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ABSTRACT OF THE DISSERTATION

Learning the Manifolds of Local Features and Their Spatial
Arrangements

by Marwan Torki

Dissertation Director: Ahmed Elgammal

Local features play an important role for many computer vision problemsy; ahe highly
discriminative and possess invariant properties. However, the spatidaration of local fea-
tures plays an essential role in recognition. Spatial neighborhoodsedptal geometry and
collectively provide shape information about a given object. In this dis$en we studied
explicit and implicit ways to exploit the joint feature-spatial arrangement in @adgr recog-
nition problems. We introduce a framework to learn an embedded représemimages that
captures the similarity between features and the spatial arrangement itibormehe frame-
work was successfully applied in object recognition and localization conTde framework
was also applied for feature matching across multiple images. We also shosveilibiity
of the framework in regression from local features for viewpoint estimatite also studied
implicit ways to exploit the feature-spatial manifold structure in the data withqulicét em-
bedding and within a transductive learning paradigm for object localizata learned the
labels of the local features from an object class in a manner that prosjideisl and feature
smoothing over the labels. To achieve that we adapted the Global andCaxsistency Solu-
tion for Label Propagation to our implicit manifold model to infer the labels oflléeatures.
We showed excellent accuracy rates with very low false positive ratéiseolearned features

labels in the test images.



Acknowledgements

I would like to thank my family for their love and support all along. It was aagineof us
all and we can finally feel it. | want to express my deepest gratitude to mig@ghProf.
Ahmed Elgammal, who was guiding me along this path for full five years. His asand
encouragements were more than valuable and his support was unlimitedldilike to thank
my committee Prof. Casimir Kulikowski, Prof. Vladimir Pavlovic and Dr. Sanjiv Kuroha

Google research for their very useful comments to improve the quality of regrdgtion



Dedication

To Parents and Family



Table of Contents

bstractl . . . . . . . ii
cknowledgements. . . . . . . . .. e iii
Dedication . . . . . . . . s, iv
Listof Figured . . . . . . . . . . e, iX
1. Introductionl . . . . . . . . . 1

1.1. Overvie

1.2, Contributions . . . . . . . . e e e

1.2.1. Fusing Feature Similarities and Spatial Arrangements of Local Fea-

tures ina Common EmbeddingSpace . . . .. ... ... ... .. ..

1.2.2. Defining Similarity Measure betweenImages . . . . . ... ... ...

1.2.6. Scalable Multi-Set Feature Matching . . ... ... ... ... ....

1.2.7. Implicit Feature-Spatial Manifold . . . . . . ... ... ... ... ..
2. Background . . . . . ... e 9
1. local Features in Object Recognition . . . . .. ... ... ... ...... 9
2.1.1. FeatureDetectors . . . . . . . . . . . . e
212, Feature DescCriptOrs . . . . . . . . . . o i
2.1.3. Performance of Detectors and Descriptors . . . . . ... ... ... 10.
2.1.4. BagofVisualWordsModels . . . ... ... ... ...........

10

11



2.2.1. Grouping of Local Features within Spatial Neighborhood . . . . . . 12
222 PartBasedModels . . .. ... ... 13
3. Manifold Learning for Object Recognition . . . . . . .. ... .. ... ... 14
231, linearMethods . . . . . . . . . . . .. ... 14
2.3.2. NonlinearMethods . . . . . . ... ... ... ... .......... 15
2.3.3. Unified View of Dimensionality Reduction Methods . . . . . ... .. 16
2.3.4. Large Sale Dimensionality Reduction . . . . ... ... ........ 17
2.3.5.  Applications for Manifold Learning in Object recognition . . . . . .. 17
3. Feature-Spatial Embedding Framework. . . . . . . ... ... ... ...... 19
3.1. Problem Statement . . . . . . .. ... 19
3.2. Objective Function . . . . . . . . . . . . 20
3.3. Intra-Image Spatial Structdre . . . . . . . .. ... L 22
3.4. Inter-lmage Feature Affinlty . . . . . . ... ... ... ... ... ... ... 32
3.5. Solving the out-of-sample problem . . . . . . .. ... ... ... ... .. 3 2
3.5.1. Populating the Embedding Space . . . ... ... ... ........ 26
4. lmage Embedding from local Featurels. . . . . . . ... ... ... ...... 27
4.1, From Feature Embedding to Image Manifold Embedding . . . . . .. .. .. 7. 2
4.2. Image Manifold Examples . . . . . . ... ... ... . o 29
4.2.1. Visualizing View Manifold . . . . . . ... ... ... ... ... 29
4.2.2. Shape Clas$es . . . . . . . . . i 29
4.2.3. TUD/ETHZ Objects . . . . . . . . . . . it 29
424, CaltechSubsets . . . ... ... ... .. .. .. 31
5. Applications: Object Recognition . . . . . . . . .. ... .. ... ... 35
5. 1. Introduction . . . . . . . ... 35
5.2. Results: Object Classification . . . . . . . ... ... ... ... ....... 5 3
521, ShapeDatabet. . . . . . . . .. . .. 36
522, Caltech 101 . . . . . . . . . e 37

Vi



5.3. Results: Object Localization . . . . ... ... .. ... ... .. ....... 38
5.4. Results: Unsupervised Object Categorization . . . ... ... ... .... 39
5.4.1. Equal Cardinality -Caltech . . . . . . ... ... ... ... ...... 39
5.4.2, Different Cardinality -Caltech . . . . ... .. ... ... ....... 40
5.4.3. Different Cardinality TUD/ETHZ . . . . . ... ... ... ...... 41
6. Regression From localFeatures . . . . . . .. ... .. ... ... ...... 42
6.1. Introduction . . . . . . . . . .. 42
6.2. Kernel-based Regression from Local Features: . . . . ... .. 44
6.2.1. Kernel Regression Framework . . . . . .. ... ... .. ....... 44
&LLEnmmimJManimm_mm&oﬂlealnt ................. 45
6.2.3. Feature Embedding based Regression . . . . . ... ... ....... 46
6.2.4. Image Manifold-based regression: . . . . . . .. .. ... ... ... 8 4
6.3. EXperiments . . . . . . . ... e e 48
ﬁ_lL_RﬂgLﬁzLQnﬂLajingmLexmlnple ................... 48
6.3.2. Multi-View CarDataset . ... ... ... ... ... ... ..... 49
6.3.3. Face Pose Estimation in Uncontrolled Environment . . . . . .. .. .. 53
6.3.4. Arm Posture Estimation . . .. ... ... ... ... ......... 55
7. Multi-Set Feature-Spatial Matching . . . . . . . . . . .. ... ... ... .. 56
7.1, Introduction . . . . . . . ... 56
7.2. RelatedWork . . . . . . . . . e 58
7.2.1. Matching Under Geometric Constraints . . . . . .. ... ... .... 58
7.2.2. Shape Vs. Appearance Based Matching Approaches 60
M@L&Wﬂching C 60
Graph Matching and Problem Size . . . . . . . .. ... ... ..... 61
Z.ZA._Lea.Lning_G.La.nh_Mﬁ.LchiJ'g: ........................ 62
7.2.5. Matching Multiple Sdts . . . . . . . ... ... ... L 62
7.3. Feature Matching . . . . . . . . . . 63
7.3.1. Matching Settings . . . . . . . . . . . e 63

Vii



7.3.2. Matching Criterian . . . . . . . . o v o e 65

7.4, ResUlls. . . . . . . . e e e e 66

7.4.1. Non-Rigid Matching . . . . .. .. .. .. . .. ..., 66

7.4.2. Comparative Evaluation: 3D Motion (Wide Baseline Matching) . ... 66

7.4.3. Robustness: INRIAdatasets . . . . . . . . . . . . ... .. .. .... 69

8. Implicit Feature Spatial Manifold Learning through spatial consistent label prop-

agation . . ... e 73
8.1. Introduction . . . . . . . . ... 73
8.2. Problem Definitian . . . . . . . .. ... 76
8.3. Background on Label Propagation Algorithms . . . . . .. ... ... ... 77
8.4, ApProach . . . . . . . . e 78
8.4.1. Motivating Example . . . ... ... . ... ... 78
8.4.2, Constructing forSVILR . . . ... ... ... ... .. ....... 80
8.4.3. Objective FunctionforSVILP . . .. .. ... ... ... ....... 81
8.4.4, Algorithm . . . . . . . . . . e 82
8.5. Experiments . . . . . . . ... 83
8.5.1. Caltech-101 . . . . . . . . . . . e 83
8.5.2. Generalization to Subsetsof LabelMe . . . . . .. ... ... ..... 86
853. TUD/ETHZDatasets . . .. ... .. . .. ... 86
8.5.4. ObjectParts Localization . . . . . .. ... ... ... .. ....... 88
8.5.5. Multiple Base-Learners. . . . . . . . . . .. .. 89
9. Conclusions. . . . . . . . e 91
References . . . . . . . . . 93

viii



List of Figures

1.1. Examples of view manifold learned from local features for toy example. . 6

2.1. Different part models. Left:Constellation model. Right:Pictorial Stru¢lues).

2.2. Left: Linear structure where the data lies on a low dimensional substigbt:

Non-Linear structure where the data lies on a low dimensional manifold. . .14.

2.3. Geodesic distance on the manifold between the points A and B is noakeiiv

tothe Euclidean distance. . . . . . . . . . . .

4.1. Optional caption for list of figures . . . . . . . . . . . . .. . ... ..... 28

4.3. Manifold Embedding for 60 samples from Shape dataset using 60 @B loc

featuresperimage . . . . . . . . . e

4.4. Embedding 9 samples from three classes Motorbikes and Car-Sidé \iBy

and Giraffes(ETHZ) based on the common feature embedding framewoek. T

clustering is very clear, only one sample is mis-clustered in this example . . . .

4.5. Example Embedding result of samples from four classes of Caltelchfaf:

Embedding using our framework using 60 Geometric Blur local features per
image. The embedding reflects the pgrceptual similarity between the images.
Bottom: Embedding based on Euclidean image distance (no local features, im-

age as a vector representation). Notice that Euclidean image distanck base

embedding is dominated by image intensity, i.e., darker images are clustered

together and brighterimages areclustered. . . . . . ... ... ... .... 3.

