning Image Manifolds from Local Features

As a direct consequent of image-to-image distance, image manifolds can be learned. The con-

tribution here is to utilize image manifolds in object recognition tasks like unsupervised object

categorization, object classification and object localization. Our approach outperforms many

state-of-the-art methods in corresponding problems. Details and results are given in chapters 4

and 5.

1.2.5 Regression Framework from Local Features

Many computer vision problems are regression problems, for example viewpoint and pose esti-

mation, age estimation, facial expression intensity, etc. However, there is noprevious work on

regression problems using collections of local features where there is nocorrespondence avail-

able. For example enforcing the spatial structure on a learned view manifoldmakes it easier

to capture the underlying manifold in a smooth way and enables for learning continuous regu-

larized regression functions. Our contribution is to provide kernel-based regression framework

from local features. Details will be presented in chapter 6.

1.2.6 Scalable Multi-Set Feature Matching

Feature matching is a very important and fundamental problem in computer vision. Many

state-of-the-art matching techniques try to achieve spatially consistent feature matching using

quadratic assignment. These methods deals with the spatial consistency by adding higher or-

der terms between pairs of features which grow the size of the problem in quadratic order of

the original number of features to be matched. The embedding framework that we propose

in this dissertation has three merits. First, the embedding preserves both spatial arrangements

of local features within an image and the feature similarities between features from different

images. Second it allows for multiple images to matched together without the need ofsolving

a quadratic assignment for every pair of images. Third it involves one eigenvector decomposi-

tion problem whose size is linear in the number of features from all images which makes our

solution scalable compared to quadratic assignment methods. Our contributionis to formulate

the feature matching problem as a graph embedding problem which involves one eigenvector
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problem to embed all features at once. Also another contribution in our solution is to handle

multiple images that need to be matched together while quadratic assignment methodscan not.

Details will be presented in chapter 7.

1.2.7 Implicit Feature-Spatial Manifold

The feature spatial manifold embedding that we mentioned in previous subsection 1.2.1 is

an explicit way to obtain the low-dimensional representation of the feature points. The di-

mensionality reduction requires solving an eigenvector decomposition problem. However, in

certain problems we are given some label information, which can be viewed as a supervised

embedding space for the feature points. Using the label information would alleviate the need of

solving the dimensionality reduction problem. Learning the Feature-spatial manifold reduces to

learning a graph structure that reflects inter image spatial arrangements and intra image feature

similarities. Learning the graph structure of the spatial visual manifold is the final contribu-

tion in this dissertation. We show the usefulness of spatial visual manifold in theobject class

localization problem. Details will be presented in chapter 8.
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Chapter 2

Background

2.1 Local Features in Object Recognition

During the last two decades lots of research in computer vision community had focused on

local features and their usage in many different problems such as stereovision, image registra-

tion, mosaicing, structure from motion, motion segmentation, tracking, instance recognition,

object recognition, object detection, etc. Invariant properties for the local features to image

transformations, distinctiveness, and robustness to occlusion of the local features make them

more plausible to be used in the wide range of problems in computer vision community. In

fact, the top cited computer vision paper for the past ten years is ”DistinctiveImage Features

from Scale-Invariant Keypoints ” by Lowe [79, 78], where the SIFT descriptor for keypoints

in images was presented. This gives us an insight on how important it would be to utilize lo-

cal features to develop state-of-the-art methods in many object recognition systems and other

computer vision problems in general.

2.1.1 Feature Detectors

The local features are point locations in images associated with vectorized descriptor. Lots

of researches had been conducted to show how to compute candidate interest point locations

for useful local features in an image. These interest points include Harris corners [55], Harris-

affine regions [85], Hessian-affine regions [85], maximum stable extremal region (MSER) [83],

salient regions[58], and more. These feature/region detectors try to find the candidate patches

in the image that makes the local feature informative, invariant to geometric (affine, rotation or

scale) transformations and repeatable to facilitate recognition tasks. Another method to detect

the feature points was introduced in [11] by sampling the edges according toedge strength
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scores.

2.1.2 Feature Descriptors

Another important part is the description of the local features. The descriptor should be in-

variant to viewing angle, illumination, compression, blurring, zooming, etc. The descriptor is

summarizing the information in the patch around the location of the local feature.Examples are

Scale Invariant Feature Transform (SIFT) [79], Geometric Blur (GB)[11], Gradient Location

Orientation Histogram(GLOH) [86], Histogram of oriented gradient (HOG)[32], Shape Con-

text (SC) [9], etc. Many of the mentioned descriptors are histograms representing local edge

orientation distribution, for example SIFT [79] is represented by a 3D histogram of gradient

locations and orientations. Also Shape context [9] is similar to the SIFT descriptor, but is based

on edges. Shape context is a 2D histogram of edge point locations and orientations.

2.1.3 Performance of Detectors and Descriptors

Several evaluation studies on local features have been published. An evaluation on region

detectors was presented in [87]. This evaluation was based on the repeatability of the features

and on matching image pairs under different viewing conditions. The conclusion as indicated

by [87] is that the performance of all presented detectors declines slowly, with similar rates, as

the change of viewpoint increases. There does not exist one detectorthat outperforms the other

detectors for all scene types and all types of transformations.

Another study on evaluating descriptors has been presented in [86], again the evaluations

was based on matching tasks under different viewing conditions. The conclusion as indicated

by [86] was that in most of the tests, GLOH obtains the best results, closely followed by SIFT.

This shows the robustness and the distinctive character of the region-based SIFT descriptor.

Shape context also shows a high performance. However, for texturedscenes or when edges are

not reliable, its score is lower.

Another evaluation study [89] combined the evaluation on detectors and descriptors to-

gether. In [89] the evaluation is done on 3D objects, and it was found thatthe best overall

choice is using an affine-rectified detector [85] combined with a SIFT [79]or shape context
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descriptor [9].

2.1.4 Bag of Visual Words Models

Inspired by bag of words model in text categorization [13], many works,e.g. [31, 66, 144],

addressed the object recognition problem with no dependence on the spatial configuration. A

simple approach has been followed to utilize local features in object recognition tasks, called

the bag of words model, which can be summarized as:

1. Detect local features using a feature detector and compute local feature descriptors.

2. Compute a dictionary of visual words from training images by clustering thefeature

descriptors using K-means or other clustering technique.

3. Compute a histogram representation for each training image based on the frequencies of

the visual words.

4. Learn a classifier from training images.

5. Assign every feature in the test image to its nearest visual word.

6. Compute a histogram representation for the test image.

7. Classify the resulting histogram to decide the category of the test image.

Advantages of the bag of visual words model lies in its simplicity, it implicitly inherits the

discriminative nature of the local features in the dictionary building step, alsothe model is able

to summarize every image in a single vector, which ease the categorization tasks.

An interesting work by Boiman et al. [14] showed that a system that is basedon nearest

neighbor search between query features and all the features belongsto one class can outperform

a visual word system. This actually means that, the feature space quantizationinto visual words

caused some loss in representing the query features.

It is not difficult task to compute an image-to-image kernel if images are in the same met-

ric space. Once an image-to-image kernel is computed, Kernel SVM [107]can be learned to

classify the different categories. The bag of words model tries to build signatures of the same
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dimensionality for all images involved in an object recognition system. In [144]example dis-

tance metrics are used like the Earth Mover Distance(EMD) [104] or the Chisquares distance.

Later these distances are transformed into SVM kernels using Gaussian kernel.

Another important kernel is the pyramid matching kernel (PMK) in [50]. Thismethod

can handle collections of local features in images without the need of buildinga dictionary.

Instead a multi resolution pyramid is used to bin the features and histogram intersection kernel

is computed.

2.2 Encoding Shape based on Local Features

Modeling the spatial structure of an object varies dramatically in the literature of object clas-

sification. On the extreme, are approaches that totally ignore the structure and classify objects

only based on the statistics of the features (parts) as an unordered set, e.g. bag-of-words ap-

proaches [31, 66, 144]. However, the performance of object recognition systems was shown to

be improved by utilizing the shape or the arrangements of the local features [114].

2.2.1 Grouping of Local Features within Spatial Neighborhood

Several bag-of-words extensions are offered to encode the spatialrelations within the learned

dictionaries. The work of [112] extended the bag-of-words vocabulary to include doublets that

encode spatially local co-occurring regions. Doublets are defined as pairs of visual words that

co-occur within a local spatial neighborhood.

Similar ideas for encoding the spatial relations of visual words are studied by [143] and

Spatial Keyton Histogram is introduced. Another important direction is to do feature selection

within the higher order features that encode spatial relationships of a learned bag of words

model. The exhaustive nature of higher order features need to be handled to avoid exponential

growth of the cardinality of the learned features. Towards this end the work of [77] proposed to

use feature selection framework on the learned visual words and then thehigher order features

are learned using only the selected ones. The feature pool is updated using the added higher

order features and the process continues. This approach is not only handling co-occurrence of

pairs of visual words but also it handles the case of co-occurrence of tuples of size N visual
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words and, in same time, it does not need to generate all the higher order tuples before feature

selection.

All the mentioned approaches start with a visual word dictionary that is learned on the

descriptors space, the next step is to do the pairing between the learned visual words. However,

a recent approach [90] build a dictionary on the concatenated paired descriptors of locally close

features and thus they can learn a Local Pairwise Codebook (LPC).

2.2.2 Part Based Models

Pairwise distances and relative locations between parts have also been used to encode the spatial

structure, e.g. [1]. Felzenszwalb and Huttenlochers Pictorial structure[38] uses spring like

constraints between pairs of parts to encode the global object structure.However, [38] restricts

the connections to a tree, which makes learning and inference more tractable.

Sacrificing the ease of inference on pictorial structures comes the fully connected con-

stellation model, where the assignment of features to parts becomes intractablefor moderate

numbers of parts P. The trade-off between the number of features and the number of parts is

crucial in the constellation model and would prevent from having many features in images. The

constellation model by [17, 135, 40] consists of a number of parts whose relative positions are

encoded to constrains the part locations given a central coordinate system and pairwise covari-

ances. Fig: 2.1 shows the constellation model and pictorial structure (Tree) for five parts model.

Figure 2.1: Different part models. Left:Constellation model. Right:Pictorial Structure(Tree).
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2.3 Manifold Learning for Object Recognition

Manifold learning is a very powerful tool for data analysis. The questionto be answered via

manifold learning techniques is how to reveal a low-dimensional structure in ahigh dimensional

data. There are two kinds of low-dimensional structures can be found in the data namely linear

and nonlinear structures. As can be seen in fig 2.2 the linear structure means the data lies

on a low-dimensional subspace. Where the nonlinear structure means the data lies on a low-

dimensional manifold. The low-dimensional representation is intended to maintain pairwise

relationships between data points. In other words ,nearby points remain nearby and distant

points remain distant. The problem of dimensionality reduction can be defined as givenM,
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Figure 2.2: Left: Linear structure where the data lies on a low dimensional subspace.Right:
Non-Linear structure where the data lies on a low dimensional manifold.

pointsx1, x2, . . . , xM ∈ ℜD, these points need to be embedded intoy1, y2, . . . , yM ∈ ℜd,

whered << D. Under certain geometric constraints that preserves the topology of the data.

2.3.1 Linear Methods

The linear methods are suitable when the input data lie on a low-dimensional subspace. The

outputs returned by these methods are related to the input patterns by a simple linear transfor-

mation. Example methods are principal component analysis (PCA) [57] and multi dimensional

scaling (MDS) [30]. For example, the objective in PCA is to obtain a low-dimensional rep-

resentation while maximizing the variance. This is achieved by finding a set of orthonormal

bases{ej}dj=1, which are the topd eigenvectors of the covariance matrixC = 1
M

∑

i xix
T
i .

The resulting embeddingyij = xiej .

On the other hand the MDS tries to preserve the inner product between the input points.
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This can be achieved by finding the spectral decomposition of the gram matrixG = XTX

Where X isM ×D matrix for all the input points. Finding the topd eigenvectors of this Gram

matrix M × M by {vj}dj=1 and their corresponding eigenvalues by{λj}dj=1 , the resulting

embedding of MDS are given byyij =
√

λjvji.

2.3.2 Nonlinear Methods

The nonlinear methods, also called graph based methods, are suitable whenthe input data lie

on a low-dimensional manifold. Linear methods tend to fail and the points will be projected on

each other. The nonlinear methods start with graph construction step, where the graph approxi-

mates the geodesics between the data points. The graph nodes are the data points and the edges

are the pairwise weights that are based on neighborhood structure. Spectral decomposition is

then performed on the graph and the lower dimensional representations ofthe data points can

be computed directly from the corresponding eigenvectors. Since we aremore interested in

nonlinear methods we summarize two of the widely used methods namely Laplacian Eigen-

Maps [93] and Isometric feature mapping (ISOMAP) [119]. Other methodsincludes local

linear embedding (LLE) [103], Maximum variance unfolding (MVU) [136], etc.

ISOMAP embedding is a clear example where the goal is to to preserve geodesic distances

as measured along manifold. Fig 2.3 shows that the geodesic distance on the manifold is not

equivalent to the Euclidean distance for same points and that is why linear methods like MDS

would fail to unfold the underlying manifold.
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Figure 2.3: Geodesic distance on the manifold between the points A and B is notequivalent to
the Euclidean distance.

In ISOMAP, the first step is to build adjacency graph based on k nearestneighbors. The

second step is to compute the pairwise distances between all nodes along shortest paths through

the graph. This can be done using Djikstras algorithm. the third step is to apply MDS on the
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distance matrix∆ and finally produce thed significant eigenvectors of the Gram matrix.

Of particular interest to this dissertation is the Laplacian eigenmaps, where a weighted

adjacency matrix (graph) on the original features is defined asWij = exp−‖xi−xj‖
2/2σ2

. The

following objective function need to be minimized

Φ(Y ) =
∑

i,j

‖yi − yj‖2Wij , (2.1)

Therefore, the minimization problem reduces to finding

Y∗ = arg min
YTDY=I

tr(YTLY), (2.2)

whereL is the Laplacian of the matrixW, i.e., L = D − W, D is the diagonal matrix

defined asDii =
∑

j Wij . As mentioned in [93], the constraintYTDY = I removes an

arbitrary scaling factor in the embedding. The solution is provided by the matrixof eigenvectors

corresponding to the lowest eigenvalues of the generalized eigenvalue problemLy = λDy.

The embeddedM points are stacked in thed vectors.

It was shown in [93] that the laplacian eigen embedding based on NearestNeighbor graphs

preserves local optimality criterion. The local optimality criterion is the key for unfolding the

manifolds in high dimensional spaces to be presented in lower dimensional spaces.

2.3.3 Unified View of Dimensionality Reduction Methods

The dimensionality reduction methods that we mentioned in the above subsectionscan be

viewed as instances for a unified dimensionality reduction framework. One of the important

studies to relate different methods into a common framework is the study by Ham et al. [54]

where a kernel interpretation of KPCA, ISOMAP, LLE, and Laplacian Eigenmap was proposed

and it was shown that these methods share a common KPCA formulation with different kernel

matrices. The construction of a kernel matrix is equivalent to mapping the datato points in a

Hilbert space so that the resulting kernel is positive definite.

Also in [10] a common formulation for the MDS, ISOMAP, LLE, spectral clustering, and

Laplacian Eigenmap was proposed with an out-of-sample extension. It wasshown that a com-

mon algorithm can be used to build a unified framework in which these algorithms are seen as

learning eigenfunctions of a kernel.
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Another study [142] is more general as it supports both supervised andunsupervised meth-

ods in dimensionality reduction in a common framework which is called graph embedding

framework. LLE, laplacian eigenmaps,ISOMAP, PCA, KPCA, LDA,LPP areconsidered as

instances of the graph embedding framework.

2.3.4 Large Sale Dimensionality Reduction

The work in [117] examined the problem of extracting a low-dimensional manifold structure

given very large sized data points (millions) of high dimensional data. The computational chal-

lenges of nonlinear dimensionality reduction via ISOMAP and Laplacian Eigenmaps, using a

graph containing millions of points make the problem intractable. The study proposed two ap-

proximate spectral decomposition techniques for large dense matrices (Nystrom and Column-

sampling), providing a theoretical and empirical comparison between these techniques. The

large scale method for dimensionality reduction was examined on Laplacian eigenmaps and

ISOMAP and successfully applied on datasets of sizes up to 65 millions face images for clas-

sification and clustering tasks.

2.3.5 Applications for Manifold Learning in Object recogniti on

In computer vision problems the problem of dimensionality reduction should be addressed

properly. Usually the data (images) comes in high dimensional vector form. But, suppose

there is an underlying lower dimensional structure in the data that controls therelation between

images of similar objects from the same viewpoint, or images of same object from different

viewpoints or illumination conditions. Manifold learning methods will reveal the underly-

ing manifolds which can lead to better inference and recognition. Here comesthe seminal

work of Murase and Nayar [91] where it was shown how linear dimensionality reduction using

PCA [57] can be used to establish a representation of an object’s view andillumination mani-

folds. Using such representation, recognition of a query instance can be achieved by searching

for the closest manifold. Such subspace analysis has been extended to decompose multiple

orthogonal factors using bilinear models [120] and multi-linear tensor analysis [129]. A way

to handle the nonrigid objects is to use landmarks as done in Active Shape Models and Active

Appearance Models [28, 27]. The deformation are modeled through linear models of certain
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landmarks through a correspondence frame. Thus the ordered sets oflandmarks acts as vector-

ized representation of the images.

The introduction of nonlinear dimensionality reduction techniques such as Local Linear

Embedding (LLE) [103], Isometric Feature Mapping (Isomap) [119], and others [119, 103, 8,

16, 65, 136, 88], made it possible to represent complex manifolds in low-dimensional embed-

ding spaces in ways that preserve the manifold topology. Along the same direction manifold

learning approaches have been used successfully in many problems such as human body pose

estimation and tracking [36, 37, 128, 67].
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Chapter 3

Feature-Spatial Embedding Framework

In this chapter we propose a framework to embed bunch of local featuresthat are extracted from

different images. The challenge is to encode different sources of similarities among the local

features. Within an image, the spatial proximities between the local features plays an important

role for describing the shape of an object. In different images, the appearance similarity plays

more important role in recognition tasks. Fusing both similarities helps in defining anew

representation of the local features that takes into consideration the spatial arrangements of

local features within an image and maintains the appearance similarity of local features within

different images.

3.1 Problem Statement

We are givenK images, each is represented with a set of feature points. Let us denote such sets

by, X1, X2, · · ·XK whereXk =
{

(xk1, f
k
1 ), · · · , (xkNk

, fkNk
)
}

. Each feature point(xki , f
k
i )

is defined by its spatial location,xki ∈ R
2, in its image plane and its appearance descriptor

fki ∈ R
D, whereD is the dimensionality of the feature descriptor space1. For example, the

feature descriptor can be a SIFT [79], GB [11], etc. Notice that the number of features in each

image might be different. We useNk to denote the number of feature points in thek-th image.

LetN be the total number of points in all sets, i.e.,N =
∑K

k=1Nk.

We are looking for an embedding for all the feature points into a common embedding

space. Letyki ∈ R
d denotes the embedding coordinate of point(xki , f

k
i ), whered is the di-

mensionality of the embedding space,i.e., we are seeking a set of embedded point coordinates

1Throughout this chapter, we will use superscripts to indicate an image andsubscripts to indicate point index
within that image,i.e., xk

i denotes the location of featurei in thek-th image.
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Y k =
{

yk1 , · · · , ykNk

}

for each input feature setXk. The embedding should satisfy the follow-

ing two constraints

• The feature points from different point sets with high feature similarity should become

close to each other in the resulting embedding as long as they do not violate the spatial

structure.

• The spatial structure of each point set should be preserved in the embedding space.

To achieve a model that preserves these two constraints we use two data kernels based on

the affinities in the spatial and descriptor domains separately. The spatial affinity (structure) is

computed within each image and is represented by a weight matrixSk whereSk
ij = Ks(x

k
i , x

k
j )

andKs(·, ·) is a spatial kernel local to thek-th image that measures the spatial proximity. Notice

that we only measure intra-image spatial affinity, no geometric similarity is measured across

images. The feature affinity between imagep andq is represented by the weight matrixUpq

whereUpq
ij = Kf (f

p
i , f

q
j ) andKf (·, ·) is a feature kernel that measures the similarity in the

descriptor domain between thei-th feature in imagep and thej-th feature in imageq. Here

we describe the framework given any spatial and feature weights in general and later in this

chpater we will give specific examples on some kernels we can use.

Let us jump ahead and assume an embedding can be achieved satisfying the aforementioned

spatial structure and the feature similarity constraints. Such an embedding space represents

a new Euclidean “Feature” space that encodes both the features’ appearance and the spatial

structure information. Given such an embedding, the similarity between two setsof features

from two images can be computed within that Euclidean space with any suitable set similarity

kernel. Moreover, diffent object recognition tasks can be performedlike object classification,

regression and category discovery, etc... .

3.2 Objective Function

Given the above stated goals, we reach the following objective function onthe embedded points

Y , which need to be minimized

Φ(Y ) =
∑

k

∑

i,j

‖yki − ykj ‖2Sk
ij +

∑

p,q

∑

i,j

‖ypi − yqj‖2U
pq
ij , (3.1)
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wherek, p andq = 1, · · · ,K, p 6= q, and‖ · ‖ is the L2 Norm. The objective function is

intuitive; the first term preserves the spatial arrangement within each set,since it tries to keep

the embedding coordinatesyki andykj of any two pointsxki andxkj in a given point set close to

each other based on their spatial kernel weightSk
ij . The second term of the objective function

tries to bring close the embedded pointsypi andyqj if their feature similarity kernelUpq
ij is high.

This objective function can be rewritten using one set of weights defined on the whole set

of input points as:

Φ(Y ) =
∑

p,q

∑

i,j

‖ypi − yqj‖2A
pq
ij , (3.2)

where the matrixA is defined as

A
pq
ij =







Sk
ij p = q = k

U
pq
ij p 6= q

(3.3)

whereApq is thepq block ofA.

The matrixA is anN × N weight matrix withK × K blocks where thepq block is of

sizeNp × Nq. Thek-th diagonal block is the spatial structure kernelSk for thek-th set. The

off-diagonalpq block is the descriptor similarity kernelsUpq. The matrixA is symmetric by

definition since diagonal blocks are symmetric and sinceUpq = UqpT . The matrixA can be

interpreted as a weight matrix between points on a large point set where all the input points

are involved in this point set. Points from a given image are linked be weights representing

their spatial structureSk; while nodes across different data sets are linked by suitable weights

representing their feature similarity kernelUpq. Notice that the size of the matrixA is linear

in the number of input points.

We can see that the objective function Eq. 3.2 reduces to the problem of Laplacian em-

bedding [8] of the point set defined by the weight matrixA. Therefore the objective function

reduces to

Y∗ = arg min
YTDY=I

tr(YTLY), (3.4)

whereL is the Laplacian of the matrixA, i.e.,L = D − A, whereD is the diagonal matrix

defined asDii =
∑

j Aij . TheN × d matrix Y is the stacking of the desired embedding

coordinates such that,
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Y =
[

y11, . . . , y
1
N1
, y21, . . . , y

2
N2
, . . . yK1 , . . . , y

K
NK

]T

The constraintYTDY = I removes the arbitrary scaling and avoids degenerate solu-

tions [8]. Minimizing this objective function is a straight forward generalizedeigenvector

problem:Ly = λDy. The optimal solution can be obtained by the bottomd nonzero eigen-

vectors. The requiredN embedding pointsY are stacked in thed vectors in such a way that

the embedding of the points of the first point set will be the firstN1 rows followed by theN2

points of the second point set, and so on.

3.3 Intra-Image Spatial Structure

The spatial structure weight matrixSk should reflect the spatial arrangement of the features in

each imagek. In general, it is desired that the spatial weight kernel be invariant to geometric

transformations. However, this is not always achievable.

One obvious choice is a kernel based on the Euclidean distances betweenfeatures in the

image space, which would be invariant to translation and rotation.

Instead we also can use an affine invariant kernel based on subspace invariance [134]. Given

a set of feature points from an image at locations{xi ∈ R
2, i = 1, · · · , N}, we can construct a

configuration matrix

X = [x1x2 · · ·xN ] ∈ R
N×3

wherexi is the homogeneous coordinate of pointxi. The range space of such configuration ma-

trix is invariant under affine transformation. It was shown in [134] that an affine representation

can be achieved by QR decomposition of the projection matrix ofX, i.e.

QR = X(XTX)−1XT

The first three columns ofQ, denoted byQ′, gives an affine invariant representation of the

points. We use a Gaussian kernel based on the Euclidean distance in this affine invariant space,

i.e.,

Ks(xi, xj) = e−‖qi−qj‖
2/2σ2
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whereqi, qj are thei-th andj-th rows ofQ′ and thus the produced kernel is affine invariant

with regard to the pointset.

3.4 Inter-Image Feature Affinity

The feature weight matrixUpq should reflect the feature-to-feature similarity in the descriptor

space between thep-th andq-th sets. An obvious choice is the widely used affinity based on a

Gaussian kernel on the squared Euclidean distance in the feature space, i.e.,

G
pq
ij = e−‖f

p
i −fq

j ‖2
/2σ2

given a scaleσ.

Another possible choice, which we used in chapter 7 and [122] is a soft correspondence

kernel that enforces the exclusion principle based on the Scott and Longuet-Higgins algo-

rithm [109].

Given the feature affinityG between features in setsp andq, we need to solve for a permu-

tation matrixC that permutes the rows ofG in order to maximize its trace, i.e.,

ψ(C) = tr(CTG)

The permutation matrix constraint can be relaxed into an orthonormal matrix constraint on the

matrixC. Therefore, the goal is to find an optimal orthonormal matrixC∗ such that

C∗ = arg max
s.t.CTC=I

tr(CTG) (3.5)

It was shown in [109] that the optimal solution for 3.5 is

C∗ = UEVT

where the SVD decomposition ofG = UΣVT andE is obtained by replacing the singular

values on the diagonal ofΣ by ones. The orthonormal matrixC∗ are used as the feature weights

Upq = UqpT after setting the negative values to 0.

3.5 Solving the out-of-sample problem

Given the feature embedding space learned from a collection of training images and given a new

image represented with a set of featuresXν = {(xνi , fνi )}, it is desired to find the coordinates
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of these new feature points in the embedding space. This is an out-of-sampleproblem, however

it is quite challenging. Most of out-of-sample solutions [10] depends on learning a nonlinear

mapping function between the input space and the embedding space. This is not applicable here

since the input is not a vector space, rather a collection of points. Moreover, the embedding

coordinate of a given feature depends on all the features in the new image(because of the spatial

kernel). The solution we introduce here is inspired by the formulation in [140]2. For clarity, we

show how to solve for the coordinates of the new features of a single new image. The solution

can be extended to embed any number of new images in batches in a straightforward way.

We can measure the feature affinity in the descriptor space between the features of the new

image and the training data descriptors using the feature affinity kernel defined in Sec 3.1. The

feature affinity between imagep and the new image is represented by the weight matrixUν,p

whereUν,p
ij = Kf (f

ν
i , f

p
j ). Similarly, the spatial affinity (structure) within the new image can

be encoded with the spatial affinity kernel. The spatial affinity (structure)of the new image’s

features is represented by a weight matrixSν whereSν
ij = Ks(x

ν
i , x

ν
j ). Notice that, con-

sistently, we do not measure any inter geometric similarity between images, we onlyencode

intra-geometric constraints within each image.

We have a new embedding problem in hand. Given the setsX1, X2, · · ·XK , Xν where the

firstK sets are the training data andXν is the new set, we need to find embedding coordinates

for all the features in all the sets, i.e., we need find{yki } ∪ {yνj }, i = 1, · · · , Nk andk =

1, · · · ,K, j = 1, · · · , Nν using the same objective function in Eq 3.13. However, we need to

preserve the coordinates of the already embedded points.Let ŷki be the original embedding

coordinates of the training data. We now have a new constraint that we need to satisfy

yki = ŷki , for i = 1, · · · , Nk, k = 1, · · · ,K

.

Following the same derivation in Sec 3.1, and adding the new constraint, we reach the

following optimization problem inY

2We are not using the approach in [140] for coordinate propagation, weare only using a similar optimization
formulation.

3In this case the sets indicesk, p, andq = 1, · · ·K + 1, to include the new set
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min tr(YTLY)

s.t. yki = ŷki , i = 1, · · · , Nk, k = 1, · · · ,K
(3.6)

where

Y =
[

y11, . . . , y
1
N1
, . . . yK1 , . . . , y

K
NK

, yν1 , . . . , y
ν
Nν

]T

whereL is the laplacian of the(N +Nν)× (N +Nν) matrixA is defined as

A =





Aτ UνT

Uν Sν



 (3.7)

whereAτ is defined in Eq 3.3 andUν = [Uν,1 · · ·Uν,K ] Notice that the constrainYTDY =

I, which was used in Eq 3.4 is not needed anymore since the equality constraints avoid the

degenerate solution.

Unlike the problem in Eq 3.4, which is quadratic programming with quadratic constraints

that can be solved by as an eigenvalue problem, the problem in Eq 3.6 is a quadratic program-

ming with linear equality constraints. It was shown in [140] that this problem can be divided

into d subproblems (one in each embedding dimension), each of which is a QP withN + Nν

variables,N of which are known.

LetL be the Laplacian of the matrixA =





Aτ UνT

Uν Sν



, which can be rewritten as

L =





Lτ LντT

Lντ Lν



 (3.8)

Whereτ denotes the training data. The objective function 3.6 can be written as

min tr([YτYν ]T





Lτ LντT

Lντ Lν



[YτYν ])

s.t. yτi = ŷτi , i = 1, · · · , N τ

(3.9)

The objective function 3.9 can be expanded as

φ(Y) = min tr(Yτ TLτYτ +Yτ TLτνYν +YνTLντYτ +YνTLνYν) (3.10)

The first term is constant sinceyτi = ŷτi , i = 1, · · · , N τ . Afterwards we can differentiateφ(Y)

w.r.tYν and equate the derivative∂φ(Y)
∂Yν to zero, then we have

2× LνYν = −(Lντ + LτνT )Yτ (3.11)
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SinceLντ = LτνT and given the definition of laplacianL of A = D − A this implies that

Lντ = −Uν . This will result in

LνYν = Uν)Yτ (3.12)

and hence

Yν = (Lν)−1UνYτ (3.13)

3.5.1 Populating the Embedding Space

The out-of-sample framework is essential not only to be able to embed features from a new

image for classification purpose, but also to be able to embed large number ofimages with large

number of features. The feature embedding objective function in Sec 3.2 solves an Eigenvalue

problem on a matrix of sizeN × N whereN is the total number of features in all training

data. Therefore, there is a computational limitations on the number of training images and the

number of features per image that can be used. Given a large training data, we use a two a step

procedure to establish a comprehensive feature embedding space:

1. Initial Embedding: Given a small subset of training data with a small number of features

per image, solve for an initial embedding using Eq 3.4.

2. Populate Embedding: Embed the whole training data with a larger number of features

per image, one image at a time by solving the out-of-sample problem in Eq 3.6
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Chapter 4

Image Embedding from Local Features

The question that we address in this chapter is how can we learn image manifoldsfrom collec-

tions of local features from different images in a smooth way that capturesthe feature similarity

and spatial arrangement variability between images. We benefit from the feature-spatial em-

bedding framework introduced in chapter 3 to build a representation that preserves both the

local appearance similarity as well as the spatial structure of the features.We further embedded

features from a new image by using the solution we introduced in chapter 3 for the out-of-

sample. By solving these two embedding problems and defining a proper similaritymeasure in

the feature embedding space, we can reach an image manifold embedding space.