4.6. Manifold Embedding for all images in Caltech-4-11, Caltech-6. Only first

dimensions are shown. . . . . . . . . . . . ...

5.1. Onptional caption for list of figures . . . . . . . . . . . . .. . .. .. .... 40

32



6.1.

Regression on a single car: (Left) Absolute Error computed usingpguoach

is plotted with the ground truth, they are very] close to each other. (Right)

6.2.

sample views of the car with features detectedonit. . . . . . ... ... .. .. 44

Regression on a Multi-view car dataset: Top left corner shows heartows

reflect he estimated angle. The ground truth is shown along with the estimated

angle. Yellow arrows for ground truth and Magenta for our resultsufea are

shown as blue dots(Bestviewed incolor) . . . . .. ... ... ... ..... 2 5

6.3. Histogram of absolute error: Left: for Multi view car datset. Right. faxe

6.4.

dataset. . . . . .. e e 53

Regression on a Face Pose estimation dataset: Top left cornertshawise

arrows reflect he estimated angle. The ground truth is shown along with the

estimated angle. Green arrows for ground truth and Yellow for our results

6.5.

features are shown as blue dots(Best viewed incolor) . . ... ... ... .54

Regression example for articulated body posture estimation: shovinammes

20,40,60,80,100,120,140,160 . . . . . . . . . . ... 55

7.1

Motivating Example ontwofages . . .. ... ... ... .. .. ....... 59

7.2.

lllustration of our framework entities and interaction betweenlthem . . . . . 64

7.3.

Top: Results on nonrigid walking sequence (matched pairwise). BoBam:

ple results on hand waving sequence matched on a 13 frames in one shot (mu

tiset). Shown is the first image matches with the consecutive odd frames in the

13frames . . . . . . e 67

7.4,

Sample results on Caltech 101 images. Best seeninicolor. . ... .. .. 68

7.5

.5. Matches obtained in 15 frames of the ‘Hotel’ sequence using onershiiset

7.6.

matching . . . . . . . . 70

Number of matches affected by Different effects. left,middle) Ireingaview

8.1.

point Change(Bricks and Graf), right) Increasing Blurring (Trees) . . . . . 71

The left image shows the SVM classification of the local features arrittite

image shows the result of our localization approach. Red and green pants

foreground and background, respectively . . . . . ... ... ... ... . 74



2. Learning Trend: changing the training siz rcl improv es .. 84

8.3.

Sample Results on ETHZ-Giraffes, TUD-Cows, TUD-Motorbikes@altech-

101. Every row represents the percentile at which the localization is éaferr
The top rpw shows the tog0% percentile of the features are localized, second

row 20%.| Red are foreground localized features. Green are backgrouald loc

ized features. Detected features are shown in cyan. Best viewed mmwitto

8.4.

ZOOMING. . . o o e e e e e 85

Generalization to some example from LableMe dataset. Features with2op 25

confidence are shgwn. Red for foreground localized featureserGoe back-

ground localized features. Detected features shown in cyan. Bestdigw

8.5.

colorwithzooming. . . . . . . . . . . . . . .. e 87

Object part localization. Left: bounding boxes defining the partd deeng

training. Middle and Right: some part localization results on TUD-cows and
Caltech-Motrobikes. Features with top 60% confidence are labeled. dRed f

part 1 localized features. Green for part 2 localized features. Yetoywdrt 3

localized features. Blue for background localized features. Deteetddres

8.6.

shown in cyan. Better Viewed in color and zooming. . . . ... .. ... ... 89
Sample results from the challenging GRAZ02-Bikes dataset using 7 multiple
base learners. The top row shows 8%, percentile and the bottom shows

the 20% percentile. What may seem like a false positive bike detected in the

background of the left image is actually a bike wheel. Same color legend as

figure Best viewed in color, with zoomihg. . . . . . . .. ... . ... ... 90

Xi



Chapter 1

Introduction

1.1 Overview

Visual recognition is a fundamental yet challenging computer vision tasthelmecent years
there have been tremendous interest in investigating the use of locaéfeatd parts in generic
object recognition-related problems such as, object categorizatiorizbi@n, discovering
object categories, recognizing objects from different viests, In this dissertation we present
a framework for visual recognition that emphasizes the role of local festgeometry and
manifold learning. The framework learns an image manifold embedding froat features
and their spatial arrangement. Based on that embedding several itexogelated problems
can be solved, such as object categorization, category discovatyrdematching, regression,
etc. We start by discussing the role of local features, geometry and rdhlgforning; and

follow that by discussing the challenges in learning image manifolds from feaalres.

1) The Role of Local Feature®bject recognition based on local image features have shown
a lot of success recently for objects with large within-class variability in sreap appear-
ance [43] 78| 108, 135, 2, 115,140, 124] 39]. In such approadigscts are modeled as a
collection of parts or local features and the recognition is based oniigeire class of the
object based on parts’ appearance and (possibly) their spatiabamamt. Typically, such
approaches find interest points using some operator such as c@8genfl then extract lo-

cal image descriptors around such interest points. Several local inesgéptors have been
suggested and evaluated|[86], such as Lowe’s scale invariantded®iFT) [78], Geometric
Blur [11], and many others. Such highly discriminative local appearéeeteires have been
successfully used for recognition even without any shape (strughfogination, e.g. bag-of-

words like approaches [137, 112 86].



2) The Role of Geometryfhe spatial structure, or the arrangement of the local features plays
an essential role in perception since it encodes the shape.

There is a fundamental trade-off in part-structure approaches imajemée more discrim-
inative and/or invariant a feature is, the less frequent this featurenteeco Sparse features
result in losing the spatial structure. For example, a corner detectdtsrégswalense but in-
discriminative features while an affine invariant feature detector like SlHTesult in sparse
features that do not necessarily capture the spatial arrangementdieeteade-off shapes the
research in object recognition and matching. On one extreme, are appsosuch as bag-of-
feature approaches [1137, 112] that depend on highly discriminatatarts and end up with
sparse features that do not represent the shape of the objectfoFaeseich approaches tend
to heavily depend on the feature distribution in recognition. Many reseandtently have
tried to include the spatial information of features, e.g., by spatial partitiomdgpatial his-
tograms, e.gl[81, 66, 50, 114]. On the other end of the trade-ofg@maches that focus on
the spatial arrangement for recognition. They tend to use very abatregbrimitive feature
detectors like corner detectors, which result in dense binary or oriédéates. In such cases,
the correspondence between features are established on the spatigéarent level, typically

through formulating the problem as a graph matching problem,[elq. [9, 125].

3) The Role of Manifold:Learning image manifolds has been shown to be quite useful in
recognition, for example for learning appearance manifolds from difteriews[[91], learning
activity and pose manifolds for activity recognition and tracking [36/ 128]. Almost all the
prior applications of image manifold learning, whether linear or nonline&e baen based on
holistic image representations where images are represented as vegdise seminal work

of Murase and Nayar [91], or by establishing a correspondenoefr@rk between features or

landmarks, e.gl [28].
The Manifold of Local Features:

Consider collections of images from any of the following cases or combirsatibthhem:
¢ Different instances of an object class (within-class variations);

¢ Different views of an object;



e Articulation and deformation of an object;
¢ Different objects across-classes or within-class sharing a certairugtrib

Each image is represented as a collection of local features. In all thess, dath the
features appearance and their spatial arrangement will change ast@ffiuof all the above-
mentioned factors. Whether a feature appears in a given frame ané,whktive to other
features, are functions of the viewpoint of the object and/or the articalafithe object and/or
the object instance structure and/or a latent attribute.

Consider in particular, the case of different views of the same objecteT®@n underly-
ing manifold (or a subspace) where the spatial arrangement of thedeatuould follow. For
example, if the object is viewed from a view circle, which constitutes a onerdiioeal view
manifold, there should be a representation where the features and ditét aprangement are
expected to be evolving on a manifold of dimensionality at most one (assumicgmictor
out all other nuisance factors). Similarly, if we consider a full view sphartwo-dimensional
manifold, the features and their spatial arrangement should be evolvenghanifold of dimen-
sionality at most twoThe fundamental question is what is such representation that reveals the
underlying manifold topologyThe same argument holds for the cases of within-class variabil-
ity, articulation, and deformation, and across-class attributes; but incswse's, the underlying
manifold dimensionality might not be known.

A central challenging question is how can we learn image manifolds from ehbofilocal
features in a smooth way such that we can capture the feature similarity atidlsgrrange-
ment variability between images. If we can answer this question, that weill e door for ex-
plicit modeling within-class variability manifolds, objects’ view manifolds, activignifolds,
attribute manifolds; all from local features.

Why manifold learning from local features is challenging :

There are different ways researchers have approached theoftinalgge manifolds, which

are not applicable here. This points out the challenges for the caseroinigdrom local

features.

1. Image vectorization based analysislanifold analysis require a representation of im-

ages in a vector space or in a metric space. Therefore, almost all thepplications



for image manifold learning, whether linear or nonlinear, have been lms®dolistic
image representations where images are represented as Viectordd[9294.236]. Such
wholisitic image representation provides a vector space representati@ncandespon-

dence frame between pixels in images.

. Histogram based analysi©n the other hand, vectorized representations of local features
based on histograms, e.g. bag-of-words alike representations i teumsed for learning
image manifolds since theoretically histograms are not vector spaces. ldis®do not
provide smooth transition between different images with the change in thedesyiatial
structure. Extensions to the bag-of-words approach, where the ISpftianation is

encoded in a histogram structure, e.g. [81/66] 114] cannot be osttkfsame reasons.

. Land-mark based analysidAlternatively, manifold learning can be done on local fea-
tures if we can establish full correspondences between these feiatatEisnage, which
explicitly establish a vector representation of all the features. For exasgtiee Shape
Models (ASM) [28] and alike algorithms use specific landmarks that can behedhin
allimages. Obviously it is not possible to establish such full correspaeddretween all
features, since the same local features are not expected to be visiblénagdls. This

is a challenge in the context of generic object recognition, given the lsitipn-class
variability. Establishing a full correspondence frame between featuaésasot feasible
between different views of an object or different frames of an artiedlenotion because

of self occlusion or between different objects sharing a common attribute.