4.1 From Feature Embedding to Image Manifold Embedding

The embedding achieved in chapter 3 is an embedding of the features whereeach image is

represented by a set of coordinates in that space. This Euclidean space can be the basis to study

image manifolds. All we need is a measure of similarity between two images in that space.

There are a variety of similarity measures that can be used. For robustness, we chose to use a

percentile-based Hausdorff distance to measure the distance between twosets of features from

two images, define as

H(Xp, Xq) = max{ l%
max

j
min
i

‖ypi − yqj‖,
l%
max

i
min
j

‖ypi − yqj‖} (4.1)

wherel is the percentile used. In all the experiments we set the percentile to50%, i.e., the

median. Since this distance is measured in the feature embedding space, it reflects both feature

similarity and shape similarity.

Once a distance measure between images is defined, any manifold embedding techniques,
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such as MDS [30], LLE [103], Laplacian Eigenmaps [8], etc., can be used to achieve an em-

bedding of the image manifold where each image is represented as a point in that space. We

call this space “Image-Embedding” space and denote its dimensionality bydI to disambiguate

it from the “Feature-Embedding” space with dimensionalityd.

Although the percentile-based Hausdorff measure is more robust than theoriginal Haus-

dorff kernel, the resultingH is not a positive definite distance matrix, i.e., theH does have

negative eigenvalues, hence the images cannot be assumed to lie in a metric space.

(a)H,l=1 (b)H,l=.5 (c)H+

Figure 4.1: Different dissimilarity matrices. TheH, l = 1 distance matrix is far from giving
any meaningful clusters in the matrix. For bothH+ andH, l = .5 the clusters can be seen on
the diagonal (every 9 rows are in the same cluster). However the blocks are more strong on the
H+ distance matrix.

We useH to compute a positive definite versionH+ that uses the eigenvectors correspond-

ing to the positive eigenvalues. We can obtain an Euclidean distance matrix thatrepresents the

percentile-based Hausdorff measure of similarity and hence the images arepresented in a met-

ric space which describes the similarity between images in a more sensible way. This way that

we follow is called spectrum transformation for a non-metric proximity matrix. Thespectrum

transformation on the dissimilarity matrixH works as denoising step [139].

Figure 4.1 shows three dissimilarity matrices. The original Hausdorff distance matrix, i.e.

l = 1, which is a metric distance, the median Hausdorff kernel, i.e.l = .5 and the positive

definite version of the median Hausdorff matrix. The third matrix is used to obtainthe image

embedding in figure 4.4.
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4.2 Image Manifold Examples

4.2.1 Visualizing View Manifold

COIL data set [91] has been widely used in holistic recognition approaches where images are

represented by vectors [91]. This is a relatively easy data set where object view manifold can

be embedded using PCA using the whole image as a vector representation [91]. It has also been

used extensively in manifold learning literature, using whole image as a vectorrepresentation.

We use this data to validate that our approach can really achieve an embedding that is topolog-

ically correct using local features and the proposed framework. Fig 4.2shows two examples of

the resulting view manifold embedding. In this example we used 36 images with 60 GBfea-

tures per image. The figure clearly shows an embedding of a closed one dimensional manifold

in a two-dimensional embedding space. To the best of our knowledge, there is no previously

reported results that successfully embed this kind of manifolds using local features.

4.2.2 Shape Classes

We used the “Shape” dataset [114]. The Shape dataset contains 10 classes (cup, fork, hammer,

knife, mug, pan, pliers, pot, sauce pan and scissors), with a total of 724images. The dataset

exhibits large within-class variation and moreover there are similarity between classes, e.g.

mugs and cups; saucepans and pots. We used 60 images (6 samples per class chosen randomly)

to learn the initial feature embedding of dimensionality 60. Each image is represented using

60 GB feature descriptor. To achieve the image embedding we used MDS on the Hausdorff

measure. Fig. 4.3 shows the resulting image embedding using the first two dimensions. We

can easily notice how different objects are clustered in the space. Thereare many interesting

structures we can notice in the embedding, e.g. mugs and cups are close to each other.

4.2.3 TUD/ETHZ Objects

We use the same dataset that has been used in [60], it has three categories {Motorbikes, Gi-

raffes, Car-side view} with different sizes 115, 87 and 100 respectively. This dataset is very

challenging due to the heavy clutter in the scenes and the multi-instances natureof some images



30

Figure 4.2: Examples of view manifolds learned from local features
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Figure 4.3: Manifold Embedding for 60 samples from Shape dataset using 60 GB local features
per image

in the Motorbikes and Giraffes classes. We select 27 random samples (9 samples per class) to

form an initial feature embedding.

4.2.4 Caltech Subsets

We used different subsets of Caltech-101: Caltech-4-I (faces, airplanes, motorbikes, leopard) as

used in [112, 131, 51], Caltech-4-II (faces, airplanes, motorbikes,cars-rear) as used in [41, 56]

and Caltech-6 (faces, airplanes, motorbikes, cars-rear, ketch, watches) as used in [41, 56]. In

all cases we used 60 geometric blur features per image. We used 12 images per class to achieve

the initial feature embedding of dimensionality 60. The whole data set is then embedded using

out-of-sample. To visualize the obtained manifold, we show in Fig. 4.5 the embedded image

manifold (first two dimensions) obtained after the initial feature embedding (12images per

class, 60 features per image) for Caltech-4-I. As can be noticed, all images contain significant

amount of clutter, yet the embedding clearly reflects the perceptual similarity between images

as we might expect. This obviously cannot be achieved using holistic image vectorization,
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Figure 4.4: Embedding 9 samples from three classes Motorbikes and Car-Side view(TUD) and
Giraffes(ETHZ) based on the common feature embedding framework. Theclustering is very
clear, only one sample is mis-clustered in this example

as can be seen in Fig. 4.5-bottom, where the embedding is dominated by similarity in image

intensity. To the best of our knowledge, this cannot be achieved with any existing similarity

measure on local features. Using the whole data set we can achieve a morecomprehensive

embedding of all images. This is shown in Fig. 4.6 for both Caltech-4-II (2559images) and

Caltech-6 subsets (2912 images). In these example we used MDS to achievethe embedding

using the Hausdorff measure (Eq 4.1) in the embedded feature space. The figure shows the

embedding in the first two dimensions where each image is represented by a point. In both

cases, we can notice that the classes are well clustered in the space, even though we are only

showing only two dimensional embedding.



33

Figure 4.5: Example Embedding result of samples from four classes of Caltech-101. Top:
Embedding using our framework using 60 Geometric Blur local features perimage. The em-
bedding reflects the perceptual similarity between the images. Bottom: Embeddingbased on
Euclidean image distance (no local features, image as a vector representation). Notice that Eu-
clidean image distance based embedding is dominated by image intensity, i.e., darker images
are clustered together and brighter images are clustered.
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Figure 4.6: Manifold Embedding for all images in Caltech-4-II, Caltech-6. Only first two
dimensions are shown.
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Chapter 5

Applications: Object Recognition

In chapters 3, 4 we propose a novel representation to learn a common embedding for local

features from different object categories. The learned representation takes into account the

feature similarities across different image instances and the feature spatialarrangement within

each image instance. Such a representation can be used in recognition problems. In this chapter

we show different applications including object classification, localization and unsupervised

category discovery. We show that we outperform state-of-the-art methods in different object

recognition tasks.

5.1 Introduction

In the previous chapters we proposed four components will enable us to solve important prob-

lems in object recognition. The four components are a feature embedding space, an image

similarity measure induced by this space, an out-of-sample solution, and an image manifold

embedding space. In this chapter we show several results obtained for recognition problems

including object classification, object localization and unsupervised category discovery. We

show comparisons to state-of-art-methods with clear improvements.

5.2 Results: Object Classification

In all experiments we used the Geometric Blur features (GB) [11]. It was shown in [114] that

adding spatial information, geometric features, such as GB, outperform other features. This

has been also confirmed with our experiments. In all experiments we set the dimensionality of

the feature embedding space to be equal to the minimum number of features perimage used in

the initial embedding. In all experiments with SVM, a linear kernel was used.
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training/test splits
Classifier 1/5 1/3 1/2 2/3
Feature embedding - SVM 74.25 80.29 82.85 87.02
Image Manifold - SVM 80.85 84.96 88.37 91.27
Feature embedding - 1-NN 70.90 74.13 77.49 79.63
Image Manifold - 1-NN 71.93 75.29 78.26 79.34

Table 5.1: Shape dataset: Average accuracy for different classifiersetting based on the proposed
representation

5.2.1 Shape Dataset

The Shape dataset contains 10 classes (cup, fork, hammer, knife, mug, pan, pliers, pot, sauce

pan and scissors), with a total of 724 images. The dataset exhibits large within-class variation

and moreover there are similarity between classes, e.g. mugs and cups; saucepans and pots. We

used 60 images (6 samples per class chosen randomly) to learn the initial feature embedding

of dimensionality 60. Each image is represented using 60 GB feature descriptor. The initial

feature embedding is then expanded using out-of-sample to include all the training images with

120 features per images. To evaluate the recognition accuracy using the proposed approach,

we used different training/testing random splits with 1/5, 1/3, 1/2, 2/3 for training. We used

10 times cross validation and we report the average accuracy. We evaluated four different

classifiers based on the proposed representation: 1) Feature-embedding with SVM, 2) Image

embedding with SVM, 3) Feature embedding with 1-NN classifier, 4) Image-embedding with 1-

NN classifier. Table 5.1 shows the results for the four different classifier settings. We can clearly

notice that a manifold-based classifier enhances the results over a feature-based classifier

In [114] the Shape dataset was used to compare the effect of modeling feature geometry

by dividing the object’s bounding box to 9 grid cells (localized bag of words) in comparison to

geometry-free bag of words. Results were reported using SIFT [79],GB [11], and KAS [42]

features. Table 5.2 shows the reported accuracy in [114] for comparison. All reported results

are based on 2:1 ratio for training/testing split. Unlike [114] where boundingboxes are used

both in training and testing, we do not use any bounding box information sinceour approach

does not assume a bounding box for the object to encode the geometry andyet get better result.
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Accuracy %
Feature used SIFT GB KAS
Our approach - 91.27 -
bag of words (reported by [114]) 75 69 65
Localized bag of words ([114]) 88 86 85

Table 5.2: Shape dataset: Comparison with reported results

5.2.2 Caltech 101

The recognition accuracy of the proposed approach was evaluated using subsets of the Caltech-

101 dataset [75]. To make it easier to compare to reported results, we used three different

subsets of Caltech-101 that are typically used for evaluation: Caltech-4-I (faces, airplanes,

motorbikes, leopard) as used in [112, 131, 51], Caltech-4-II (faces, airplanes, motorbikes, cars-

rear) as used in [41, 56], Caltech-6 (faces, airplanes, motorbikes, cars-rear, ketch, watches)

as used in [41, 56]. In all cases we used 60 geometric blur features perimage. We used 12

images per class to achieve the initial feature embedding of dimensionality 60. The whole data

set is then embedded using out-of-sample. The image manifold embedding is thenconstructed

using a Hausdorff measure (Eq. 4.1). Table 5.3 shows the recognition accuracy using different

number of training data and three different classifiers: FE-SVM: Feature embedding space

SVM classifier, IE-SVM: Image manifold embedding SVM classifier, and FE-1-NN: Feature

embedding space first nearest neighbor classifier. In all cases, the images are used without any

bounding box knowledge.

As can be consistently noticed, even a simple 1-NN classifier based on the proposed feature

representation gives a superior result. It is also noticeable that we achieve very good results with

as little as 5 training samples per class. As can be predicted, the image manifold embedding did

nor perform better than just using the feature embedding at smaller training sets (< 30). This

is expected since a large number of images are needed to construct a useful manifold. It can

be noticed also that the improvement gained by embedding the image manifold in this case is

less than what was achieved with the “Shape” dataset (Table 5.1). This is also expected since,

unlike “Shape” dataset, Caltech101 dataset contains lots of clutter besidesthe objects.
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# training images
size 5 10 30 50 100

Classifier: FE-SVM
Caltech-4-I 2233 92.93 95.53 97.54 97.83 98.69
Caltech-4-II 2559 95.92 96.74 98.35 98.57 98.84
Caltech-6 2912 88.16 94.45 96.67 97.14 98.08
Classifier: IE-SVM
Caltech-4-I 2233 87.46 94.98 97.65 98.14 98.73
Caltech-4-II 2559 86.01 96.73 98.35 98.69 98.84
Caltech-6 2912 82.63 93.77 96.99 97.73 98.42
Classifier: FE-1-NN
Caltech-4-I 2233 91.57 94.39 96.41 97.22 98.11
Caltech-4-II 2559 95.25 96.03 97.38 98.01 98.45
Caltech-6 2912 89.097 92.60 94.83 95.65 96.99

Table 5.3: Caltech-101 dataset: Average accuracy with different training sizes. FE-SVM: Fea-
ture embedding space SVM classifier, IE-SVM: Image manifold embedding SVM classifier,
and FE-1-NN: Feature embedding space first nearest neighbor classifier.

5.3 Results: Object Localization

The goal of this experiment is to evaluate the robustness of the proposed approach to clutter

in the context of object localization. Many approaches that encode feature geometry are based

on a bounding box, e.g. [114, 50]. Our approach does not require such constraint and is robust

to the existence of heavy visual clutter. Therefore, it can be use in localization as well as

recognition.

We used Caltech-4-I data (as defined above) for evaluation. In this case we learned the

feature embedding from all the four classes, using only 12 images per class. For evaluation

we used 120 features in each query image and embed them by out-of-sample. The object is

localized by finding the top 20% features closer to the training data (by computing feature

distances in the feature embedding space.) Table 5.4 shows the results in termsof the True

Positive Ratio (TPR): the percentage of localized features inside the bounding box, and False

Positive Ratio (FPR), Bounding Box Hit Ratio (BBHR), the percentage of images with more

than 5 features localized (a metric defined in [60]), and Bounding Box MissRatio (BBMR).
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Class TPR FPR BBHR BBMR
Airplanes 98.08% 1.92% 100% 0/800
Faces 68.43% 31.57% 96.32% 16/435
Leopards 76.81% 23.19% 98% 4/200
Motorbikes 99.63% 0.37% 100% 0/798

Table 5.4: Object localization results - Caltech101-4

CategoriesOur ApproachH+ Our ApproachHBaseline [60] [68] [51]Baseline [68]

Caltech-4 99.54±0.31 98.83 96.43 98.5598.03 86 87.37
Caltech-5 98.59±0.47 94.32 96.28 97.3096.92NA 83.78
Caltech-6 97.48±0.57 93.57 94.03 95.4296.15NA 83.53

Table 5.5: Caltech-4,5 and 6: Average clustering accuracy, best results are shown in bold.

5.4 Results: Unsupervised Object Categorization

5.4.1 Equal Cardinality -Caltech

In this experiment we follow the setup by [51, 60, 68] on the same benchmarksubsets of

Caltech-101 dataset. Namely we use the{Airplane, Cars-rear, Faces, Motorbikes} for Caltech-

4. We add the class{Watches} for Caltech-5 and the class{Ketches} for Caltech-6. In all

experiments we used GB features [11]. The input of our algorithm is a setof M unlabeled

images with the number of object categoriesC. The output is the classification of images

according to object category. We use the clustering accuracy as our measure to evaluate the

categorization process. We report the average accuracy over 40 runs.

We randomly select12 × C random samples to form an initial embedding that is used to

generate initially the common feature embedding of all features. We select 120features per

image for initial embedding and we out-of-sample 420 features (at the most) per image. This

results in a common feature embedding that has100C×420 features. We chose dimensionality

of the common feature embedding = 120. Table 5.5 shows comparative evaluation, the state

of the art results in [60, 68]. We also show the results by using the baselinethat uses feature

descriptor similarity to computeHdescriptor, in other words there is no spatial arrangement

proximity in thisHdescriptor. The results show that our method is doing extremely excellent

job for all the subsets Caltech-4,5 and 6. We infer from these results that the approaches that

use explicit spatially consistent matching step like [60, 68] can be outperformed by using a
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common feature embedding space that encodes the spatial proximity and appearance similarity

in same time, which is done without an explicit matching step.