. Kernel-based analysisAnother alternative for learning image manifolds is to learn the
manifold in a metric space, where we can learn a similarity metric between images (fr
local features). Once such similarity metric is defined, any manifold learnatigue
can be used. Since we are interested in problems such as learning wigsrvatebility
manifolds, view manifolds, activity manifolds, the similarity kernel should reftexth

the appearance affinity of local features and the spatial structure simitadtgmooth
way to be able to capture the topology of the underlying image manifold withdiottdis
ing it. Such similarity kernel should be also robust to clutter. There have deariety

of similarity kernels based on local features, e.g. pyramid matching kés@glgtring



kernels[[33], etc. However, to the best of our knowledge, none gethgisting similarity

measures were shown to be able to learn a smooth manifold representation.

1.2 Contributions

In this section we highlight the key contributions of the dissertation.

1.2.1 Fusing Feature Similarities and Spatial Arrangemerg of Local Features

in a Common Embedding Space

The first contribution in this dissertation is to learn a low-dimensional reptaisem from a
bunch of local features from different images. The learned embedeprgsentation preserves
both the spatial arrangements of local features within an image and thesfeatularities be-
tween features from different images. To achieve such representatipnopose an objective
function solution of which can be computed in a closed form using eigenveéetmmpaosition.
This new low-dimensional representation fuses both the feature similaritiepatial arrange-
ments of local features from different images in a common embedding sphitd, @hances
the task of learning a similarity measure between images. Details on the embediding w

presented in chaptel 3.

1.2.2 Defining Similarity Measure between Images

The dimensionality reduction provides a global embedding for the featumésgas the whole
embedding is affected by all the feature points and thus the distances in tleedinmdbspace
are affected by all the points embedded. This makes the task of learning ge imanage
kernel in the new embedding space smoother than computing a kernellibatordy on the
features from two images. Here comes another contribution of the dissertagoprovide a
distance measure in the embedding space obtained by dimensionality reducti@feature
points. This measure reflects the feature and spatial similarities betweerefpaints as in-
tended and moreover it provides smooth distance measure between imagewilNlcorrectly

capture smooth image manifolds. Hig.]1.1shows a view manifold example whichrésibp

captured using our similarity measure.Details on the image to image distance widdsnjed



in chaptef 4.

Figure 1.1: Examples of view manifold learned from local features for xayrgle

1.2.3 Solving The Out-of-Sampling Problem Embedding New Feates

In manifold learning, embedding large number of features can be prokiliitigertain situa-
tions. Usually this problem is tackled in two steps. First, data is sampled and addimd
for sample points is computed to form an initial embedding. Second, the remaiviimtg are
out-of-sampled using some approximation techniquel[117]. Out-of-samigliatyo needed
when it is required to embed test data for recognition purposes. Howfevegither of the
two cases current approximation methods do not consider the case tbayat-of-sampled
features are structured in groups like our case where every sedtafdés belongs to a single
image are structured via the spatial structure within that set. Our contributtors@ve the
out-of-sample problem where the features that belong to the same imagelaedded in a
way that respects the spatial structure within an image and, in same time, réfle@ature
similarity between the features of the new embedded image and the alreadydealfeatures

in the initial embedding. We provide a closed form solution in chdgter 3.



1.2.4 Learning Image Manifolds from Local Features

As a direct consequent of image-to-image distance, image manifolds caarbedeThe con-
tribution here is to utilize image manifolds in object recognition tasks like unsigeehobject

categorization, object classification and object localization. Our approatperforms many
state-of-the-art methods in corresponding problems. Details and resuiivan in chapteils 4

and5.

1.2.5 Regression Framework from Local Features

Many computer vision problems are regression problems, for example oiletignd pose esti-
mation, age estimation, facial expression intensity, etc. However, therepiemous work on
regression problems using collections of local features where therecmraspondence avail-
able. For example enforcing the spatial structure on a learned view manitikds it easier
to capture the underlying manifold in a smooth way and enables for learnirigngous regu-
larized regression functions. Our contribution is to provide kerneldbesgression framework

from local features. Details will be presented in chapter 6.

1.2.6 Scalable Multi-Set Feature Matching

Feature matching is a very important and fundamental problem in computen.visiany
state-of-the-art matching techniques try to achieve spatially consisténtdfgaatching using
guadratic assignment. These methods deals with the spatial consistenayiry laigher or-
der terms between pairs of features which grow the size of the problermabiratic order of
the original number of features to be matched. The embedding framewdriv¢hpropose
in this dissertation has three merits. First, the embedding preserves both &patigements
of local features within an image and the feature similarities between featoragdffferent
images. Second it allows for multiple images to matched together without the neetvioiy
a quadratic assignment for every pair of images. Third it involves oneneegéor decomposi-
tion problem whose size is linear in the number of features from all imagewhédes our
solution scalable compared to quadratic assignment methods. Our contrisutidiormulate

the feature matching problem as a graph embedding problem which invaieesigenvector



problem to embed all features at once. Also another contribution in outicols to handle
multiple images that need to be matched together while quadratic assignment nuethods.

Details will be presented in chapféar 7.

1.2.7 Implicit Feature-Spatial Manifold

The feature spatial manifold embedding that we mentioned in previous s$iaod@?.] is
an explicit way to obtain the low-dimensional representation of the featurdgspoThe di-
mensionality reduction requires solving an eigenvector decomposition prolewever, in
certain problems we are given some label information, which can be viesvadsapervised
embedding space for the feature points. Using the label information wowibaiehe need of
solving the dimensionality reduction problem. Learning the Feature-spatigiattbreduces to
learning a graph structure that reflects inter image spatial arrangemdritgrarimage feature
similarities. Learning the graph structure of the spatial visual manifold is tla¢ dontribu-
tion in this dissertation. We show the usefulness of spatial visual manifold ioljeet class

localization problem. Details will be presented in chapter 8.



Chapter 2

Background

2.1 Local Features in Object Recognition

During the last two decades lots of research in computer vision communityocaded on
local features and their usage in many different problems such as sigi@a image registra-
tion, mosaicing, structure from motion, motion segmentation, tracking, instacogmition,
object recognition, object detection, etc. Invariant properties for tbal ieatures to image
transformations, distinctiveness, and robustness to occlusion of tHefdatares make them
more plausible to be used in the wide range of problems in computer vision commLmity
fact, the top cited computer vision paper for the past ten years is "Distinlotiage Features
from Scale-Invariant Keypoints ” by Loweé [79, 78], where the SIFE&criptor for keypoints
in images was presented. This gives us an insight on how important it wettld dtilize lo-
cal features to develop state-of-the-art methods in many object recagsytstems and other

computer vision problems in general.

2.1.1 Feature Detectors

The local features are point locations in images associated with vectorsedimtor. Lots
of researches had been conducted to show how to compute candidagstiptnt locations
for useful local features in an image. These interest points includésttammers|([55], Harris-
affine regions [85], Hessian-affine regions|[85], maximum stable mwresgion (MSER)[83],
salient region$[58], and more. These feature/region detectors trydtthitncandidate patches
in the image that makes the local feature informative, invariant to geomefiiiee(atation or
scale) transformations and repeatable to facilitate recognition tasks. Amo¢tieod to detect

the feature points was introduced in [11] by sampling the edges accordiedgt strength
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scores.

2.1.2 Feature Descriptors

Another important part is the description of the local features. The igésicshould be in-
variant to viewing angle, illumination, compression, blurring, zooming, ete déscriptor is
summarizing the information in the patch around the location of the local fed&inaenples are
Scale Invariant Feature Transform (SIFT)I[79], Geometric Blur ({3B], Gradient Location
Orientation Histogram(GLOH) [86], Histogram of oriented gradient (HJ&2), Shape Con-
text (SC) [9], etc. Many of the mentioned descriptors are histogramesepting local edge
orientation distribution, for example SIFT_[[79] is represented by a 3D hiatogf gradient
locations and orientations. Also Shape contekt [9] is similar to the SIFTigescibut is based

on edges. Shape context is a 2D histogram of edge point locationsianthtions.

2.1.3 Performance of Detectors and Descriptors

Several evaluation studies on local features have been published.vafiragon on region

detectors was presented in [87]. This evaluation was based on theéatapaof the features

and on matching image pairs under different viewing conditions. The csiodas indicated

by [87] is that the performance of all presented detectors declines shwittysimilar rates, as

the change of viewpoint increases. There does not exist one ddtemtoutperforms the other
detectors for all scene types and all types of transformations.

Another study on evaluating descriptors has been presented|in [&6h, g evaluations
was based on matching tasks under different viewing conditions. Thausion as indicated
by [86] was that in most of the tests, GLOH obtains the best results, cladkiwéd by SIFT.
This shows the robustness and the distinctive character of the regied-I$dFT descriptor.
Shape context also shows a high performance. However, for texdoeses or when edges are
not reliable, its score is lower.

Another evaluation study [89] combined the evaluation on detectors amdifgiess to-
gether. In[[89] the evaluation is done on 3D objects, and it was foundheabest overall

choice is using an affine-rectified detector|[85] combined with a SIET §r3hape context
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descriptor([9].

2.1.4 Bag of Visual Words Models

Inspired by bag of words model in text categorization [13], many worls,d31,[66,144],
addressed the object recognition problem with no dependence on tied spafiguration. A
simple approach has been followed to utilize local features in object rémogtasks, called

the bag of words model, which can be summarized as:
1. Detect local features using a feature detector and compute locakfeiscriptors.

2. Compute a dictionary of visual words from training images by clusteringdeatire

descriptors using K-means or other clustering technique.

3. Compute a histogram representation for each training image based oeqberfcies of

the visual words.
4. Learn a classifier from training images.
5. Assign every feature in the test image to its nearest visual word.
6. Compute a histogram representation for the test image.
7. Classify the resulting histogram to decide the category of the test image.