An interesting part of the results is that the baseline is giving very nice results when com-

pared to the baseline reported in [68] about10% difference (last column). The baseline in [68]

is also using similarity based on the appearance only. This means adding the positive definite-

ness to theHdescriptor has a great impact on the unsupervised category discovery problem.

5.4.2 Different Cardinality -Caltech

In the previous setup, only 100 images per class were randomly chosen. However, the whole

collections of Caltech-4,5 and 6 are more challenging due to the large sub clusters problem. The

larger the class the higher the probability to find sub clusters, these sub clusters sizes are very

much comparable to the sizes of the small classes. For example the motorbikes set is having

798 images, while the ketches are just 114 images. Thus the sub clusters in themotorbikes are

very reasonable candidates for a clustering algorithm like NCUT1.

(a) Caltech-4 (b) Caltech-5 (c) Caltech-6 (d) TUD/ETHZ-3

Figure 5.1: Confusion Matrices for different setups using the whole dataat once

We use same selection for the parameters as in the previous settings to compute theinitial

embedding. For NCUT we use 8-NN for Caltech-4 , 16-NN for Caltech-5 and 24-NN for

Caltech-6. In figure 5.1 we show the confusion matrices for the three cases. We achieve

accuracy 99.80% for Caltech-4 , this means only 5 samples of the whole 2559 images are

1Normalized cut prefers balanced clustering.
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mis-clustered. For Caltech-5 we achieve 99.18% accuracy, for Caltech-6 we acheive 98.28%

accuarcy. We used theH+ to define the distance matrix of all the images.

5.4.3 Different Cardinality TUD/ETHZ

We use the same dataset that has been used in [60], it has three categories {Motorbikes, Gi-

raffes, Car-side view} with different sizes 115, 87 and 100 respectively. This dataset is very

challenging due to the heavy clutter in the scenes and the multi-instances natureof some im-

ages in the Motorbikes and Giraffes classes. We select9×C random samples to form an initial

feature embedding. We select 1602 features per image for initial embedding and we out-of-

sample 560 features (at the most) per image. We chose dimensionality of the common feature

embedding = 100.

Again our results are better than the reported results in [60]. The accuracy in this experiment

is 96.36% while in [60] the average accuracy was 95.47%, this means only 11 samples of the

302 samples were mis-clustered. For NCUT we use 8-NN weighted graph oftheH+.

2We increased the number of features per image since the image resolutionin this dataset is higher than in
Caltech subsets.
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Chapter 6

Regression From Local Features

In this chapter we propose a framework for learning a regression function form a set of local

features in an image. The regression is learned from an embedded representation that reflects

the local features and their spatial arrangement as well as enforces supervised manifold con-

straints on the data. We applied the approach for viewpoint estimation on a Multiview car

dataset, a head pose dataset and arm posture dataset. The experimentalresults show that this

approach has superior results to the state-of-the-art approaches in very challenging datasets .

6.1 Introduction

Many problems in computer vision can be formulated as regression problems where the goal

is to learn a continuous real-valued function from visual inputs. For example, viewpoint esti-

mation of an object, head pose estimation, age estimation from faces, estimating illumination

direction, articulated object joint angles, limb position, etc. In many of these applications,

the regression is learned from a vectorized representation of the input. For example, in head

pose estimation, researchers typically learn regression from vectorizedrepresentation of the

raw image intensity, e.g., [133, 6, 46, 92, 53].

In the last decade, there have been a tremendous interest in recognition from highly dis-

criminative local features such as SIFT [79], Geometric Blur [11], etc. Most research on

generic object recognition from local features have focused on recognizing object from a sin-

gle viewpoint or from limited viewpoints, e.g., frontal cars, side view cars, rear cars,etc.

Very recently, there have been some interest on object classification from multi-view set-

ting [23, 63, 106, 105, 76, 115]. There have been also some promising results on pose recovery

(3D viewpoint estimation) from local features for generic object class [106, 105, 76, 115]. The

problem of object classification from multi-view setting and pose recovery are coined together.
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Pose (viewpoint) recovery is a fundamental problem that has been long studied for rigid ob-

jects with no within class variability [45]. A very challenging task is to solve for the pose for a

generic object class, e.g. , recovering the pose of a chair instance thatwas never seen before in

training. Most of recent work on viewpoint estimation from local featuresare based on formu-

lating the problem as a classification problem [105, 106, 76, 116, 121, 115] where the viewpoint

is discretized into a few number of bins, 4, 8, or 16 and a classifier is used todecide about the

viewpoint. Obviously, the accuracy of such classifiers is limited by how coarse the viewpoint is

discretized. Such treatment does not allow for continuous estimation of the viewpoint and can

not interpolate between the learned views.

Viewpoint estimation is fundamentally a continuous regression problem, wherethe goal

is to learn a regression function from the input. Similar are other problems such as posture

estimation.The question we address in this chapter is how to learn a regression functionfrom

local features: their descriptors and their spatial arrangement.

Local features are designed to have some geometric invariant properties. For example,

SIFT [79] is view invariant. From two close viewpoints, we expect to see thesame local

features. Such local features can be useful in viewpoint estimation only ifwe consider apart

views. If our goal is to accurately recover the viewpoint, local features’ descriptors only are not

enough. It is obvious that the spatial arrangement of feature will play a more important role in

this case. Recent work have addressed this though encoding the spatialinformation through a

pyramid spatial subdivision [95], or through enforcing geometric constraints at test time [76].

Relative distances between parts have also been used [105, 105]

In this chapter we introduce an approach for learning a regression function from local fea-

tures. The approach is inspired by the feature embedding approach introduced in chapter 3

where we have shown that an embedded representation that encodes both the features’ de-

scriptor and their spatial arrangement can be achieved. In this chapter we show how such an

embedding can be used to achieve regression from local features that takes into consideration

the feature descriptor and the spatial feature arrangement. The regression is achieved by defin-

ing a proper kernel in the embedding space. We show how a supervised manifold constraints

can be enforced in the embedding. For example, for viewpoint estimation, wecan enforce that

the viewpoint to lie on a one dimensional manifold. In the resulting embedding space, image
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Figure 6.1: Regression on a single car: (Left) Absolute Error computed using our approach is
plotted with the ground truth, they are very close to each other. (Right) sampleviews of the car
with features detected on it.

similarity can be measured in a way that reflect smooth changes in the functionsto be learned,

e.g. the smooth changes in viewpoint. Therefore, we can learn a regression function from local

features that can accurately estimate viewpoint from a small number of training example and a

small number of features. The experimental results show that this approach has superior results

to the state-of-the-art approaches in very challenging datasets (e.g. in achallenging multi-view

car data set we have 67% improvement over [95]).

Figure 6.1 shows an example of our results in estimating the viewpoint of a car from lo-

cal features. In this example we used 30 instances for learning, around12◦ apart, with 200

local features, with no correspondences established. The regression function can estimate the

viewpoint with less than two degrees error.

6.2 Kernel-based Regression from Local Features:

6.2.1 Kernel Regression Framework

The training data is a set of input images, each represented with a set of features. Let us denote

the input images (sets of features) byX1, X2, · · ·XK , where each image is represented by

Xk = {(xki ∈ R
2, fki ∈ R

F )}, i = 1, · · · , Nk. Herexki denotes the feature spatial location and
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fki is the feature descriptor andF denotes the feature descriptor dimension. For example, the

feature descriptor can be a SIFT, HOG, etc. Notice that the number of features in each image

might be different. We useNk to denote the number of feature points in thek-th image. LetN

be the total number of points in all sets, i.e.,N =
∑K

k=1Nk.

Each input image is associated with a real-value,vk ∈ R, for example,vk can be the

angle representing the viewpoint, or the head pose of thek-th image. Therefore, the input is

pairs in the form(Xk, vk). For simplicity, here we show how regression can be done to real

numbers, extension to real-valued vectors is straight forward. Extension to real-valued vectors

is necessary for problems like articulated posture estimation where joint angles are estimated.

The goal is to learn a regularized mapping functiong : 2R
2×R

F → R. Notice that unlike

traditional regression, the input to such a function here is a set of features from an image with

any number of features. This function should minimize a regularized risk criteria, which can

be defined as

∑

k

‖g(Xk)− vk‖+ λΦ [g] (6.1)

where the first term measured the error in the approximation, the second term is a smoothness

function ong for regularization, andλ is a regularization parameter. From the representer

theorem [61] we know that such a regularized regression function admitsa representation in

the form of linear combination of kernels around the training data points (or asubset of them).

Therefore, we seek a regression in the form

v = ĝ(X) =
∑

j

bjK(X,Xj) (6.2)

Therefore, it is suffice to define a suitable positive definite kernelK(·, ·) that measures the

similarity between images. Once such kernel is defined we can solve the coefficientsbj by

solving a system of linear equations [100].

6.2.2 Enforcing Manifold Locality Constraint

To achieve a smooth image similarity kernel from local features, we learn an embedded rep-

resentation of the features and their spatial arrangement, as was described in chapter 3. Let
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yki ∈ R
d denotes the embedding coordinate of point(xki , f

k
i ), whered is the dimensionality of

the embedding space, i.e, we seek a set of embedded point coordinatesY k =
{

yk1 , · · · , ykNk

}

for each input feature setXk.

The embedding approach as described in chapter 3 satisfies two constrains: Inter-image

feature affinity and Intra-image spatial structure. Besides these two constraints, we need to

add a third constraint that enforces manifold locality, we denote that bySupervised Manifold

Locality Constraint. The idea is to enforce existing manifold structure in the data, features from

images neighboring each other on the manifold should be embedded close to each other. For

example, if images are labeled with viewpoints, such label can be used to define a neighborhood

for each image. Since we are using the labels to define the neighborhood, this is a supervised

enforcement of data manifold constraint. Enforcing manifold constraints have been shown to

highly improve regression results in many applications [6, 102, 133, 53]. However all these

applications used vectorized representations of the raw intensity.

We can enforce the manifold constraint in a supervised way from the labelsvk. This can

be achieved by amending the objective function in chapter 3 Eq. 3.1 by supervised weights

between images as

Φ(Y ) =
∑

k

∑

i,j

‖yki − ykj ‖2Sk
ij + λ

∑

p,q

∑

i,j

‖ypi − yqj‖2w(p, q)U
pq
ij , (6.3)

wherew(p, q) denotes a weight function that measure the supervised affinity between images

Xp andXq as implied by their labelsvp andvq. There are many way to define such weights. If

we set all the weights to one, we reduce to an unsupervised embedding as in chapter 3 Eq. 3.1.

The weights can be set to reflect labels distances, i.e.,w(p, q) = G(vp − vq). For example a

Gaussian function can be used or alternatively, the weights can be set to reflect neighborhood

structure by using a uniform window kernel. Therefore the matrixA can be redefined as

A
pq
ij =







Sk
ij p = q = k

G(vp − vq) ·Upq
ij p 6= q

(6.4)

6.2.3 Feature Embedding based Regression

Since each image is represented in the embedding space by a set of Euclidean coordinates in

that space, the similarity in the embedding space can be measured by a suitable set kernel that
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measure the distance between two sets of embedded features representingtwo images. There

are a variety of similarity measures that can be used. For robustness, we use a percentile-based

Hausdorff distance to measure the distance between two sets of features from two images in

the embedding space, defined as

Hl(X
p, Xq) = max{ l%

max
j

min
i

‖ypi − yqj‖,
l%
max

i
min
j

‖ypi − yqj‖} (6.5)

wherel is the percentile used. Since this distance is measured in the feature embeddingspace,

it reflects both feature similarity and shape similarity. However one problem withthis distance

is not a metric and therefore does not guarantee a positive semi-definite kernel. Therefore

we use this measure to compute a positive definite matrixH+ by computing the eigenvectors

corresponding to the positive eigenvalues of the originalHpq = Hl(X
p, Xq). The regression

problem now can be solved by using kernels based on matrixH+ in the embedding space,

e.g., Radial Basis Function (RBF) kernels are used. Therefore, we can solve for the regression

parameter in Eq. 6.2.

Given the learned regression function, it can be applied to any new image.However, the

features in that new image has to be mapped first to the embedding space. Therefore, the

regressor for a new test imageX will be in the form

v = ĝ(X) =
∑

j

bjK(O(X), Y j) (6.6)

whereO(X) is a function that maps the features in a test imageX into a set of coordinates in

the embedding space, i.e.,

O(X) : {(xi, fi)} −→ {yi}

The out of sample solution described earlier used to obtain such a function.We can achieve a

closed form solution for this function given the spatial and feature affinitymatricesLν , Uν

Yν = (Lν)−1UνYτ

whereYτ is anN × d matrix stacking of the embedding coordinate of the training features.
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6.2.4 Image Manifold-based regression:

The regression can be also learned from an image manifold embedding space, which can be

obtained using the similarity kernel defined on the feature embedding space.This is a second

embedding where each image is represented by a single point in a Euclidean space. However

the problem with this approach is that for any test image two out of sample problems have

to be solved: First, out of sample on the features should be used to map them tothe feature

embedding space. Second, the embedded set of features has to be usedto achieve the image

coordinate in the image embedding space using a second out of sample. The advantage of

learning a regressor from the image embedding space is that enforcing manifold constraints on

the images can be easier in that space. However, a two stage embedding andtwo out of sample

problems disencourages this approach.

6.3 Experiments

6.3.1 Regression on a single car example

We use a single car sequence (first car) from the dataset introduced by [95] to demonstrate

the different setups for our approach and to show the effect of the different parameters. The

sequence contains 118 views of a rotating car. We changed the following parameters: 1) The

number of training samples to learn the feature embedding, which are also used as RBF centers:

15,30, and 40. 2) The dimensionality of the embedding space: 20, 40, 80,100, 160 and 200. 3)

Manifold supervision neighborhood size:30◦, 45◦, 60◦ and∞, where∞ means unsupervised

embedding. We change one parameter at a time while we fix all other parameterswith a default

value (shown in bold above) . In all experiments we fix the RBF scale to 0.05 of the median

Hausdorff distance in the data. We measure the mean and standard deviationof the absolute

error (MAE, std(AE)), between the estimated and the ground truth viewpoints. Table 6.1 shows

the obtained results for various settings. Fig 6.1 shows the estimated and ground truth angles

for the default base case: 30 training samples, 100 dimensions, 30◦ neighborhood. The MAE

in this case is 1.94◦. From the table we can see that, in general, the accuracy in the regression

does not change much with the change in the parameters. We can see that when the number of

training samples increased from 15 to 30 the mean absolute error dropped tohalf of its value,
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Train Supervised Dim MAE◦ std(AE)
30 Yes/30◦ 20 2.34 1.99
30 Yes/30◦ 40 2.06 1.65
30 Yes/30◦ 80 2.04 1.64
30 Yes/30◦ 100 1.94 1.63
30 Yes/30◦ 160 1.93 1.63
30 Yes/30◦ 200 1.95 1.59

15 Yes/30◦ 100 5.47 4.21
30 Yes/30◦ 100 1.94 1.63
40 Yes/30◦ 100 1.84 1.66

30 Yes/45◦ 100 1.94 1.5
30 Yes/60◦ 100 2.09 1.66
30 No/∞ 100 2.16 1.83

Table 6.1: Regression on a single car

increasing the training size after that does not change the accuracy much. Also we can see

that the dimensionality of the embedding space is insignificantly affecting MAE. Notice that

the there is an error in the ground truth itself of the same order as the error inthe estimation.

So, this experiments basically shows that we can achieve accurate regression on a single object

from local features from a small number of sparse training samples. In thenext experiment we

show results on the whole dataset.

6.3.2 Multi-View Car Dataset

In this experiment we use ‘Multi-View Car Dataset’ that was introduced recently in [95] which

captures 20 rotating cares in an auto show. The dataset is very challenging as the cars are

accompanied with much clutter even within the detected bounding boxes. It haslarge class

variation in appearance, shape, and texture of the cars in this dataset. Weuse this data set

since it provides finely discretizes viewpoint ground truth, the discretization varies in each car

sequence. Such ground truth facilitates evaluation of the accuracy of our regression approach.

Other datasets like PASCAL VOC 2006 gives only 4 viewpoint class labels{‘Front’, ‘Back’,

‘Left’, ‘Right’ } and the dataset that was used in [105, 106, 116] only has 8 viewpoints classes.

Moreover, it is really hard to find a dataset with ground truth that covers the whole range

of viewpoint with realistic challenging conditions. However, there are some drawbacks and
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challenges in this dataset: 1) The high within-class variation makes it hard fora regressor or

classifier to generalize. 2) Ground truth accuracy problems: The viewpoint is calculated using

the time of capturing assuming a constant velocity, which affects on the ground truth. There are

some frames of the same car that are having same time of capturing but there is slight change

in the pose and in few frames the cars are partially occluded by passing people. 3) Some cars

are highly symmetric from a side view, that makes classifiers subject to 180◦ reflection error

in some views. Such reflection error exist in other datasets as well and reported in the results

of [95, 105, 116]. 4) Some cars are very odd, and even visually it is very hard to discriminate

between whether the car front or rear is facing the camera.

The dataset has been used for viewpoint classification in [95] where theviewpoint was

discretized into 16 bins. In [95] their goal was to classify the car pose using a bag-of-words

technique that is based on a spatial pyramid of histograms. They build 16 SVMclassifiers

for the 16 bins to cover the 360 range of rotation (i.e., bin size is 22.5◦). We use the results

of [95] as a baseline since it incorporates both the features and their spatial arrangement through

the spatial pyramid structure.The approach proposed in [95] resulted in 41.69% viewpoint

classification accuracy from bounding box input. In contrast, given a similar 16 bin setting,

our approach results in 70% accuracy using the same bounding box as inputs, that is over 67%

improvement over the state of the art result.

In our regression experiment, we use the same split of training and test setsas [95]. The

dataset contains 20 sequences for 20 rotating cars. The total number ofimages is 2137, the

first ten cars are used for training (1103 images) and the last ten cars for testing (1034 images).

We used only 135 images (sampled randomly from 4 sequences of train data)to learn an initial

feature embedding. Each image is represented using 50 geometric blur localfeature descrip-

tor [11]. The initial feature embedding is then expanded using out-of-sampling to include all

the training images with maximum of 350 features per images (the number of features extracted

per image varies).

We learn our regression model using Radial Basis Functions (RBF) as described in sec-

tion 6.2. We examine the effect of “supervision”, i.e., enforcing the view manifold constraint on

the initial embedding by defining a neighborhood for each image not to exceed 45◦ difference.

For quantitative evaluation, we use the Mean Absolute Error (MAE) between the estimated and
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Method MAE 90% MAE 95% MAE AE<22.5 AE<45
percentile percentile

Results [95] (Baseline) – – 46.48 41.69% 71.2%
Unsupervised(RBF) 27.17 32.65 39.2 50.09% 73.6%
Unsupervised(RBF)Leave One Out22.57 27.12 35.87 63.73% 76.84%
Supervised (RBF) 19.4 26.7 33.98 70.31% 80.75%
supervised (RBF)Leave One Out 23.13 26.85 34.9 55.83% 76.65%
Unsupervised(SVR) 29.52 34.44 40.60 41.19% 70.12%
Supervised (SVR) 25.23 30.63 36.07 57.9% 78.6%

Table 6.2: Regression on Multi-View car dataset, baseline and different variants of our approach

ground truth viewpoint. In addition we also used the MAE of 90% percentile of the absoulte

errors and the 95% percentile of the absoulte errors. These are used because, typically, avery

small percentage of the test data produces very large error (180◦) due to reflection, which biases

the MAE. While MAE is a good measure for validating regression accuracy,it is not suitable

for comparison with classification-based viewpoint estimation approaches which uses discrete

bins, such as [95, 105, 116]. Therefore, we also used the estimated viewpoint to compute the

error in discritized viewpoint classifier. For example, to achieve an equivalent of a 16 bin view-

point classifier, we compute the percentage of test samples that satisfiesAE ≤ 22.5, where the

absolute errorAE = |Est.Angle − GroundTruth|. With this measure we can compare to

16 bin classifier used in [95]. To achieve an equivalent of an 8 bin viewpoint classifier, we also

compute the percentage of test samples that satisfiesAE ≤ 45.

For comparative evaluation, we evaluate different supervised and unsupervised setting within

our framework as described in chapter 3, in addition we used the results from [95] as a baseline.

We also evaluated a support vector regressor (SVR) based on our framework. For each setting

we evaluated the 10/10 split as described above and also a leave one out split (learn on 19 cars

and test on 1).

We show our results in table 6.2, we might find the following observations:

– The MAE is ranging from 33.9◦ to 40.60◦ which seems to be a large error. However, this

might be misleading because if we compare reported results like in [116] in which they learn

classifiers for 8 bins, the reported average accuracy on the diagonalof the confusion matrix

is 66%. In this case this means only 66% of the testing set is recovered within thebins and

any error adds at least 45◦. In the last two columns of table 6.2 show that around 65% of
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testing samples are givingAE < 22.5 ◦ and around80% or more are givingAE < 45 ◦.

The source of the higher MAE is then coming from few instances with large reflection errors

(around 180 degrees), this also clear in the percentiles MAEs. Comparingour results to the

reported confusion matrices in [95, 116]1 we can find that our approach has a lower reflection

effect in the estimated angles. In figure 6.3 a, only few test samples lies in the last bin of the

histogram.

– As we can see the supervised setting is giving the best results for this dataset. This confirms

that enforcing the neighborhood constraint on the manifold is in fact boosting the regression

results.

– Also we can observe that using the leave one out settings for regression is not improving

beyond few degrees over the split settings. This means that our approach is generalizing well

so that it does not gain much by including as many training samples.
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Figure 6.2: Regression on a Multi-view car dataset: Top left corner shows how the arrows
reflect he estimated angle. The ground truth is shown along with the estimated angle. Yellow
arrows for ground truth and Magenta for our results, features are shown as blue dots(Best
viewed in color)

1The confusion matrix in [95] was shown without the actual numbers in it, but after we contacted the authors
of [95] they sent us the actual values in their confusion matrix.
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Figure 6.3: Histogram of absolute error: Left: for Multi view car datset. Right: for face
dataset.

6.3.3 Face Pose Estimation in Uncontrolled Environment

In this experiment we used ‘Face Pose’ dataset that was introduced recently in [3, 4]. It has

been used in inferring the face pose of freely downloaded faces fromthe web. The pose ranges

from -90◦ to 90◦, the ground truth is manually labeled for 11900 images, 10900 of them were

used for training and 1000 for the testing. The images that were used in [3]experiments are

60x60 bounding boxes that were normalized using a Euclidean warp. Thedataset is a real

world challenging set which exhibits much variation in controlling factors like illumination,

scale, expression and pose as well as partial occlusion and background clutter. However, we

want to mention the drawbacks of the dataset. First the distribution of the posedegrees is very

biased and only few examples are beyond the range [-50◦,50◦] which affects the regression we

learn. Second as mentioned in [3] the manual labeling is not so accurate since four subjects

were asked to label every image and the pose is then averaged. The correlation of the manually

labeled poses between different subjects was≈ .75 [3].

In our regression experiment, we use the same training set and same test set as [3], and we

compare our results in terms of the MAE and Pearson Correlation Coefficient (PCC) as they

provided in [3]. We used 250 images (sampled randomly from train data) to learn the initial

feature embedding of dimensionality 50 for each feature. Each image is represented using 24

geometric blur local feature descriptors. The initial feature embedding is thenexpanded using

out of sample to include all the features from training images with maximum of 72 features per

images (the number of features extracted per image is not equal). The dimension of images is

the reason for fewer extracted features per image when compared to the cars dataset.



54

We learn our regression model as we did in the cars dataset. We examine the effect of

supervision on the initial embedding by defining a neighborhood for each image not to exceed

15 ◦ difference. The histogram of absolute error in figure 6.3 show that in around 86% of the

case the estimated error is less than 20◦.

We achieved an MAE error of 10.92◦ and 11.15◦ for the unsupervised and supervised cases

respectively and PCC of .81 and .79 respectively. In [3] the reported results is MAE=13.21 and

PCC=.76. We have better MAE for both the supervised and unsupervisedsettings. This shows

that from sparse local features we can achieve better results in regression in this example. The

most noticeable point is that the unsupervised is behaving better than the supervised setting.

Although this might seem strange, but the distribution of poses of the training samples and the

testing samples is very biased towards the region [-50◦,50◦] and actually in the 10900 training

samples there is not a single image with pose in the interval [-80◦,-90◦], Under this condition

enforcing the neighborhood in the region that have few samples in the training will result in

a poor generalization. We show in figure 6.3 the histogram of absolute error it shows high

accuracy of the estimating the face pose using our framework.
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Figure 6.4: Regression on a Face Pose estimation dataset: Top left cornershows how the arrows
reflect he estimated angle. The ground truth is shown along with the estimated angle. Green
arrows for ground truth and Yellow for our results, features are shown as blue dots(Best viewed
in color)
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6.3.4 Arm Posture Estimation

As we mentioned earlier, our approach is general and can be used in different regression prob-

lems, not only viewpoint estimation. We show here articulated body posture estimation for a

subject who moves his arms freely. We used the sequence from [102]. The local features are

affected very much by the clutter. The ratio of features on the hands to the extracted features is

about 10%, all the features in each frame are used in the regression. The sequence contains 200

frames, 25 equally spaced are chosen for training (12.5% of the sequence). Initial Embedding:

150 features from 20 training frames, dimensionality 250. We then compute out of sample

embedding for all 25 training frames, each with 450 features. Then we learn the regressor pa-

rameters for the hands and elbows joints positions from the 25 training frames. The regressor

was used to estimate the position of the hands and elbows joints in the rest of the frames. We

evaluated the estimation using 75 frames marked with ground truth and the erroris 18 pixel

in average per estimated parameter (image size is 640x480). Sample results are shown in the

figure.

Figure 6.5: Regression example for articulated body posture estimation: shown are frames
20,40,60,80,100,120,140,160
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Chapter 7

Multi-Set Feature-Spatial Matching

We introduce a novel framework for multi-set feature matching among multiple sets in a way

that take into consideration both the feature descriptor and the features spatial arrangement.

As introduced in chapter 3 we can learn an embedded representation that combines both the

descriptor similarity and the spatial arrangement in a unified Euclidean embedding space. The

solution can be obtained directly by solving one Eigenvalue problem which is linear in the

number of features. Therefore, the framework is very efficient and can scale up to handle a

large number of features. The matching step is taking place after the feature-spatial embedding

which ensures that the resulting feature embedding preserves within image spatial structure

and in same time it preserves the feature similarity between different images. Experimental

evaluation is done using different sets showing outstanding results compared to the state of the

art; up to 100% accuracy is achieved in the case of the well known Hotel sequence.

7.1 Introduction

Finding correspondences between features in different images plays an important role in many

computer vision tasks. Several robust and optimal approaches have been developed for finding

consistent matches for rigid objects by exploiting a prior geometric constraint[126]. The prob-

lem becomes more challenging in a general setting, e.g., matching features on an articulated

object, deformable object, or matching between two instances (or a model to aninstance) of

the same object class for recognition and localization. For such problems, many researchers

recently tend to use high-dimensional descriptors encoding the local appearance, (e.g. SIFT

features [79]). Using such highly discriminative features makes it possible to solve for corre-

spondences without much structure information or avoid solving for correspondences all to-

gether, which is quite popular trend in object categorization [31]. This is also motivated by
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avoiding the high complexity of solving for spatially consistent matches.

The problem we address in this chapter is how to find matches betweenmultiple sets of

features where both the feature descriptor similarity and the spatial arrangement of the features

need to be enforced. However, the spatial arrangement of the features needs to be encoded and

enforced in a relaxed manner to be able to deal with non-rigidity, articulation,deformation, and

within class variation.

The problem of matching appearance features between two images in a spatially consistent

way has been addressed recently (e.g. [73, 29, 20, 125]). Typicallythis problem is formulated

as an attributed graph matching problem where graph nodes represent the feature descriptors

and edges represent the spatial relations between features. Enforcing consistency between the

matches led researchers to formulate this problem as a quadratic assignmentproblem where

a linear term is used for node compatibility and a quadratic term is used for edge compatibil-

ity. This yields an NP-hard problem [20]. Even though some efficient solutions (e.g. linear

complexity in the problem description length) have been proposed for sucha problem [29] the

problem description itself remains quadratic, since consistency has to be modeled between ev-

ery pair of edges in the two graphs. This puts a huge limitation on the applicability of such

approaches to handle large number of features1.

Besides this scalability limitation, most of the state of the art algorithms for matching can

only match two sets of points. They do not generalize to match multiple sets of features.

In this chapter, we introduce a framework for feature matching among multiple sets of

features in one shot, where both the feature similarity in the descriptor space, as well as the local

spatial geometry are enforced.This formulation brings three achievements to the problem:

1) Graph Matching through Embedding:We formulate the problem of consistent matching as

an embedding problem where the goal is to embed all the features in a Euclidean embedding

space where the locations of the features in that space reflect both the descriptor similarity and

the spatial arrangement. This is achieved through minimizing an objective function enforcing

both the feature similarity and the spatial arrangement. Such embedding spaceacts as a new

1For example, for matchingn features in two images, an edge compatibility matrix of sizen2
×n2, i.e.,O(n4),

needs to be computed and manipulated to encode the edge compatibility constraints. Obviously this is prohibitively
complex and does not scale to handle a large number of features.
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unified feature space (encoding both the descriptor and spatial constraints) where the matching

can be easily solved. The framework is illustrated in Fig 7.1.

2) Matching Multiple sets in one shot:The proposed framework directly generalizes to match-

ing multiple sets of features in one shot through solving one Eigenvalue problem. Consistent

matching of multiple sets of features is a fundamental problem, for which very few solutions

have been proposed.

3) Scalability:An interesting point in this formulation is that the spatial arrangement for each

set is only encoded within that set itself, i.e., in a graph matching context no compatibility

needs to be computed between the edges (no quadratic terms or higher order terms), yet we

can enforce spatial consistency. Therefore the proposed approach is scalable and can deal

with hundreds and thousands of features. Minimizing the objective functionin the proposed

framework can be done by solving an Eigenvalue problemwhich size is linear in the number of

features in all images.

Extensive evaluation on several standard datasets shows that the proposed approach gives

better or comparable results to the state of the art algorithms [73, 29, 19, 125] that uses quadratic

assignment. In fact, we achieve 100% correct matching on a standard benchmark with our mul-

tiset setting. The experiment results also show that the proposed approach can find consistent

matching under wide range of variability including: 3D-motion, viewpoint change, rotation,

zooming, blurring, articulation and nonrigid deformation.

7.2 Related Work

7.2.1 Matching Under Geometric Constraints

Geometric matching techniques such as RANSAC [44], interpretation trees [52], Hough trans-

form [7], or alignment [126] can be used to efficiently explore consistent correspondence

hypotheses when the mapping between image features is assumed to have someparametric

form (e.g., a planar affine transformation), or obey some parametric constraints (e.g., epipolar

ones). These methods work well for rigid transformations. However, these methods cannot be

easily extended to the case of non-rigid transformations where the number of transformation

parameters often scales with the cardinality of the data set [25].
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Figure 7.1: Motivating Example on two faces
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7.2.2 Shape Vs. Appearance Based Matching Approaches

Depending on the application, matching algorithms are either using the appearance or the

shape (arrangement) of the feature points to decide matches. Appearance-based matching,

e.g. [34, 79, 86], requires a good descriptor that is invariant under different viewing condition.