Advantages of the bag of visual words model lies in its simplicity, it implicitly inherits th
discriminative nature of the local features in the dictionary building step thésmodel is able
to summarize every image in a single vector, which ease the categorization tasks

An interesting work by Boiman et al. [14] showed that a system that is basettarest
neighbor search between query features and all the features bedangsclass can outperform
a visual word system. This actually means that, the feature space quantiziivisual words
caused some loss in representing the query features.

It is not difficult task to compute an image-to-image kernel if images are in the saet-
ric space. Once an image-to-image kernel is computed, Kernel S$VM fHovbe learned to

classify the different categories. The bag of words model tries to buitthtiges of the same
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dimensionality for all images involved in an object recognition systeml_In [#4dmple dis-
tance metrics are used like the Earth Mover Distance(EMD) [104] or thes@ildres distance.
Later these distances are transformed into SVM kernels using Gaussih ke

Another important kernel is the pyramid matching kernel (PMK)Lin| [50]. Tisthod
can handle collections of local features in images without the need of buiiditigtionary.
Instead a multi resolution pyramid is used to bin the features and histograneaiienskernel

is computed.

2.2 Encoding Shape based on Local Features

Modeling the spatial structure of an object varies dramatically in the literafurbject clas-
sification. On the extreme, are approaches that totally ignore the struotlidassify objects
only based on the statistics of the features (parts) as an unorderedysdiag-of-words ap-
proaches|[31, 66, 144]. However, the performance of objecgrétion systems was shown to

be improved by utilizing the shape or the arrangements of the local fegdfiiré}s [

2.2.1 Grouping of Local Features within Spatial Neighborhod

Several bag-of-words extensions are offered to encode the spdditbns within the learned
dictionaries. The work of [112] extended the bag-of-words vocaputinclude doublets that
encode spatially local co-occurring regions. Doublets are definediessqd visual words that
co-occur within a local spatial neighborhood.

Similar ideas for encoding the spatial relations of visual words are stugdiefd43] and
Spatial Keyton Histogram is introduced. Another important direction is to dtufe selection
within the higher order features that encode spatial relationships of melkdrag of words
model. The exhaustive nature of higher order features need to b&eHdadvoid exponential
growth of the cardinality of the learned features. Towards this end thie @Y 7]] proposed to
use feature selection framework on the learned visual words and thaigtier order features
are learned using only the selected ones. The feature pool is updatgdhes added higher
order features and the process continues. This approach is notadiirlg co-occurrence of

pairs of visual words but also it handles the case of co-occurrenttgles of size N visual
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words and, in same time, it does not need to generate all the higher ortier Ivgffore feature
selection.

All the mentioned approaches start with a visual word dictionary that is éelaom the
descriptors space, the next step is to do the pairing between the leamnaldwasds. However,
arecent approach [90] build a dictionary on the concatenated paisedpters of locally close

features and thus they can learn a Local Pairwise Codebook (LPC).

2.2.2 Part Based Models

Pairwise distances and relative locations between parts have also kddo aacode the spatial
structure, e.g.J1]. Felzenszwalb and Huttenlochers Pictorial struf@8teuses spring like
constraints between pairs of parts to encode the global object strudmsever, [38] restricts
the connections to a tree, which makes learning and inference more tractable

Sacrificing the ease of inference on pictorial structures comes the futlgecbed con-
stellation model, where the assignment of features to parts becomes intrdotailederate
numbers of parts P. The trade-off between the number of features amdithber of parts is
crucial in the constellation model and would prevent from having manyrestn images. The
constellation model by [17, 135, 40] consists of a number of parts wietetve positions are
encoded to constrains the part locations given a central coordinaéersgad pairwise covari-

ances. Fid: 211 shows the constellation model and pictorial structure) fdrdize parts model.

< =

Figure 2.1: Different part models. Left:Constellation model. Right:PictorialcBire(Tree).
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2.3 Manifold Learning for Object Recognition

Manifold learning is a very powerful tool for data analysis. The quediiobe answered via
manifold learning techniques is how to reveal a low-dimensional structureighalimensional
data. There are two kinds of low-dimensional structures can be found bfetfa namely linear
and nonlinear structures. As can be seen ir_fi§j 2.2 the linear structures iieadata lies
on a low-dimensional subspace. Where the nonlinear structure meanstéhied on a low-
dimensional manifold. The low-dimensional representation is intended to mairgiinige

relationships between data points. In other words ,nearby points remainyread distant

points remain distant. The problem of dimensionality reduction can be defmgivenM,

50 100 150 200 250 300

(a) Linear Structure (b) Non-Linear Structure

Figure 2.2: Left: Linear structure where the data lies on a low dimensiohapsge.Right:
Non-Linear structure where the data lies on a low dimensional manifold.

pointszy, xa,...,zy € RP, these points need to be embedded mtoys, ...,y € RY,

whered << D. Under certain geometric constraints that preserves the topology ofttéhe da

2.3.1 Linear Methods

The linear methods are suitable when the input data lie on a low-dimensiorsgazg The
outputs returned by these methods are related to the input patterns by a simegidrimsfor-
mation. Example methods are principal component analysis (RCA) [57] alticddimensional
scaling (MDS) [30]. For example, the objective in PCA is to obtain a low-dinoeas rep-
resentation while maximizing the variance. This is achieved by finding a sethafrarmal
bases{ej}gzl, which are the topl eigenvectors of the covariance matix= - >, z;27.
The resulting embedding; = x;e;.

On the other hand the MDS tries to preserve the inner product betweenptltepinints.
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This can be achieved by finding the spectral decomposition of the gram niateix X7 X
Where X isM x D matrix for all the input points. Finding the tapeigenvectors of this Gram
matrix M x M by {vj}?zl and their corresponding eigenvalues {355}?:1 , the resulting
embedding of MDS are given hy; = \/A;vj;.

2.3.2 Nonlinear Methods

The nonlinear methods, also called graph based methods, are suitabl¢heheput data lie
on a low-dimensional manifold. Linear methods tend to fail and the points wilfdjegted on
each other. The nonlinear methods start with graph construction stege thleegraph approxi-
mates the geodesics between the data points. The graph nodes are tléerdatng the edges
are the pairwise weights that are based on neighborhood structuretrébjgecomposition is
then performed on the graph and the lower dimensional representatitmes ddita points can
be computed directly from the corresponding eigenvectors. Since wa@ne interested in
nonlinear methods we summarize two of the widely used methods namely Laplagem E
Maps [93] and Isometric feature mapping (ISOMAP) [119]. Other methndsides local
linear embedding (LLE) [103], Maximum variance unfolding (MVU) [136jc.

ISOMAP embedding is a clear example where the goal is to to preservesjeddtances
as measured along manifold. Kigl2.3 shows that the geodesic distance omifadis not
equivalent to the Euclidean distance for same points and that is why lineapasdike MDS

would fail to unfold the underlying manifold.

Figure 2.3: Geodesic distance on the manifold between the points A and Baguigalent to
the Euclidean distance.

In ISOMAP, the first step is to build adjacency graph based on k neaeggtbors. The
second step is to compute the pairwise distances between all nodes aldegtgraths through

the graph. This can be done using Djikstras algorithm. the third step is to apgp§ & the
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distance matriXA and finally produce thé significant eigenvectors of the Gram matrix.

Of particular interest to this dissertation is the Laplacian eigenmaps, wherghted
adjacency matrix (graph) on the original features is defineWas = exp~lei==il°/20* The
following objective function need to be minimized

oY) =i — ;P Wiy, (2.1)
2%

Therefore, the minimization problem reduces to finding

Y*=arg min tr(YILY), (2.2)
YTDY=I

whereL is the Laplacian of the matriW, i.e., L = D — W, D is the diagonal matrix
defined adD;; = Zj W;;. As mentioned in [[93], the constraid’DY = I removes an
arbitrary scaling factor in the embedding. The solution is provided by the nudigigenvectors
corresponding to the lowest eigenvalues of the generalized eigenvalblem Ly = ADy.
The embedded/ points are stacked in thivectors.

It was shown in [[98] that the laplacian eigen embedding based on Né&igstbor graphs
preserves local optimality criterion. The local optimality criterion is the key fdolding the

manifolds in high dimensional spaces to be presented in lower dimensiorakspa

2.3.3 Unified View of Dimensionality Reduction Methods

The dimensionality reduction methods that we mentioned in the above subsezdiorise
viewed as instances for a unified dimensionality reduction framework. ©®tleedmportant
studies to relate different methods into a common framework is the study by Ham|[®84]
where a kernel interpretation of KPCA, ISOMAP, LLE, and LaplaciareBigap was proposed
and it was shown that these methods share a common KPCA formulation wittedifternel
matrices. The construction of a kernel matrix is equivalent to mapping thdaatants in a
Hilbert space so that the resulting kernel is positive definite.

Also in [10] a common formulation for the MDS, ISOMAP, LLE, spectral clustg, and
Laplacian Eigenmap was proposed with an out-of-sample extension. kheas that a com-
mon algorithm can be used to build a unified framework in which these algorittersean as

learning eigenfunctions of a kernel.
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Another study([142] is more general as it supports both supervisedresupervised meth-
ods in dimensionality reduction in a common framework which is called graph etizpd
framework. LLE, laplacian eigenmaps,ISOMAP, PCA, KPCA, LDA,LPP eoesidered as

instances of the graph embedding framework.

2.3.4 Large Sale Dimensionality Reduction

The work in [117] examined the problem of extracting a low-dimensional ralhgtructure
given very large sized data points (millions) of high dimensional data. Timpatational chal-
lenges of nonlinear dimensionality reduction via ISOMAP and Laplacian BEiges, using a
graph containing millions of points make the problem intractable. The studpgeoptwo ap-
proximate spectral decomposition techniques for large dense matricesdiyend Column-
sampling), providing a theoretical and empirical comparison between thels@idaes. The
large scale method for dimensionality reduction was examined on Laplaciammegs and
ISOMAP and successfully applied on datasets of sizes up to 65 millions fagesfiar clas-

sification and clustering tasks.

2.3.5 Applications for Manifold Learning in Object recognition

In computer vision problems the problem of dimensionality reduction shouldddeessed
properly. Usually the data (images) comes in high dimensional vector forn, sBppose
there is an underlying lower dimensional structure in the data that contraislétien between
images of similar objects from the same viewpoint, or images of same object fffaredt
viewpoints or illumination conditions. Manifold learning methods will reveal thdanty-
ing manifolds which can lead to better inference and recognition. Here ctiraeseminal
work of Murase and Nayar [91] where it was shown how linear dimengtgmaduction using
PCA [57] can be used to establish a representation of an object’s vieWlanaation mani-
folds. Using such representation, recognition of a query instanceecaatteved by searching
for the closest manifold. Such subspace analysis has been extendecbtombse multiple
orthogonal factors using bilinear models [120] and multi-linear tensor aisgl$29]. A way
to handle the nonrigid objects is to use landmarks as done in Active Shapeidvéodi Active

Appearance Models [28, 27]. The deformation are modeled througtr linedels of certain
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landmarks through a correspondence frame. Thus the ordered &mtsimiarks acts as vector-
ized representation of the images.

The introduction of nonlinear dimensionality reduction techniques such aal Latear
Embedding (LLE)[[108], Isometric Feature Mapping (Isoméap) [1194 athers([119, 103,18,
16,65/ 136, 88], made it possible to represent complex manifolds in lowrdimeal embed-
ding spaces in ways that preserve the manifold topology. Along the sanotiairenanifold
learning approaches have been used successfully in many problemasshiegman body pose

estimation and trackin@ [36, 87, 128,67].
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Chapter 3

Feature-Spatial Embedding Framework

In this chapter we propose a framework to embed bunch of local fedhaesre extracted from
different images. The challenge is to encode different sources of stiesaamong the local
features. Within an image, the spatial proximities between the local featuyssgriamportant
role for describing the shape of an object. In different images, theaappee similarity plays
more important role in recognition tasks. Fusing both similarities helps in definimgna
representation of the local features that takes into consideration thel spediagements of
local features within an image and maintains the appearance similarity of |latatés within

different images.

3.1 Problem Statement

We are givenk images, each is represented with a set of feature points. Let us deobteets
by, X', X2, ... XX wherexX* = {(x’f,f{“),--- (@ R )}. Each feature pointz?, f¥)
is defined by its spatial Iocatlom € R?, in its image plane and its appearance descriptor
f’f € RP, whereD is the dimensionality of the feature descriptor sHadéor example, the
feature descriptor can be a SIET[79], GBI[11], etc. Notice that the enmifeatures in each
image might be different. We us€; to denote the number of feature points in thith image.
Let N be the total number of points in all sets, i.&.,= Zle Ny.

We are looking for an embedding for all the feature points into a common ermgedd
space. Ley* € R? denotes the embedding coordinate of pdirlt, f), whered is the di-

mensionality of the embedding space,, we are seeking a set of embedded point coordinates

Throughout this chapter, we will use superscripts to indicate an imagsuratripts to indicate point index
within that imagej.e., ¥ denotes the location of featutén the k-th image.
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Yk = {y{‘, co ,yﬁ“\,k} for each input feature séf*. The embedding should satisfy the follow-

ing two constraints

e The feature points from different point sets with high feature similarity Ehbacome
close to each other in the resulting embedding as long as they do not violafatied s

structure.
e The spatial structure of each point set should be preserved in the dimpepace.

To achieve a model that preserves these two constraints we use two dels kased on
the affinities in the spatial and descriptor domains separately. The spétial/gktructure) is
computed within each image and is represented by a weight n$itwhereS}; = K (=}, z¥)
andK,(-, -) is a spatial kernel local to theth image that measures the spatial proximity. Notice
that we only measure intra-image spatial affinity, no geometric similarity is meahsigress
images. The feature affinity between imagandq is represented by the weight matiix*?
whereU}! = K;(f7, f]) andK;(-,-) is a feature kernel that measures the similarity in the
descriptor domain between thigh feature in image and thej-th feature in image. Here
we describe the framework given any spatial and feature weights inajeara later in this
chpater we will give specific examples on some kernels we can use.

Let us jump ahead and assume an embedding can be achieved satisfyiogdimeationed
spatial structure and the feature similarity constraints. Such an embeddiog sgpresents
a new Euclidean “Feature” space that encodes both the featuresirappe and the spatial
structure information. Given such an embedding, the similarity between twafsttatures
from two images can be computed within that Euclidean space with any suitalsiendarity
kernel. Moreover, diffent object recognition tasks can be perforikecbbject classification,

regression and category discovery, etc... .

3.2 Objective Function

Given the above stated goals, we reach the following objective functitimoembedded points

Y, which need to be minimized

oY) =D lluf —F 1S+ > 0> Ik — i Pury, (3.1)
k 1,7

P i,J



21

wherek, pandg = 1,--- , K, p # ¢, and|| - || is the L2 Norm. The objective function is
intuitive; the first term preserves the spatial arrangement within eachises, it tries to keep
the embedding coordinatg$ andy” of any two pointsz} andz* in a given point set close to
each other based on their spatial kernel wetypt The second term of the objective function
tries to bring close the embedded poigfsandy if their feature similarity kerneUy is high.
This objective function can be rewritten using one set of weights defingdeowhole set

of input points as:

oY) =D > [lF -yl ALY, (3.2)

pg 1,
where the matriA is defined as

Sfj p=q=k

Uil p#q

AV — (3.3)

whereAP? is thepq block of A.

The matrixA is an N x N weight matrix with X' x K blocks where theyq block is of
size N, x N,. Thek-th diagonal block is the spatial structure kerBé&lfor the k-th set. The
off-diagonalpq block is the descriptor similarity kernel§??. The matrixA is symmetric by
definition since diagonal blocks are symmetric and sitiéé = U". The matrixA can be
interpreted as a weight matrix between points on a large point set where atipght points
are involved in this point set. Points from a given image are linked be weightesenting
their spatial structur&*: while nodes across different data sets are linked by suitable weights
representing their feature similarity kerdgP?. Notice that the size of the matriX is linear
in the number of input points.

We can see that the objective function Eq.] 3.2 reduces to the problenptfdian em-
bedding [8] of the point set defined by the weight matix Therefore the objective function
reduces to

Y*=arg min tr(YTLY), (3.4)
YTDY=I

whereL is the Laplacian of the matriA, i.e., L = D — A, whereD is the diagonal matrix
defined adD;; = Zj A;; . The N x d matrix Y is the stacking of the desired embedding

coordinates such that,
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Y = [y%,...,y]lvl,y%,...,y?vz,...y{{,...,yﬁK]T

The constrainfYy’DY = I removes the arbitrary scaling and avoids degenerate solu-
tions [8]. Minimizing this objective function is a straight forward generalizégenvector
problem: Ly = ADy. The optimal solution can be obtained by the botiémonzero eigen-
vectors. The required/ embedding point§y” are stacked in thée vectors in such a way that
the embedding of the points of the first point set will be the fiVstrows followed by theN,

points of the second point set, and so on.

3.3 Intra-Image Spatial Structure

The spatial structure weight matr#¢ should reflect the spatial arrangement of the features in
each image:. In general, it is desired that the spatial weight kernel be invariantamgéic
transformations. However, this is not always achievable.

One obvious choice is a kernel based on the Euclidean distances bdaaaaes in the
image space, which would be invariant to translation and rotation.

Instead we also can use an affine invariant kernel based on sebepaigance [134]. Given
a set of feature points from an image at locati¢nsc R?,i = 1,--- , N}, we can construct a
configuration matrix

X = [x1x2 - xp] c RNVx3

wherex; is the homogeneous coordinate of paint The range space of such configuration ma-
trix is invariant under affine transformation. It was shown in |134] tlmeafine representation

can be achieved by QR decomposition of the projection matriX afe.
QR = X(XTX)1xT

The first three columns of), denoted byQ’, gives an affine invariant representation of the
points. We use a Gaussian kernel based on the Euclidean distance ifitleigna@friant space,
ie.,

—\lgi—q;I?/202
Ky(zi,2;) =e llai—a;ll=/
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whereg;, g; are thei-th and;j-th rows of Q" and thus the produced kernel is affine invariant

with regard to the pointset.

3.4 Inter-Image Feature Affinity

The feature weight matriXJ?? should reflect the feature-to-feature similarity in the descriptor
space between theth andg-th sets. An obvious choice is the widely used affinity based on a

Gaussian kernel on the squared Euclidean distance in the featureispace

GP = 7= 1202

given a scale.

Another possible choice, which we used in chapier 7 and [122] is a sofigpondence
kernel that enforces the exclusion principle based on the Scott angukbtitliggins algo-
rithm [109].

Given the feature affinitgz between features in seisandg, we need to solve for a permu-

tation matrixC that permutes the rows &% in order to maximize its trace, i.e.,
¥(C) = tr(CTG)

The permutation matrix constraint can be relaxed into an orthonormal matrtraon on the

matrix C. Therefore, the goal is to find an optimal orthonormal ma@ixsuch that

C*=arg max tr(CTG) (3.5)
5.t.CTC=I

It was shown in[[109] that the optimal solution forB.5 is
C* = UEVT

where the SVD decomposition & = UXV’ andE is obtained by replacing the singular
values on the diagonal & by ones. The orthonormal matr&* are used as the feature weights

UP = UP" after setting the negative values to 0.

3.5 Solving the out-of-sample problem

Given the feature embedding space learned from a collection of training@saagl given a new

image represented with a set of features = {(«7, f”)}, it is desired to find the coordinates
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of these new feature points in the embedding space. This is an out-of-gamoiplem, however
it is quite challenging. Most of out-of-sample solutiohs![10] depends amileg a nonlinear
mapping function between the input space and the embedding space. Tdtiapphicable here
since the input is not a vector space, rather a collection of points. Merethhe embedding
coordinate of a given feature depends on all the features in the new { se of the spatial
kernel). The solution we introduce here is inspired by the formulatidn injiLl#®r clarity, we
show how to solve for the coordinates of the new features of a single negeinfée solution
can be extended to embed any number of new images in batches in a straigtdfamy.