In such case, the matching is done in the descriptor space. Comparative studies like [86, 89]

recommended SIFT [79] based descriptors for the task of feature matching. On the other hand,

shape matching algorithms are desired for recognition tasks, e.g., [9, 49, 111, 132]. Such algo-

rithms use the spatial location of the feature points or descriptors derived from these locations.

7.2.3 Spectral Correspondences as Graph Matching

Spectral methods [109, 111, 132, 62, 127, 73, 29, 34, 141, 118] has been widely used for the

problem of feature matching. All mentioned approaches solve a graph matching problem to

compute correspondences. The definition of the graph matching problem varies.

The feature matching problem can be casted as aBiPartite Graph Matching [34, 109]

in which a node compatibility matrix is built using either the spatial locations of feature points

[109] or the descriptor information [34].The goal is to find a permutation matrixthat maximizes

tr(P TC) whereC is the node compatibility matrix .

The problem also can be casted as aGraph Isomorphism problem [111, 132, 62, 127].

The intuition behind such approaches is that the spectrum of a graph is invariant under node

permutation and, hence, two isomorphic graphs should have the same spectrum, the converse

does not hold. This formulation uses the spatial locations of feature points toconstruct weighted

or Unweighted graphs to be matched and the goal is to find a permutation matrix that will

bring one graph to the other. Spectral methods for Graph Isomorphism differ in the way of

building the weighted/unweighted graph and in the way they compute the solution. Some of

them use the adjacency matrix [111, 132, 62, 127] but in [118] they usedthe Laplacian of the

adjacency matrix. Typically the weighted matrix that represent the graph useEuclidean based

kernels because it is both rotation and translation invariant.Alternatively affine invariant kernels

might be better to build the weight matrix. Using Affine invariant kernel would be more robust

towards image transformations [141]. However, the affine invariant kernel used in [141] is
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not robust to noise and can break easily. Also some approaches use a set of the eigenvectors to

compute the correspondences [62, 141, 132] instead of using all eigenvectors.

The graph matching can also be casted asQuadratic Assignment Problemin which both

node compatibility and edge compatibility are used together. Unfortunately the quadratic as-

signment problem is NP-Hard [5] and thus most of the techniques that usedthe quadratic

assignment formulation will end up with approximations to the solution. A spectralrelaxation

of the quadratic assignment problem is done in both [73, 29] by considering only the spectrum

of the edge compatibility matrix which of quadratic size of the original graph sizes.

Graph Matching and Problem Size

As we discussed above the spectral correspondences depends on the definition of the graph

matching problem. The complexity of the matching problem will vary according to the way the

graph matching problem is defined.

Bipartite graph matching (Linear Assignment): Given two graphs the matching is solved

via combinatorial graph matching algorithm such as the Hungarian algorithm [97] which is

polynomial timeO(n3) wheren is the number of nodes in a graph. Instead, spectral decom-

position of the cost matrix can yield an approximate relaxed solution, e.g. [34,109] to the

permutation matrixP . The size of the problem is linear in the number of nodes of each graph.

Graph Isomorphism: The problem size remains linear in most of graph isomorphism

formulation for spectral methods and it reduces to compute the eigenvalue decomposition of

each graph. An alternative approach for solving graph isomorphism constructs an associate

graph of the two graphs and uses replicator equations to reach equilibriumstate of the graph

nodes [99]. The number of nodes of the associate graph is of quadraticsize of the number of

nodes of original graphs(i.e.N = n2) and they solve for a quadratic programming problem

iteratively.

Quadratic Assignment: The quadratic assignment is considered as the state of the art so-

lution for the graph matching problem [20], such formulation enforces edgewise consistency

on the matching. Since the size of the problem is quadratic because of the edge compatibility

matrix , the solutions introduced for the quadratic assignment problem includes different ap-

proximations,such as spectral methods [73, 29]. Graduated assignment [49] which consists
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of a series of first-order approximations to the quadratic assignment objective function. Dual

decomposition which solves for linear subproblems and small quadratic problems instead of

solving large quadratic problem [125]. In [11] a gradient descent approximation was done

to get rid of the integer quadratic programming overhead. Another approximations using Re-

laxation labeling and probabilistic methods define a probability distribution over mappings,

and optimize using discrete relaxation algorithms [138, 24]. In [18]the problem itself is ap-

proximated by identifying approximate models for the original problem and finding the exact

solution for these models.

7.2.4 Learning Graph Matching:

In [20] an approach was introduced to learn the compatibility functions fromexamples and was

found that linear assignment with such a learning scheme outperforms quadratic assignment

solutions such as [29], which is an important finding. In [74] using smoothing based optimiza-

tion they learned the edge compatibility matrix of quadratic sizeN = n2 instead of the node

compatibility matrix as [20] and they showed that it leads to better matching results.

7.2.5 Matching Multiple Sets

There is very few papers that addressed solving for multiset correspondences in a fundamen-

tal way. In image sequences the problem can be addressed by forwardtracking a set of fea-

tures [110] also this appears in structure from motion applications and phototourism [113].

In [26] a deterministic annealing-like approach was introduced to find correspondences be-

tween multiple point sets and was used to obtain a shape average, which is updated through

the iterations of the deterministic annealing optimization. These approaches aredifferent from

our framework in several aspects. First they do not consider the feature descriptor as [110, 26]

information and thus there have been used in the context of tracking or building an average

shape from examples. They don’t generalize to be used in object recognition scope. Also the

matching is computed in a pairwise manner [26] or incrementally as in [113, 110]and these

approaches can’t be computed in one shot.
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7.3 Feature Matching

The embedding achieved through minimizing the objective function Eq 3.2 represents a Eu-

clidean “Feature” space encoding both the descriptors’ similarity and the local spatial struc-

tures. Solving for matching will be a straight forward task in such space. Embedding all the

input points in such a way will result in a consistent set of matches, which means the pairs of

matches will obey some common transformation between the two point sets. Therefore there

is no need to explicitly add pairwise consistency constraints as done in quadratic matching

approaches [11, 29, 73, 125]. The objective function in Eq 3.2 is general. We can easily see

that algorithms that use only spatial constraints are a special case by replacing the off-diagonal

blocks in the affinity matrixA by a unity block. On the other hand, matching algorithms that

use the feature similarity constraints only is a special case by replacing the diagonal blocks in

the affinity matrixA by an identity block. Notice that the size of the matrixA is linear in the

number of input points, i.e., for the case of matching two sets,A is an(N1+N2)× (N1+N2)

matrix. In contrast, other approaches that enforces pairwise consistency [11, 29, 73, 125] use

a consistency matrix that is quadratic in sizeN1N2 ×N1N2. Such quadratic order hinders the

scalability of such matching techniques. Figure 7.2 summarizes our frameworkfor the case of

two sets only. It shows the generality of the framework, also it shows the interaction between

different components in our approach.

7.3.1 Matching Settings

We present three settings in which our framework can be used dependingon the application.

Pairwise Matching (PW): Given two sets of features, the matching reduces to solving a bi-

partite graph matching problems between two sets of embedding coordinates. We give details

about how to obtain the matching in Sec 7.3.2.

Multiset Pairwise Matching (MP): If we have multiple sets of features and we would like

to find pairwise matching between each pair of sets, then embedding all the features in all

the sets will give a global unified feature space. Pairwise matches betweenany two sets can

also be solved as a bipartite graph matching where the weights are defined in the embedding

coordinates. In this case, the global solution is expected to enhance the pairwise solution. This
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is shown in the experiment in Sec 7.4.2. We give details about how to obtain the matching in

Sec 7.3.2.

Multiset Clustering (MC): If we have multiple sets of feature points the unified embedding

should bring correspondent features from different sets to be closeto each other. In that sense,

clustering can be used to in the embedding space to obtain matching features. Inthis paper

we applied k-means clustering in the embedding coordinate to find the feature groups. Other

clustering techniques can be used. The problem can also be formulated asa Multi-partite graph

matching in the embedding space.

In Sec. 7.4.2 we show the results obtained by applying these three settings onthe well

known ‘Hotel’ sequence.

7.3.2 Matching Criterion

The embedding coordinates achieved by solving the objective function 3.1 guarantees that the

Euclidean distances between the embedded points reflect both the spatial and descriptor con-

straints. Therefore, the matching problem reduces to solving a bipartite matching problem in

the embedding space. This can be solved by many approaches such as theHungarian algo-

rithm [97] and others. However, in particular we used the Scott and Longuet-Higgins (SLH)

algorithm [109] as matching criterion in the embedding space. The conditions required for the

Scott and Longuet-Higgins matching are satisfied by the embedding since all the points are

lying on the same plane and there are no large rotation. We compute anN1 × N2 Ecuildian

distance based weight matrixW in the embedding space using a Gaussian kernel and then we

compute an orthonormal matrixP∗ in a way similar to Eq. 3.5. We decide a match if the

elementP∗
ij is maximum in its row and its column. In addition we add the condition that the

second largest element in its row and its column is far by threshold ratio as done in [34].

The main reason we chose the SLH algorithm over the Hungarian algorithm asa matching

criterion is its ability to reject false matches. The Hungarian algorithm finds a matching for

each feature even though that match might not be good, which is not a desired characteristic.
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7.4 Results

In this section we show both quantitative and qualitative results on differentdata set. Despite

that our focus is on non-rigid matching, we also show results on rigid matchesfor quantitative

and comparative evaluation2.

7.4.1 Non-Rigid Matching

Fig. 7.3 shows some matching results on nonrigid motions. We used sequencesfrom the KTH

dataset3. Fig. 7.3-top shows the results of our pairwise matching (PW setting) using SIFT

features on four frames of a walking motion, i.e., 6 pairs. Our approach boosted the matches

obtained to double of the original SIFT matches. Fig. 7.3-bottom shows the result of the multi-

set setting (MC ) applied on 13 frames of a half cycle of hand waving. Due to the low resolution

in the sequence, a small number of features are detected (around 25 features per frame). En-

forcing the global matching with the spatial constraints boosted the number of matches to from

44 to 73 and correct matches can be found on the moving parts for all the 13frames.

Fig. 7.4 shows sample matches on motorbike and airplane images from Caltech101 [75].

In each case we used eight images and used the Multiset Pairwaise (MP) to match all pairs. In

these experiments we used affine kernels and Geometric Blur [11] features.

7.4.2 Comparative Evaluation: 3D Motion (Wide Baseline Matching)

Goal: This experiment aims at evaluating our proposed framework compared to thestate of the

art reported results including linear and quadratic assignment based approaches [29, 20, 125,

132, 72, 35] .

Data: We use the CMU ‘Hotel’ sequence with the same manual labeling of 30 landmark points

employed in [20]. This dataset has been used in [20, 125] to compare the performance of graph

matching methods. The sequence contains 101 frames that shows a 3D motion of the ‘Hotel’

object. The experiment is done using the same setting as [20, 125]: 15 frames are sampled

(every 7 frames), that gives 105 pairs of images to match.

2To the best of our knowledge there is no available non-rigid dataset with ground-truth matches.

3http://www.nada.kth.se/cvap/actions/
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Figure 7.3: Top: Results on non rigid walking sequence (matched pairwise). Bottom: Sample
results on hand waving sequence matched on a 13 frames in one shot (multiset). Shown is the
first image matches with the consecutive odd frames in the 13 frames
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Figure 7.4: Sample results on Caltech 101 images. Best seen in color.



69

Competitive Approaches: In all cases we used the Shape context [9] as the feature descriptor

(except for KPCA). We compared the following: 1)The KPCA matching [132] is an example

of an algorithm that only uses the spatial structure. 2) Descriptor-only linear assignment: we

used the Hungarian algorithm applied to the shape context descriptor. In this case only feature

similarity is used. We used the histogram distances as our metric as it was introduced in [9]. 3)

Our approaches: The three settings described in Sec 7.3.1: Pairwise (PW), Multiset pairwise

(MPW ) and Multiset with clustering (MC ). We used a Euclidean double exponential kernel

to encode the spatial structure, and Gaussian kernel on thesameshape context descriptor for

descriptor similarity. 4) Dual Decomposition approach proposed in [125].This is a quadratic

assignment approach that uses an iterative solution. 5) Results reportedin [125], which are state

of the art algorithms using quadratic optimizations. That includes [29] a spectral relaxation

of the graduated assignment, [72, 35] and max-product belief propagation on a quadratic pseu-

doboolean optimization [125]. 6) Results reported in [20] after learning onanother sequence

(CMU ‘House’ sequence) using both quadratic and linear assignment withlearning.

Evaluation: Evaluation is based on the mismatch ratio and the complexity of the problem.

Table 7.1 shows that our basicPW outperforms all approaches that use linear complexity and

outperforms some of the state of the art quadratic algorithms, e.g., [29, 72].Using our multiset

MPW and MC we reach 95.56% and 100% accuracy, which is not reached by any of the

competing algorithms. It is very important to notice that the size of our affinity matrix A in the

case of the multiset of 15 frames is just450× 450 and for the case of the pairwise matching is

60 × 60, where the size for one edge compatibility matrix for any of the quadratic assignment

approaches is900 × 900. Table 7.1 shows the complexity of the problem and the mismatch

ratio. Fig 7.5 shows the matches obtained from all the 15 frames using our multiset approach.

7.4.3 Robustness: INRIA datasets

Data: In this experiment we use the INRIA datasets, which has been used by [86] for compar-

ing descriptors. This dataset contains seven subsets that covers several effects such as view-

point change, zooming, rotation, blurring and lighting change. Each of theseven datasets has

a ground truthHomographymatrix computed between the first image in each set and the other

images in same dataset. Overall there are 36 matching problems given their ground truth.
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Algorithm Error Rate Problem complexity
KPCA [132] 35.5% Linear
Linear Assign. W/SC [97] 11.81% Linear
Our Approach PW 9.24% Linear
Our Approach MPW 4.44% Linear
Our Approach MC 0.0% Linear
SMAC [29] 15.97% Quadratic
Fusion [72] 13.05% Quadratic
COMPOSE [35] 4.51% Quadratic
Belief Propagation [125] 0.06% Quadratic
Dual Decomposition [125] 0.19% Quadratic
Learning(LA) [20] 12-17% Linear
Learning(GA) [20] 10-14% Quadratic

Table 7.1: State of the art results on the ‘Hotel’ Sequence
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Figure 7.5: Matches obtained in 15 frames of the ‘Hotel’ sequence using one-shot multiset
matching
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Figure 7.6: Number of matches affected by Different effects. left,middle) Increasing view point
Change(Bricks and Graf), right) Increasing Blurring (Trees)

Goal: We use the INRIA data set to evaluate the robustness of the pairwise matchingversion of

our framework to the various imaging effect in a dataset with ground truth. We also evaluate the

behavior of the matching under strong affine transformation using both the Euclidean and the

affine invariant kernels. This set demonstrates the scalability of our approach to handle a very

large number of feature points ( from 130 to 1250 SIFT features per image). That shows the

value of our approach compared to the quadratic assignment approaches, which typically can

only handle a number of features limited to around 100. We use the ground truth Homography

matrices just for evaluating the resulting matches, since our approach doesnot assuming any

geometric transformation prior.

Competitive Approaches:in this experiment we compare 1) The basic SIFT matches [79] as a

baseline. 2) SVD-SIFT [34]: This approach uses SVD decomposition ona Gaussian proximity

matrix in the SIFT descriptor space. 3) Our Pairwise matching approach with both a Euclidean

Gaussian spatial kernel and an affine invariant kernel. In all cases we are using the same set of

SIFT descriptors.

Results: Table 7.2 shows that for all the datasets, our approach with either kernelsgives the

highest number of correct matches. The last column gives the number of features in the first

image for each dataset. This result shows that enforcing the spatial consistency improves the

descriptor matches. Fig. 7.6 shows the number of matches as a function of theviewpoint change

or the blurring. The results show that the Euclidean kernel gives comparable results to the affine

invariant kernel even under a very large viewpoint change. We selected the scale for the spatial

kernel as a constant-multiple of the maximum distance between feature points in each image.