We can measure the feature affinity in the descriptor space between tine$saf the new
image and the training data descriptors using the feature affinity kerneédefi Se€ 311. The
feature affinity between imageand the new image is represented by the weight ma&itix
whereU;” = K (fY, f;). Similarly, the spatial affinity (structure) within the new image can
be encoded with the spatial affinity kernel. The spatial affinity (structoiré)e new image’s
features is represented by a weight maik where S}, = Ks(xi”,x";). Notice that, con-
sistently, we do not measure any inter geometric similarity between images, weradye
intra-geometric constraints within each image.

We have a new embedding problem in hand. Given theXétsy?, - - - XX, X¥ where the
first K sets are the training data aixd is the new set, we need to find embedding coordinates
for all the features in all the sets, i.e., we need flad} U {y7},i =1, Ny andk =
1,---,K,j=1,---, N, using the same objective function in E}E.Howeven we need to
preserve the coordinates of the already embedded polnﬂsgg€ be the original embedding

coordinates of the training data. We now have a new constraint that widmeatisfy

yk =gk for i=1,--- Nyk=1,--- K

Following the same derivation in Séc B.1, and adding the new constraint,asb tee

following optimization problem iry

2\We are not using the approach in [140] for coordinate propagatiorgres@nly using a similar optimization
formulation.

3In this case the sets indicésp, andg = 1, - - - K + 1, to include the new set
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min tr(YTLY)

(3.6)
st yb=gFi=1,- Nynk=1-.- K
where
T
Y = [y%v"wy]l\/l)"'y{()'"79][\§K7y11/7'”7y}j\/,,]
whereL is the laplacian of théN + N,,) x (N + N,) matrix A is defined as
AT U7
A= (3.7)
ur s

whereAT is defined in E§3]3 an” = [U%! ... U*X] Notice that the constrailv " DY =
I, which was used in EQ_3.4 is not needed anymore since the equality cotsstradnd the
degenerate solution.

Unlike the problem in EQ 314, which is quadratic programming with quadratict@ints
that can be solved by as an eigenvalue problem, the problem[in Eq 3.6 isiatici@rogram-
ming with linear equality constraints. It was shownlin [140] that this problembeadivided
into d subproblems (one in each embedding dimension), each of which is a QPVwithV,,

variables,V of which are known.
T

AT U¥
Let L be the Laplacian of the matrix = , Which can be rewritten as
uv sv
LT LZITT
L= (3.8)
Ll/T Ll/

Wherer denotes the training data. The objective funclion 3.6 can be written as
LT LVTT
min  tr([Y7Y"]" [YTY"])
LY LY (39)
st. yi =y ,i=1,--- NT
The objective functiof 319 can be expanded as

(YY) =mintr(Y'L'Y" + YIL™YY + YL Y™ + Y/TLY YY) (3.10)

The firstterm is constant singé = ¢7,: = 1,--- , N". Afterwards we can differentiaig(Y')

w.rtY” and equate the derivati\?g%to zero, then we have

2x LYY = (L' + L™T)Y” (3.11)
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SinceL”” = L™ and given the definition of laplaciah of A = D — A this implies that
L¥" = —U". This will result in

LYY = UY)Y" (3.12)

and hence

YV = (L) tury” (3.13)

3.5.1 Populating the Embedding Space

The out-of-sample framework is essential not only to be able to embeddsdtom a new
image for classification purpose, but also to be able to embed large numivergefs with large
number of features. The feature embedding objective function ib_ Seol®e&ssan Eigenvalue
problem on a matrix of sizé&V x N whereN is the total number of features in all training
data. Therefore, there is a computational limitations on the number of training&zengl the
number of features per image that can be used. Given a large trainingveaiae a two a step

procedure to establish a comprehensive feature embedding space:

1. Initial Embedding: Given a small subset of training data with a small nunflfeatures

per image, solve for an initial embedding using[EQg 3.4.

2. Populate Embedding: Embed the whole training data with a larger numbeatofde

per image, one image at a time by solving the out-of-sample problem[inEq 3.6
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Chapter 4

Image Embedding from Local Features

The question that we address in this chapter is how can we learn image mafrifoldsollec-
tions of local features from different images in a smooth way that captluedsature similarity
and spatial arrangement variability between images. We benefit from dhedespatial em-
bedding framework introduced in chapkér 3 to build a representation thaemes both the
local appearance similarity as well as the spatial structure of the featMesfsirther embedded
features from a new image by using the solution we introduced in chaptertBdmut-of-
sample. By solving these two embedding problems and defining a proper simitedigure in

the feature embedding space, we can reach an image manifold embeddiag spa

4.1 From Feature Embedding to Image Manifold Embedding

The embedding achieved in chaptér 3 is an embedding of the features edwréemage is
represented by a set of coordinates in that space. This Euclideancgrabe the basis to study
image manifolds. All we need is a measure of similarity between two images in thad.spa
There are a variety of similarity measures that can be used. For robsisiveeshose to use a
percentile-based Hausdorff distance to measure the distance betwesgtdvod features from

two images, define as
P x4 i ll? — o2l res min o — o/
H(XP, X1) = max{m;lxmzm\lyi —yj\lamgwxmijyi —yill} (4.1)

wherel is the percentile used. In all the experiments we set the percentii@’toi.e., the
median. Since this distance is measured in the feature embedding spacests tafth feature
similarity and shape similarity.

Once a distance measure between images is defined, any manifold embedaimguies,
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such as MDS[[30], LLE[[103], Laplacian Eigenmaps [8], etc., can el te achieve an em-
bedding of the image manifold where each image is represented as a poirttspdba. We
call this space “Image-Embedding” space and denote its dimensionality toydisambiguate
it from the “Feature-Embedding” space with dimensionadity

Although the percentile-based Hausdorff measure is more robust thamigiveal Haus-
dorff kernel, the resultind] is not a positive definite distance matrix, i.e., edoes have

negative eigenvalues, hence the images cannot be assumed to lie in a naegic sp

(a)H,I=1 (b)H,I=.5 (c)H*

Figure 4.1: Different dissimilarity matrices. Ti#&, [ = 1 distance matrix is far from giving
any meaningful clusters in the matrix. For bdh™ andH, | = .5 the clusters can be seen on
the diagonal (every 9 rows are in the same cluster). However the bloeksae strong on the
H distance matrix.

We useH to compute a positive definite versidfi™ that uses the eigenvectors correspond-
ing to the positive eigenvalues. We can obtain an Euclidean distance matngphasents the
percentile-based Hausdorff measure of similarity and hence the imagesaented in a met-
ric space which describes the similarity between images in a more sensible mgawaly that
we follow is called spectrum transformation for a non-metric proximity matrix. gpectrum
transformation on the dissimilarity matrB works as denoising step [139].

Figure [4.1 shows three dissimilarity matrices. The original Hausdorff distanatrix, i.e.

I = 1, which is a metric distance, the median Hausdorff kernel,li.e: .5 and the positive
definite version of the median Hausdorff matrix. The third matrix is used to obli@irmage

embedding in figurg4l4.
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4.2 Image Manifold Examples

4.2.1 Visualizing View Manifold

COIL data set/[[91] has been widely used in holistic recognition appreaghere images are
represented by vectors [91]. This is a relatively easy data set whgret wiew manifold can
be embedded using PCA using the whole image as a vector representalidnijas also been
used extensively in manifold learning literature, using whole image as a vegi@sentation.
We use this data to validate that our approach can really achieve an entptdirs topolog-
ically correct using local features and the proposed frameworK. Figho®s two examples of
the resulting view manifold embedding. In this example we used 36 images with GéasB
tures per image. The figure clearly shows an embedding of a closed onesttime manifold
in a two-dimensional embedding space. To the best of our knowledge, itheo previously

reported results that successfully embed this kind of manifolds using leaires.

4.2.2 Shape Classes

We used the “Shape” dataset [114]. The Shape dataset contains48sc{aup, fork, hammer,
knife, mug, pan, pliers, pot, sauce pan and scissors), with a total ofv&fes. The dataset
exhibits large within-class variation and moreover there are similarity betwlasses, e.g.
mugs and cups; saucepans and pots. We used 60 images (6 samplessperadan randomly)
to learn the initial feature embedding of dimensionality 60. Each image is repeesesing
60 GB feature descriptor. To achieve the image embedding we used MD® dtatisdorff
measure. Fid. 413 shows the resulting image embedding using the first two dimseng/e
can easily notice how different objects are clustered in the space. @leraany interesting

structures we can notice in the embedding, e.g. mugs and cups are closh ttlea.

4.2.3 TUD/ETHZ Objects

We use the same dataset that has been usédlin [60], it has three catéylaterbikes, Gi-
raffes, Car-side viewwith different sizes 115, 87 and 100 respectively. This dataset is very

challenging due to the heavy clutter in the scenes and the multi-instancesofatonge images



Figure 4.2: Examples of view manifolds learned from local features
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Figure 4.3: Manifold Embedding for 60 samples from Shape dataset usi@@6ocal features
per image

in the Motorbikes and Giraffes classes. We select 27 random samplam@es per class) to

form an initial feature embedding.