In general, we found that selecting a scale large enough for the Euclidean kernels would give

results comparable to affine invariant kernels, this is consistent with what was stated in [109].
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Dataset(Effect) SIFT SVD on SIFT Our Our Affine 1stImage
Matching [79] Matching [34] Approach Approach Feature Count

Graf (ViewPoint) 47 54 66 67 464
Boat (Zoom&Rotation) 99 87 108 108 467
Bark (Zoom&Rotation) 49 47 55 55 392
Bricks (ViewPoint) 46 44 58 59 310
Trees (Blurring) 146 153 186 191 642
Cars (Lighting) 60 17 65 70 134
Bikes (Blurring) 227 229 239 237 400

Table 7.2: Average number of correct matches for each dataset from INRIA datasets
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Chapter 8

Implicit Feature Spatial Manifold Learning through spatial

consistent label propagation

In this chapter we propose a novel approach to integrate feature similarity and spatial consis-

tency of local features to achieve the goal of localizing an object of interest in an image. The

goal is to achieve coherent and accurate labeling of feature points in a simple and effective

way. We adapt the Global and Local Consistency Solution to our method of label propagation

to infer the labels of local features in a test image from known labels. This is done in a trans-

ductive manner to provide spatial and feature smoothing over the learned labels. We show the

value of our novel approach by a diverse set of experiments with successful improvements over

previous methods and baselines classifiers.

8.1 Introduction

Object localization is a fundamental problem in computer vision. The detection and accurate

localization of a given object under general settings with high class variation, different viewing

conditions, presence of occlusion and clutter is a challenge. Local features descriptors, such as

SIFT [79] and other similar descriptors, have been shown to be useful for object localization

and recognition as they are highly discriminative and possess invariant properties. The spatial

configuration of the local features is also important to decide the presenceor absence of an

object since it captures shape information which markedly reduces the rateof false positives.

A good localization algorithm should find good object candidates with low falsealarms.

Many researchers have addressed the localization problem as finding candidate patches that

have high probability/score of lying on the object and at the same time rejecting patches that

are likely to be false alarms [82, 12, 96, 84, 71, 47, 32, 70]. Most of these approaches use

multiple cues and do not depend on local features alone. In [82] an aspect graph encodes the
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Figure 8.1: The left image shows the SVM classification of the local featuresand the right
image shows the result of our localization approach. Red and green pointsare foreground and
background, respectively

shape of the object andshape masksare learned to reduce the hypothesis space. In [96, 70]

segmentationcues are augmented with local features to find accurate localization. In [84] a

hard matchingis established. Other approaches use different types of context cues[48].

Although it is reasonable to consider more cues beyond local feature descriptors and their

locations to solve localization, it is also desirable to enhance localization withoutadding more

cues. Enhancing the usage of local features is complementary to other stateof the art achieve-

ments in localization. In this chapter we only use local features defined by a feature descriptor

and location in the image. We do not use any more cues.

Similar to our approach are [101, 60, 68] in which the local features are pruned heavily to

find the good features to be used in sophisticated localization algorithms. Similar to[101], our

approach can be understood as a way of pruning local features so that only candidate features

for the object class and background class are considered for further higher level processing to

accurately find the object of interest.

In this chapter we pose the object localization problem as a transductive learning problem

on a graph structure.Graph-based methodsfor both transductive and semi-supervised learning

are widely used in many applications where the structure of unlabeled data can be combined

with the structure of labeled data to learn better labeling [21]. This approachworks well if
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there is a valid manifold assumption on the underlying data and hence the intrinsicmanifold

describes neighborhood relationships over the labels. A characteristic problem is that a feature

may lie in more than one feature-space and hence lie in more than one manifold. For example,

in the object localization problem using local features, local features canlie in two different

spaces, namely, the feature descriptor space and the spatial x-y feature location on the image

coordinates.

A successful approach of object class localization using local features must handle the

feature descriptor and feature location spaces accordingly. Under class variation (like many

real objects) there might exist multiple manifold structures in the descriptor space. Simply, the

manifold can be broken into several clusters where every cluster has its own manifold structure.

This is what visual code book methods try to capture. The idea of exploiting the manifold struc-

ture in the feature descriptor and spatial domain was recently addressed in[123]. Unlike [123]

where they explicitly embed the feature manifold and perform inductive learning in that em-

bedded space, we exploit the manifold structure in the data implicitly without embedding and

within a transductive learning paradigm.

The spatial arrangement of local features is useful in many aspects. Spatial neighborhoods

gives us local geometry and collectively provides shape information about a given object. Spa-

tial neighborhoods also inherently provide smoothness over labels since we expect to see the

same labels in close proximity to each other. This is used in MRFs for segmentation[130]

where the points are typically defined on a grid.

The contribution of this chapter is that we pose the object class localization problem as

classifying the features of a test image using transduction on a graph composed of the training

features as well as the test features. Every training feature has a labeland using transduction

we can infer the labels of the test features. We propose a new technique tocapture similarity

among data points which share two structures: the spatial structure, which refers to the spatial

arrangement of local features within an image, and visual structure, which refers to the feature

similarities between local features in the whole data set. We call our approachSpatial-Visual

Label Propagation (SVLP) and can be used to detect objects and/or theirparts in images. In

addition our approach is independent of the actual local feature descriptor being used (e.g.

Geometric Blur (GB) [11], SIFT [79], etc.).
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8.2 Problem Definition

We denote theith feature in thekth image byfki = (vki , x
k
i , ), wherevki ∈ R

Desc is the

feature descriptor andxki ∈ R
2 is the feature coordinate in the image. The feature descrip-

tor can be an image patch or local descriptor such as SIFT, Geometric Blur,etc. The la-

beled training data consisting ofK sets of feature points,X1, X2, · · ·XK in K images where

Xk = {(fki , yki )}. Hereyki ∈ R
C denotes the class label andC is the number of classes (e.g.

foreground/background or object parts as classes). For the binarycaseC = 2 and for thekth

image we haveyki = [1, 0] if the featurefki belongs to the object class andyki = [0, 1] if

otherwise.

During testing, an unlabeled test image is given with its associated set of features{fi =

(xi, vi)} and corresponding labelsY = {yi} which are unknown. The goal is to label these

features in the test image. Once the labels are discovered we can localize theobject (or part) of

interest by its local feature labels. The labeling should reflect what we learned from the training

data about the features and their local spatial arrangement as well as coherent regions in the test

image.

A fundamental assumption in label propagation is label consistency: points inclose prox-

imity to each other are likely to have similar labels [145]. This is often called the manifold

assumption. The key difference in our problem is that the consistency or manifold assumption

in our case has two folds: spatial consistency: close by features on the same image should have

the same label, feature consistency: similar features across the differentimages should have the

same label. The question is how to construct a graph that reflects spatial and feature similarity

and allows label propagation in a way that preserves both similarities. Simple concatenation

of the feature descriptor and its location in the image cannot be considered since this will give

rise to the issue of how to do deal with a test image without knowledge about thelocation(s) of

object(s) of interest.

The SVLP approach captures the local spatial arrangement between thefeature points by

computing a local kernel based on the spatial arrangement of the local features in one image

(intra-image). SVLP also captures the similarities between the features in the descriptor space

across the different images (inter-image). Thus augmenting these two typesof similarities
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in one graph is important to find a meaningful, accurate and coherent labeling. The intra-

image spatial structure in the test image is also important to find the coherent labeling. Finally

SVLP aims at finding long range (global) relations between the features by propagating local

information through diffusion between the spatial and visual appearanceinformation. We use

the SVLP as a transductive solution to induce the desired labeling of the feature points in the

test image.

8.3 Background on Label Propagation Algorithms

As explained in [21], label propagation relies on the idea of building a graph whose nodes are

data points and edges represent similarities between points. Known labels are used to propagate

information through the graph in order to label all nodes [146, 145]. Finding a way to propagate

labels from labeled data to unlabeled data has many applications, for example,interactive image

segmentation [130], image annotation [59], visual code book generation [22].

Graph Construction: Given a point setX = {x1, · · ·xl, xl+1 · · · , xn} and a label setL =

{1, · · · c} the firstl points have labels{y1, · · · , yl} ∈ L and the remaining points are unlabeled.

The goal is to predict the labels of the unlabeled points.

The graph built by label propagation methods represents the geometry of the data induced by

both labeled and unlabeled data. It defines a weight matrixW : Wij is non zero iffxi andxj

are ”neighbors”. One choice of theW matrix is ak-nearest neighbor matrix:Wij = 1 iff xi is

among thek-nearest neighbors ofxj or vice versa (and 0 otherwise). In our approach we used

k-nearest neighbors withk = 20 to create a sparse graph to ease computational load.

Propagation By Iteration: Given the similarity graph ofn = l+u nodes (l labeled nodes and

u unlabeled nodes), the labeled nodes1, 2, · · · , l will propagate their labels to their neighbors.

The process is repeated until convergence of the labels is achieved. The iterative formula can

take different forms depending on fixing or changing the labels of the labeled points.

Harmonic Function Solution: One example of a label propagation algorithms is the harmonic

function solution by [146]. In this algorithm the known labels remain unchanged. The al-

gorithm consists of computing an affinity matrixW using a gaussian kernel. The intra-image

local structures are not utilized to compute the unknown labels.
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Global and Local Consistency (GLC): Another solution for label propagation is the GLC

method [145]. This method provides more interactions between the labeled andunlabeled data.

The known labels are not fixed and so they can also change through the iterations. The algo-

rithm is summarized in the following steps.

(1) Compute an affinity matrixW using Gaussian kernel with bandwidthσ.

(2) Compute the normalized affinityS = D−1/2WD−1/2, in whichD =
∑

j Wij .

(3) Initialize Ŷ (0) = (y1, · · · , yl, 0, 0, · · · , 0).

(4) Choose parameterα ∈ [0, 1).

(5) IterateŶ (t+1) = αSŶ (t) + (1− α)Ŷ (0), until convergence.

(6) Label pointxi by the converged upon̂y(∞)
i . The convergence of the sequence is proved

regardless of the initial labelingY . During iterations each point receives two contributions

coming from its neighbors throughS and its initial valueŶ (0) respectively.

Ŷ
(∞) = (1 − α)(I − αS )−1

Ŷ
(0 ) (8.1)

Now computingŶ (∞) can be done without iterations. This shows that the iteration result does

not depend on the initial value of the iteration. Also we can notice that(I − αS)−1 is in fact a

graph or a diffusion kernel. We can also defineS =





Sll Slu

Sul Suu



.

8.4 Approach

8.4.1 Motivating Example

Two-Image Example: We illustrate the interaction between labeled and unlabeled features on

a simple example where the features in the first image are all labeled and the features in the

second image are all unlabeled.

The Harmonic Function Solutionutilizes the visual structure across the two sets of feature

points and also the spatial structure of the feature points in the test image. We note here that

the the spatial structure of the first image is not utilized in any way to compute the labels of the

feature points of the second image.

The GLC Solutionin equation 8.1 utilizes the fullS matrix, this actually means the whole
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graph structure in theS will be utilized to induce the labels of the unlabeled features in the

second image. More precisely the intra-image spatial structure that was ignored in the harmonic

solution (represented bySll in GLC) will be diffused to the unlabeled feature points in the

second image. We write down the expansion of equation 8.1 for the unlabeledfeatures only as

Ŷ (∞)
u =

(

αS1
(ul) + α2S2

(ul) + · · ·
)

Yl

+
(

Iu + αS1
(uu) + α2S2

(uu) + · · ·
)

Yu (8.2)

We note that thêY (∞)
u is getting its label from two terms. The first term depends on the labels

of the ground truth labelsYl and it also depends onSp
(ul). The termsSp

(ul) are the normalized

similarities between labeled (training) and unlabeled (testing) features. The superscriptp rep-

resents the order of the block matricesS which can be replaced by a summation of components

consisting ofSuu, Sul andSll which will be shown in equation 8.3. The second term in equa-

tion 8.2 depends on the unknown labelsYu (which can be given some initial values using some

external classifier, it also can be initialized as zeros) and it also dependson Sp
(uu). The terms

Sp
(uu) are the normalized similarities between the unlabeled (testing) features.

The first order blocksS1
(uu) andS1

(ul) do not encode the spatial structure of the training

imageSll. On the other hand, the higher order blocksSp
(uu) andSp

(ul) do encode the spa-

tial structure of the training imageSll. This can be noticed if we further expand the terms

S2
(ul), S

2
(uu), S

3
(ul) andS3

(uu) in terms of the originalS blocks

S2
(ul) = SulSll + SuuSul

S2
(uu) = SulSlu + SuuSuu

S3
(ul) = SulSllSll + SulSluSul + SuuSulSll + SuuSuuSul

S3
(uu) = SulSllSlu + SulSluSuu + SuuSulSlu + SuuSuuSuu (8.3)

The higher orders blocks (Sp
(uu),S

p
(ul)) already have the termSll. This shows that the unknown

labelsŶ (∞)
u are not only affected by the similarity across the labeled and unlabeled data points,

but in fact it is affected also by the similarity in the training points. In other words the spatial

structure of the training points is reflected on the propagated labels.

Conclusion: The two-image example above leads us to a number of conclusions. First, the
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diffusion kernel(I − αS)−1 that is used in the GLC solution is capturing the long-term re-

lationships (i.e. between pre-convergence and post-convergence labels) in thewhole graph

constructed from the two sets of feature points, labeled and unlabeled (coming from the single

training image and single testing image). On the other hand the diffusion kernelused in the

harmonic function solution is capturing only the long term relationships in the unlabeled data

(in our case, the test image).

Second, although it seems less intuitive to change the labels of the training set,we find that

it is fundamental to change the labels in the training features so that we can benefit from the

spatial structure in the training image. We understand that changing the labelsfor labeled data

is sound when the labeled data has some overlap between the classes. In our addressed problem

of object class localization from local features this is also sound, because the features that are

close to the boundary of an object will have much confusion between its original label and the

labels of surrounding features. This will lead to find some features that might change its label

depending on its neighborhood structure.

Third, the two images example gives us an intuition of how to design the terms in the weight

matrixW when we construct the graph, this will be reflected on the normalized weightmatrix

(S). We see that we need to define some spatial structure for the features from each image in the

training set. We see that we need to define some structure that represents the visual appearance

similarity between the image in the training set and the image in the test set. In our problem

where the local features are defined by two different vectors (descriptor and spatial location), it

is easy to see that the spatial structure can be inferred to assure coherent labeling in the spatial

space. Also the visual structure can be inferred from the feature descriptor similarity in the

descriptor space so that the features that have high similarity in descriptor space can be labeled

similarly.

8.4.2 ConstructingW for SVLP

We first define theW matrix as a block matrix where the blockWuu is computed as a Gaussian

kernelKx(., .) on the spatial structure of the local features spatial arrangements on the test

image. The blocksWul andWlu are computed as Gaussian kernelsKv(., .) on the visual

appearance structure of the local features between test and training images. The blockWll
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should be designed to reflect both the intra-image spatial structure within eachimage of training

images as well as the inter-image visual appearance structure between features in different

training images.Wll is defined as a block matrix where the blocks on the diagonal represent

the spatial structure within each of the training images and the off-diagonal blocks represent

the visual structure between different images in the training set.

Equation 8.4 shows an exampleW matrix that hasK training images and one test im-

age.WS
k is the spatial structure for imagek, whereW V

ij is an visual structure kernel between

features in imagei and features in imagej

W =







































Wll =



















WS
1 W V

12 · · · W V
1K

W V
21 WS

2 · · · W V
2K

...
.. .

...

W V
K1 · · · · · · WS

K



















W V
lu

W V
ul WS

uu







































(8.4)

8.4.3 Objective Function for SVLP

We write down our objective function as the sum of three terms. The first term is the smoothness

constraint on the intra-image spatial structures, The second term is the smoothness constraint

on the inter-image visual structures. The third term is the fitting constraint, which means there

should not be too much change from the initial label assignment. This avoids oscillations in the

label values during the iterations.

In our formulation the first two terms mean that nearby points defined by the graph structure

should not change their labels very often to allow the neighborhood structure to control the

labeling process.

Ψ(Ŷ ) =
∑

p

∑

i,j

WS
p (i, j)‖

Ŷp(i)√
Dii

− Ŷp(j)
√

Djj

‖2

+
∑

p,q,p 6=q

∑

i,j

W V
pq(i, j)‖

Ŷp(i)√
Dii

− Ŷq(j)
√

Djj

‖2

+ µ
∑

i

‖Ŷ (i)− Y (i)‖2 (8.5)
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WhereD is the diagonal matrixD =
∑

j Wij . W is defined in 8.4.p andq are the image

indices. OnceW is constructed, equation 8.5 can be rewritten as

Ψ(Ŷ ) =
∑

i,j

W (i, j)‖ Ŷ (i)√
Dii

− Ŷ (j)
√

Djj

‖2

+ µ
∑

i

‖Ŷ (i)− Y (i)‖2 (8.6)

Equation 8.6 reduces directly to the same cost function as [145] and the minimization can be

computed in closed form as equation 8.1.

8.4.4 Algorithm

We summarize our algorithm in the following steps

• Training (ConstructingWll). GivenK training images with labeled local features.

1. Fork = 1 : K

Construct the blocksWS
k asWS

k (i, j) = exp(‖xki − xkj ‖2/(2σ2x)).

2. For a certainp andq = 1 : K wherep 6= q

Construct the blocksW V
pq asW V

pq(i, j) = exp(‖vpi − vqj‖2/(2σ2v)).

3. ConstructWll as in equation 8.4

• Testing (Construct fullW and do the transduction) Given a test image with unlabeled

local features

1. Construct the blockWS
uu asWS

uu(i, j) = exp(‖xui − xuj ‖2/(2σ2x)).

2. Fork = 1 : K

Construct the blocksW V
uk asW V

uk(i, j) = exp(‖vui − vkj ‖2/(2σ2v)).

3. ConstructW V
ul =

[

W V
u1|W V

u2| · · ·W V
uK

]

.

4. ConstructW V
lu = (W V

ul )
T .

5. ComputeS = D−1/2WD−1/2.

6. IterateŶ (t+1) = αSŶ (t) + (1− α)Ŷ (0) until convergence, whereα is a parameter

in the range(0, 1).

7. Let Ŷ ∗ denote the limit of the sequence{Ŷ (t)}. Label each point̂yi as a label

ŷi = argmaxj6c Ŷ
∗
ij .
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8.5 Experiments

In the experiments reported in this chapter we used Geometric Blur (GB) [11]and SIFT [79] as

the local feature descriptors. Towards the end of this section we briefly compare between these

two descriptors. The datasets used in the experiments are: Caltech-101 [75], TUD Motorbikes

and Cows [80], ETHZ Shape Classes-Giraffes [101], GRAZ02-Bikes [94].

8.5.1 Caltech-101

In this experiment we performed object class localization via feature labelingfor all the classes

in the Caltech-101 [75], each class separately. The Caltech-101 dataset is widely used by the

community in categorization tasks. Here we carried out the localization for all the 101 classes

to show that we can apply our method for object class localization across very different kinds

of objects ranging from animals, man-made, indoor objects, etc. One main reason behind using

this data set is that the ground truth is given via a contour surrounding the object of interest,

which facilitates the quantitative validation of our localization approach.

Every training image has at most 300 (the number of local features actually vary signifi-

cantly depending on the class) local features. These local features are described by GB [11]

descriptors and their spatial location in their images. The detected local features within the

contours are labeled as object class and the features outside the contours are marked as back-

ground class. We ran our algorithm 5 times on all classes for each of threedifferent training

settings (sizes 10, 20 and 30). By using our SVLP method the labels of the test image feature

points are inferred and thus this leads to localization of the object of interest.Similar to many

other researchers in object class localization from local features [60,68, 101], we report theq

percentile of features that scored the highest in the object class or background class.

In figure 8.2 the performance of our localization method is compared to two baselines

which are the 1-NN classifier based on the feature descriptor alone and the SVM classifier

based on the feature descriptor alone. We applied SVLP given different numbers of training

samples per class and we fed the SVM estimated solution to our algorithm as an initial Yu. The

figure shows that theq percentile SVLP significantly improves over the baselines, even with a

very large portion of features included in the accuracy measure, i.e.80%. We note here that
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Figure 8.2: Learning Trend: changing the training size per class improvesthe results.

F M A W K
SVLP 0.1028 0.0384 0.1365 0.0213 0.0769
SVM 0.2359 0.0487 0.2030 0.0902 0.1372
1-NN 0.3229 0.1667 0.2721 0.0732 0.2197
[60] .30 0.11 0.21 .08 .19
[68] .15 0.07 0.177 .03 0.08
[123] .31 .003 .02 - -

Table 8.1: False Positive Rates (FPR) for different methods. F: Faces,M: Motorbikes, A:
Airplanes, W: Watches and K: Ketch. Results by [123] are at20% percentile and is not
comparable directly with other entries.

most other localization approaches use only the best20% of the local features in measuring

the accuracy. This improvement is very meaningful as the SVLP is always finding a spatially

coherent feature labeling. Asq decreases the localized features on the object of interest become

more and more confident localized features. We also made another observation that the closer a

feature lies to the core of the object, the stronger the confidence it receives using our approach.

For comparative evaluations we mainly consider the approaches [60, 68]. The reasons

behind this selection are the following. Firstly, similar to [60, 68], our goal is tolocalize

features into foreground/background classes. Due to this, we use the same evaluation measure

(FPR) as [60, 68]. Using FPR is a more sensible choice over bounding box overlap ratio

when evaluating sparse local feature localization. Secondly, since the localization in [60, 68] is

performed after clustering the images with very high accuracy (around98%). These approaches

localize the features that belong to the object in every individual cluster independently and
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Figure 8.3: Sample Results on ETHZ-Giraffes, TUD-Cows, TUD-Motorbikes and Caltech-101.
Every row represents the percentile at which the localization is inferred. The top row shows the
top80% percentile of the features are localized, second row20%. Red are foreground localized
features. Green are background localized features. Detected features are shown in cyan. Best
viewed in color with zooming.

hence the object is known to be in the image with high probability (around.98). In other words

the unsupervised part (i.e. clustering) of their approaches does not increase the hardship of their

feature ranking problem. Thirdly, we use only10 − 30 training images which is much more

challenging than the100 images per class in [60, 68]. The much larger number of training

images they select balances the unsupervised ranking they perform on their features. Lastly,

we favored the setup in [60, 68] over ours because localization results by our approach are

based on the object contour while their approaches are based on bounding boxes. In addition,

we reported accuracy in60% of the scoring features which adds weaker features than the50%

they use in their evaluation. This addition of weaker features degrades the(FPR) in our case.

The best 5 classes that improved over the SVM baseline using 20 training images were

{crocodile, crocodile-head, pagoda, hedgehog, cougar-body} and the least 5 improving classes

were{ewer, car-side, watch, dollar-bill, inline-skate}. We notice that the biggest improvement

takes place when the object of interest is a living object class which appears in very cluttered

background. The least improvement is for well localized objects in their datasets.
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Classname q = 80% q = 60% q = 40% q = 20%

1 car-side .9896 .9963 .9982 .9986
2 dollar-bill .9788 .9917 .9967 .9986
3 windsor-chair .9691 .9869 .9968 .9992
4 nautilus .9686 .9849 .9910 .9972
5 faces-easy .9644 .9850 .9946 .9984
97 sea-horse .7837 .8246 .8625 .8876
98 ant .7779 .8107 .8353 .8489
99 flamingo-head .7756 .7968 .8176 .8414
100 star-fish .7740 .7965 .8156 .8320
101 lamp .7670 .7933 .8178 .8404

Table 8.2: Accuracy for best 5 and worst 5 classes on Caltech-101. These results were taken af-
ter training using 20 sample images.q here represents the percentile of highest scoring features
taken.

8.5.2 Generalization to Subsets of LabelMe

Caltech-101 is designed for single object categorization tasks. To evaluate the generalization of

our proposed approach on different datasets which might have different distributions, we used

training example from Caltech-101 and tested on images from the LabelMe datasets [64] with

multiple object instances. We used subsets of LabelMe datasets that have been used by [68].

In this experiment we trained from four Caltech 101 classes namely{Motorbikes, Cars-rear,

Faces, Airplanes}. Since the object scales are very different in Caltech-101 and LabelMe, we

adapted a pyramid of scales on the test images. We show some results of the localized features

in Figure 8.4.

8.5.3 TUD / ETHZ Datasets

We experimented on three other datasets to analyze the performance of ourapproach com-

pared with an SVM and 1-NN baselines. The first dataset is TUD-Motorbikes which is part of

the PASCAL collection [98] which is known to contain hard images for the object localiza-

tion problem. The hardship lies in the fact that the images have different resolutions, scales,

background, heavy clutter and multiple instances per image. The second dataset is TUD-Cows

which is a simple dataset with varying skin textures on the body of the cows in theimages. The

third dataset is ETHZ-Giraffes which contains images of giraffes under different deformation

conditions (i.e. the giraffes’ necks vary in shape from fully extended to leaning downwards).
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Figure 8.4: Generalization to some example from LableMe dataset. Features with top 25%
confidence are shown. Red for foreground localized features. Green for background localized
features. Detected features shown in cyan. Best viewed in color with zooming.
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Classname ETHZ-Giraffes TUD-Cows TUD-Motorbikes

Accuracy

SVM .5980 .8550 .5776
KNN .5878 .8259 .5655

q = 80% .7322 .9339 .6703
q = 60% .7649 .9714 .7026
q = 40% .7977 .9874 7327
q = 20% .8251 .9933 .7601

FPR

SVM .4036 .3119 .4826
KNN .3972 .2217 .4914

q = 80% .2049 .1357 .3763
q = 60% .1670 .1072 .3414
q = 40% .1294 .0812 .3093
q = 20% .1061 .0536 .2835

Table 8.3: This table shows a comprehensive comparison of the presentedapproaches using
different percentilesq as well as two baseline classifiers: SVM and K Nearest Neighbors (K=1,
results did not vary significantly with variations of K)

The images in this dataset are also challenging as they exist in multiple scales, resolution, mul-

tiple instances per image and contain extensive clutter in the form of vegetation.

For TUD-Cows and ETHZ-Giraffes we set the number of training images to 20. For TUD-

Motorbikes we used 30 training images. The number of training images are approximately

21− 26% of the size of the respective datasets. The much larger portion of the dataset can then

be used for testing. In all three datasets we used 300 SIFT descriptors.The reason why we used

the SIFT descriptor in these datasets is because GB failed on images containing vegetation in

the form of bushes, trees, grass, etc. The reason behind this is that GBis not multi-scale and

due to the large variance in the local structures of vegetation it is not able to generalize over the

background class. SIFT on the other hand captures multiple scales of the local structures in the

images and hence is able to discriminate between object and background classes with higher

accuracy.

8.5.4 Object Parts Localization

For qualitative evaluation of our approach on part localization we carriedout object part lo-

calization for some classes. Namely{Caltech-Motorbikes, TUD-cows [69]}. The parts of the

objects are manually annotated via bounding boxes in the train images. We usedTUD-cows to

test how our part localization works in the case of non-rigid objects with articulation.
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Figure 8.5: Object part localization. Left: bounding boxes defining the parts used during train-
ing. Middle and Right: some part localization results on TUD-cows and Caltech-Motrobikes.
Features with top 60% confidence are labeled. Red for part 1 localized features. Green for
part 2 localized features. Yellow for part 3 localized features. Blue forbackground localized
features. Detected features shown in cyan. Better Viewed in color and zooming.

We used 20 images for training, each has 300 GB features. As shown in figure 8.5 we

defined three parts motorbike using bound boxes by gathering the front wheel and some part

of the attached handle, the second part is the engine area and the third part is the rear wheel

and some part of the seat. We defined three parts on the Cow object using bound boxes as the

head, body and legs. In both cases the remaining features are considered as back ground class.

Notice that in the motorbike example, the front and back wheels have similar appearance and

in the cow example the head and body have similar texture. Successfully localizing the parts in

these example shows that the approach is in fact learning about the feature spatial arrangement.

We can see (Figure 8.5) that the part labels are retrieved efficiently, here we use60% percentile

to show the localized features for each class.

8.5.5 Multiple Base-Learners

To avoid the problem that may arise due to over-sizing matrixW beyond computational bounds

when dealing with large sets of images and features, we present a slightly adapted approach to

the above. This approach uses multiple base-learners to train using smaller overlapping subsets

of the training set. Each base-learner is identical to the presented approach and runs using the
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Figure 8.6: Sample results from the challenging GRAZ02-Bikes dataset using 7 multiple base
learners. The top row shows the80% percentile and the bottom shows the20% percentile. What
may seem like a false positive bike detected in the background of the left imageis actually a
bike wheel. Same color legend as figure 8.5 Best viewed in color, with zooming.

algorithm outlined in 8.4.4. Each base-learner uses the same number of features as before and

in this case we used SIFT as our descriptor. At testing, the local featuresin the test image

with the most votes from these base-learners are selected as the most confident foreground /

background features.

We ran this multiple base-learner approach on the more challenging GRAZ02-Bikes dataset

[94]. The setup consisted of 7 learners. Each one of them was trained on 18 images from the

training set of 110 (which was partitioned from the 300 images). As you cansee the small

training subsets overlap with each other to cover the full training set. Figure8.6 shows sample

results of this approach.
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Chapter 9

Conclusions

The work we presented in this dissertation has abridged the gab between theusage of local fea-

tures with their spatial arrangement in object recognition and manifold learning in data analysis.

Current object recognition systems depend heavily on local features due to its discriminative

nature, which ease the recognition tasks. However, different kinds ofmanifolds, e.g. view

manifold and object class manifold, are already present in the data and revealing the underly-

ing manifold structure in the data is expected to boost the recognition rates. That was confirmed

through diverse set of problems that were addressed in the body of thedissertation.

In this dissertation we presented a framework that enables the study of imagemanifolds

from local features. We introduced an approach to embed local features based on their inter-

image similarity and their intra-image structure. We called the embedding “feature-spatial

embedding” which provides an explicit low-dimensional representation of collection of local

features from different images. We also introduced a relevant solution for the out-of-sample

problem, which is essential to be able to embed large data sets. We defined a distance measure

between images using the feature-spatial embedding framework. Given these three compo-

nents we showed that we can embed image manifolds from local features in a way that reflects

the perceptual similarity and preserves the topology of the manifold. Results showed that the

framework can achieve superior results in recognition and localization.

Furthermore, we proposed a kernel regression framework based onmanifolds of local fea-

tures and their spatial arrangement. To the best of our knowledge this is thefirst work to ad-

dress regression problems from local features without either establishing full correspondences

between features from different images or using a holistic representationof the images. We

tested the regression framework on different problems such as viewpoint estimation, face pose

estimation and arm posture estimation. The results showed that the state-of-the-art methods
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can be outperformed with our kernel regression framework for viewpoint estimation problems.

The feature embedding framework allowed us to solve the problem of feature matching,

which is a very fundamental computer vision problem. Feature matching with spatial con-

sistency usually involves a higher order quadratic assignment problem. Inour framework we

preserve spatial consistency of the features without the need of quadratic assignment. Also, our

framework allowed us to match multiple sets by solving a single graph embedding problem.

The results shows that both rigid and non-rigid cases can be solved usingsame framework.

At the very end, we also proposed to learn an implicit spatial-visual manifold without the

need of computing an explicit low-dimensional embedding for the feature points. We achieved

that by utilizing the label information that comes with the local features. We testedthat implicit

spatial-visual manifold with a transductive learning framework for object and part localization,

which resulted in high accuracy and low false positive localization rates.
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