4.2.4 Caltech Subsets

We used different subsets of Caltech-101: Caltech-4-1 (facesan@p, motorbikes, leopard) as
used in[[112, 131, 51], Caltech-4-ll (faces, airplanes, motorbitas;rear) as used in [41,/56]
and Caltech-6 (faces, airplanes, motorbikes, cars-rear, ketchhegatas used in [41, 56]. In
all cases we used 60 geometric blur features per image. We used 12 ireagkssp to achieve
the initial feature embedding of dimensionality 60. The whole data set is therdeledbeising
out-of-sample. To visualize the obtained manifold, we show in[Eid. 4.5 the atedachage
manifold (first two dimensions) obtained after the initial feature embeddingnikges per
class, 60 features per image) for Caltech-4-l. As can be noticed, aleBraantain significant
amount of clutter, yet the embedding clearly reflects the perceptual similatityelbn images

as we might expect. This obviously cannot be achieved using holistic imamgjerization,
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Figure 4.4: Embedding 9 samples from three classes Motorbikes anddeawi€v(TUD) and
Giraffes(ETHZ) based on the common feature embedding framework cllik&ering is very
clear, only one sample is mis-clustered in this example

as can be seen in Fig._#.5-bottom, where the embedding is dominated by similaritygie ima
intensity. To the best of our knowledge, this cannot be achieved withdsting similarity
measure on local features. Using the whole data set we can achieve @ongechensive
embedding of all images. This is shown in Hig.14.6 for both Caltech-4-II (26&@es) and
Caltech-6 subsets (2912 images). In these example we used MDS to atisex@bedding
using the Hausdorff measure (Eql4.1) in the embedded feature spaedigiite shows the
embedding in the first two dimensions where each image is represented liyt.alpdooth
cases, we can notice that the classes are well clustered in the spacéhawgh we are only

showing only two dimensional embedding.
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Figure 4.5: Example Embedding result of samples from four classes ofcGdlte. Top:
Embedding using our framework using 60 Geometric Blur local featuresaage. The em-
bedding reflects the perceptual similarity between the images. Bottom: Embéduidiad on
Euclidean image distance (no local features, image as a vector reptesgntdotice that Eu-
clidean image distance based embedding is dominated by image intensity, i.er,ichades
are clustered together and brighter images are clustered.
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Figure 4.6: Manifold Embedding for all images in Caltech-4-Il, Caltech-élyQirst two
dimensions are shown.
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Chapter 5

Applications: Object Recognition

In chapters[ 13,14 we propose a novel representation to learn a commoulainthéor local

features from different object categories. The learned reprdsmntakes into account the
feature similarities across different image instances and the feature spediaement within
each image instance. Such a representation can be used in recognitiemsan this chapter
we show different applications including object classification, localizatimh @nsupervised
category discovery. We show that we outperform state-of-the-artadetim different object

recognition tasks.

5.1 Introduction

In the previous chapters we proposed four components will enable os/®isportant prob-
lems in object recognition. The four components are a feature embeddiag,sgn image
similarity measure induced by this space, an out-of-sample solution, and ae megfold

embedding space. In this chapter we show several results obtainestémgmnition problems
including object classification, object localization and unsupervised aatatiscovery. We

show comparisons to state-of-art-methods with clear improvements.

5.2 Results: Object Classification

In all experiments we used the Geometric Blur features (GB) [11]. It Wwaws in [114] that
adding spatial information, geometric features, such as GB, outperftiren features. This
has been also confirmed with our experiments. In all experiments we setribegionality of
the feature embedding space to be equal to the minimum number of featunemperused in

the initial embedding. In all experiments with SVM, a linear kernel was used.
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training/test splits
Classifier 1/5 13 1/2 2/3
Feature embedding - SVM 74.25 80.29 82.85 87.02
Image Manifold - SVM  80.85 84.96 88.37 91.27
Feature embedding - 1-NN 70.90 74.13 77.49 79.63
Image Manifold - 1-NN ~ 71.93 75.29 78.26 79.34

Table 5.1: Shape dataset: Average accuracy for different classtigrg based on the proposed
representation

5.2.1 Shape Dataset

The Shape dataset contains 10 classes (cup, fork, hammer, knife, amgligrs, pot, sauce
pan and scissors), with a total of 724 images. The dataset exhibits large-eldls variation
and moreover there are similarity between classes, e.g. mugs and cuegaaiand pots. We
used 60 images (6 samples per class chosen randomly) to learn the initiad felatibedding
of dimensionality 60. Each image is represented using 60 GB feature desciijme initial
feature embedding is then expanded using out-of-sample to include allitiiedranages with
120 features per images. To evaluate the recognition accuracy usingofiesed approach,
we used different training/testing random splits with 1/5, 1/3, 1/2, 2/3 foritrginWe used
10 times cross validation and we report the average accuracy. We tedhfoar different
classifiers based on the proposed representation: 1) Feature-engpedtth SVM, 2) Image
embedding with SVM, 3) Feature embedding with 1-NN classifier, 4) Image=ddibg with 1-
NN classifier. Table 511 shows the results for the four different class#itings. We can clearly
notice that a manifold-based classifier enhances the results over a&fbated classifier

In [114] the Shape dataset was used to compare the effect of modelingefg@ometry
by dividing the object’s bounding box to 9 grid cells (localized bag of wpmisomparison to
geometry-free bag of words. Results were reported using SIET GB][11], and KAS [42]
features. Table 52 shows the reported accurady in [114] for coroparil reported results
are based on 2:1 ratio for training/testing split. Unlike [114] where bounbogs are used
both in training and testing, we do not use any bounding box information simcapproach

does not assume a bounding box for the object to encode the geomeyrgtayad better result.
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Accuracy %
Feature used SIFT GB KAS
Our approach - 9127 -
bag of words (reported by _[114]) 75 69 65
Localized bag of words|([114]) 88 86 85

Table 5.2: Shape dataset: Comparison with reported results

5.2.2 Caltech 101

The recognition accuracy of the proposed approach was evaluatedsudsets of the Caltech-
101 dataset [75]. To make it easier to compare to reported results, wethrse different
subsets of Caltech-101 that are typically used for evaluation: Calteéqfiades, airplanes,
motorbikes, leopard) as used|in [112, 131, 51], Caltech-4-l| (fagdanes, motorbikes, cars-
rear) as used in_[41, 56], Caltech-6 (faces, airplanes, motorbikes;rear, ketch, watches)
as used in[[41], 56]. In all cases we used 60 geometric blur featurempge. We used 12
images per class to achieve the initial feature embedding of dimensionality 6Qviidie data
set is then embedded using out-of-sample. The image manifold embedding totistructed
using a Hausdorff measure (Eqg.14.1). Tdblé 5.3 shows the recognitionaay using different
number of training data and three different classifiers: FE-SVM: Feambedding space
SVM classifier, IE-SVM: Image manifold embedding SVM classifier, and1FEN: Feature
embedding space first nearest neighbor classifier. In all cases, thesraee used without any
bounding box knowledge.

As can be consistently noticed, even a simple 1-NN classifier based orofhespd feature
representation gives a superior result. Itis also noticeable that werasteiy good results with
as little as 5 training samples per class. As can be predicted, the image manifelddingodid
nor perform better than just using the feature embedding at smaller tragtimgs30). This
is expected since a large number of images are needed to constructilamieifold. It can
be noticed also that the improvement gained by embedding the image manifold inghiis ca
less than what was achieved with the “Shape” dataset (TaBlle 5.1). Thé®iexpected since,

unlike “Shape” dataset, Caltech101 dataset contains lots of clutter bédsidelsjects.



# training images

size 5

10 30 50 100

Classifier: FE-SVM

Caltech-4-1 2233 92.93
Caltech-4-11 2559 95.92
Caltech-6 2912 88.16

95.53 97.54 97.83 98.69
96.74 98.35 98.57 98.84
94.45 96.67 97.14 98.08

Classifier: IE-SVM

Caltech-4-1 2233 87.46
Caltech-4-1l 2559 86.01
Caltech-6 2912 82.63

94.98 97.65 98.14 98.73
96.73 98.35 98.69 98.84
93.77 96.99 97.73 98.42

Classifier: FE-1-NN

Caltech-4-1 2233 91.57
Caltech-4-1l 2559 95.25

94.39 96.41 97.22 98.11
96.03 97.38 98.01 98.45
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Caltech-6 2912 89.097 92.60 94.83 95.65 96.99

Table 5.3: Caltech-101 dataset: Average accuracy with different tppsibes. FE-SVM: Fea-
ture embedding space SVM classifier, IE-SVM: Image manifold embedding &essifier,
and FE-1-NN: Feature embedding space first nearest neighbadfielass

5.3 Results: Object Localization

The goal of this experiment is to evaluate the robustness of the propppesheh to clutter
in the context of object localization. Many approaches that encodeéegdometry are based
on a bounding box, e.g. [11114,150]. Our approach does not requifeconstraint and is robust
to the existence of heavy visual clutter. Therefore, it can be use in latalizas well as
recognition.

We used Caltech-4-1 data (as defined above) for evaluation. In thiswadearned the
feature embedding from all the four classes, using only 12 images pet dfas evaluation
we used 120 features in each query image and embed them by out-of-sarhplebject is
localized by finding the top 20% features closer to the training data (by congpigaiure
distances in the feature embedding space.) Table 5.4 shows the results inteh@srue
Positive Ratio (TPR): the percentage of localized features inside thedlbmubox, and False
Positive Ratio (FPR), Bounding Box Hit Ratio (BBHR), the percentage ofjgsawvith more
than 5 features localized (a metric defined.inl [60]), and Bounding Box Rid® (BBMR).
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Class TPR FPR BBHR BBMR
Airplanes 98.08% 1.92% 100% 0/800
Faces 68.43% 31.57% 96.32% 16/435
Leopards 76.81% 23.19% 98%  4/200
Motorbikes 99.63% 0.37% 100% 0/798

Table 5.4: Object localization results - Caltech101-4

Categorie©ur ApproachH "|Our ApproachH|Baselin¢ [60] | [68]] [51]Baseline([68]

Caltech-4  99.54+0.31 98.83 96.43 [98.5598.03 86 87.37
Caltech-5 98.59+0.47 94.32 96.28 [97.3096.92 NA 83.78
Caltech-6 97.48t0.57 93.57 94.03 [95.4296.15 NA 83.53

Table 5.5: Caltech-4,5 and 6: Average clustering accuracy, bedtsrasel shown in bold.
5.4 Results: Unsupervised Object Categorization

5.4.1 Equal Cardinality -Caltech

In this experiment we follow the setup by |51,160, 68] on the same benchgudogets of
Caltech-101 dataset. Namely we use {Adérplane, Cars-rear, Faces, Motorbikdsr Caltech-
4. We add the clas§Watche$ for Caltech-5 and the clag¥etcheg for Caltech-6. In all
experiments we used GB features [[11]. The input of our algorithm is afskf unlabeled
images with the number of object categor@s The output is the classification of images
according to object category. We use the clustering accuracy as osurada evaluate the
categorization process. We report the average accuracy ovengdO ru

We randomly select2 x C random samples to form an initial embedding that is used to
generate initially the common feature embedding of all features. We seledeaR0es per
image for initial embedding and we out-of-sample 420 features (at the masthage. This
results in a common feature embedding thatie” x 420 features. We chose dimensionality
of the common feature embedding = 120. Tdblé 5.5 shows comparative teMaube state
of the art results in [60, 68]. We also show the results by using the baskhheses feature
descriptor similarity to comput®le.c,ipior, IN Other words there is no spatial arrangement
proximity in this Hgeseripror- The results show that our method is doing extremely excellent
job for all the subsets Caltech-4,5 and 6. We infer from these results thapgroaches that

use explicit spatially consistent matching step likel [60, 68] can be outpeefibiby using a
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common feature embedding space that encodes the spatial proximity ardsapgesimilarity
in same time, which is done without an explicit matching step.

An interesting part of the results is that the baseline is giving very nicdtsegshen com-
pared to the baseline reported(in|[68] aboitc difference (last column). The baselinein [68]
is also using similarity based on the appearance only. This means addingsitieepiefinite-

ness to thé sc.c-iptor NAs a great impact on the unsupervised category discovery problem.

5.4.2 Different Cardinality -Caltech

In the previous setup, only 100 images per class were randomly choserevelr, the whole
collections of Caltech-4,5 and 6 are more challenging due to the large stérsipoblem. The
larger the class the higher the probability to find sub clusters, these suérslaizes are very
much comparable to the sizes of the small classes. For example the motorbilseckaadng

798 images, while the ketches are just 114 images. Thus the sub clustersiatttbikes are

very reasonable candidates for a clustering algorithm like NCUT

(a) Caltech-4 (b) Caltech-5 (c) Caltech-6 (d) TUD/ETHZ-3

Figure 5.1: Confusion Matrices for different setups using the wholeatatace

We use same selection for the parameters as in the previous settings to comnitathe
embedding. For NCUT we use 8-NN for Caltech-4 , 16-NN for Caltecmé& 24-NN for
Caltech-6. In figure[5]1 we show the confusion matrices for the threes.casle achieve

accuracy 99.8% for Caltech-4 , this means only 5 samples of the whole 2559 images are

!Normalized cut prefers balanced clustering.
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mis-clustered. For Caltech-5 we achieve 991&ccuracy, for Caltech-6 we acheive 9828

accuarcy. We used tHd* to define the distance matrix of all the images.

5.4.3 Different Cardinality TUD/ETHZ

We use the same dataset that has been usédlin [60], it has three catéymterbikes, Gi-
raffes, Car-side viewith different sizes 115, 87 and 100 respectively. This dataset is very
challenging due to the heavy clutter in the scenes and the multi-instances ofesorae im-
ages in the Motorbikes and Giraffes classes. We s@leat’ random samples to form an initial
feature embedding. We select Ha'@atures per image for initial embedding and we out-of-
sample 560 features (at the most) per image. We chose dimensionality of the ndeahoe
embedding = 100.

Again our results are better than the reported results in [60]. The ayauartis experiment
is 96.36% while in [60] the average accuracy was 934 this means only 11 samples of the

302 samples were mis-clustered. For NCUT we use 8-NN weighted grahb Hf".

2\We increased the number of features per image since the image resafuthia dataset is higher than in
Caltech subsets.
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Chapter 6

Regression From Local Features

In this chapter we propose a framework for learning a regressionidmiorm a set of local
features in an image. The regression is learned from an embeddesgemtateon that reflects
the local features and their spatial arrangement as well as enfonpes/sed manifold con-
straints on the data. We applied the approach for viewpoint estimation on avidultcar

dataset, a head pose dataset and arm posture dataset. The experesefisashow that this

approach has superior results to the state-of-the-art approach&y ichallenging datasets .

6.1 Introduction

Many problems in computer vision can be formulated as regression problaers the goal
is to learn a continuous real-valued function from visual inputs. For elgnagwpoint esti-
mation of an object, head pose estimation, age estimation from faces, estimatingatiomin
direction, articulated object joint angles, limb position, etc. In many of thepécagions,
the regression is learned from a vectorized representation of the inpuex&mple, in head
pose estimation, researchers typically learn regression from vectogpegsentation of the
raw image intensity, e.g!, [133],[6,146,92] 53].

In the last decade, there have been a tremendous interest in recogratiohighly dis-
criminative local features such as SIFHT [79], Geometric Blur [11], etcostvtesearch on
generic object recognition from local features have focused orgréziog object from a sin-
gle viewpoint or from limited viewpoints, e.g., frontal cars, side view cagsy rcars,etc
Very recently, there have been some interest on object classification rfrolti-view set-
ting [23,[63/ 106, 105, 76, 115]. There have been also some promesals on pose recovery
(3D viewpoint estimation) from local features for generic object cla88,[105[ 76, 115]. The

problem of object classification from multi-view setting and pose recoverga@ined together.
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Pose (viewpoint) recovery is a fundamental problem that has been fiodigd for rigid ob-
jects with no within class variability [45]. A very challenging task is to solve ferpose for a
generic object class, e.g. , recovering the pose of a chair instanceabatever seen before in
training. Most of recent work on viewpoint estimation from local featuesbased on formu-
lating the problem as a classification probléem [105, 108, 76,116, 13] wiiere the viewpoint
is discretized into a few number of bins, 4, 8, or 16 and a classifier is usbettde about the
viewpoint. Obviously, the accuracy of such classifiers is limited by howseoidae viewpoint is
discretized. Such treatment does not allow for continuous estimation of tivpaiie and can
not interpolate between the learned views.

Viewpoint estimation is fundamentally a continuous regression problem, whergoal
is to learn a regression function from the input. Similar are other problents asiposture
estimation.The question we address in this chapter is how to learn a regression furiiciian
local features: their descriptors and their spatial arrangement.

Local features are designed to have some geometric invariant propefiesexample,
SIFT [79] is view invariant. From two close viewpoints, we expect to seestrae local
features. Such local features can be useful in viewpoint estimation omlg donsider apart
views. If our goal is to accurately recover the viewpoint, local featulescriptors only are not
enough. It is obvious that the spatial arrangement of feature will playra immportant role in
this case. Recent work have addressed this though encoding the spatraation through a
pyramid spatial subdivision [95], or through enforcing geometric cairds at test time_[76].
Relative distances between parts have also beenused [105, 105]

In this chapter we introduce an approach for learning a regressiatidarfrom local fea-
tures. The approach is inspired by the feature embedding approactivicga in chapter] 3
where we have shown that an embedded representation that encoldabébéeatures’ de-
scriptor and their spatial arrangement can be achieved. In this chagteinaw how such an
embedding can be used to achieve regression from local featureskibsiirito consideration
the feature descriptor and the spatial feature arrangement. Thesiegrissachieved by defin-
ing a proper kernel in the embedding space. We show how a supervisefblich@onstraints
can be enforced in the embedding. For example, for viewpoint estimatiocamvenforce that

the viewpoint to lie on a one dimensional manifold. In the resulting embeddirge spaage
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Estimated view point for a rotated car using our approach

400
- - Ground Truth | | | |

—Estimated Angle
3000 | + Training Samples

Angle
~o>
[l
[—1

100r

0 | | | | |
0 | 40 60 80 100 120
Frame Number (Pluses indicates training Samples)

(a) Estimated Angle and Ground Truth (b) Sample Views

Figure 6.1: Regression on a single car: (Left) Absolute Error compugied) wur approach is
plotted with the ground truth, they are very close to each other. (Right) sasiepls of the car
with features detected on it.

similarity can be measured in a way that reflect smooth changes in the funictibedearned,
e.g. the smooth changes in viewpoint. Therefore, we can learn a riegr&ssction from local
features that can accurately estimate viewpoint from a small number of garample and a
small number of features. The experimental results show that this ajpgnaasuperior results
to the state-of-the-art approaches in very challenging datasets (e.ghafienging multi-view
car data set we have 67% improvement overf [95]).
Figure[6.1 shows an example of our results in estimating the viewpoint of aararld-

cal features. In this example we used 30 instances for learning, afdinapart, with 200
local features, with no correspondences established. The regréssaiion can estimate the

viewpoint with less than two degrees error.

6.2 Kernel-based Regression from Local Features:

6.2.1 Kernel Regression Framework

The training data is a set of input images, each represented with a satwkfe Let us denote
the input images (sets of features) iy}, X2, --- XX, where each image is represented by

Xk = {(zF e R%, fF e RF)},i =1, , N;. Herexz! denotes the feature spatial location and
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f¥ is the feature descriptor al denotes the feature descriptor dimension. For example, the
feature descriptor can be a SIFT, HOG, etc. Notice that the numbertofésan each image
might be different. We usé&/;, to denote the number of feature points in thth image. LetV
be the total number of points in all sets, i.&.,= Zszl Ny
Each input image is associated with a real-valufe,c R, for example,v* can be the
angle representing the viewpoint, or the head pose ofitieimage. Therefore, the input is
pairs in the form(X* v*). For simplicity, here we show how regression can be done to real
numbers, extension to real-valued vectors is straight forward. Extetsi@al-valued vectors
is necessary for problems like articulated posture estimation where jointsaargi@stimated.
The goal is to learn a regularized mapping function2®**®” _, R. Notice that unlike
traditional regression, the input to such a function here is a set of &saftom an image with
any number of features. This function should minimize a regularized riskiatitghich can

be defined as

> llg(X*) = o*[| + 2@ [g] (6.1)
k

where the first term measured the error in the approximation, the secoméstarsmoothness
function ong for regularization, and\ is a regularization parameter. From the representer
theorem[[61] we know that such a regularized regression function adnmépresentation in
the form of linear combination of kernels around the training data pointsgabset of them).

Therefore, we seek a regression in the form

v=§(X)=> bK(X, X)) (6.2)
J

Therefore, it is suffice to define a suitable positive definite kel -) that measures the
similarity between images. Once such kernel is defined we can solve tHeciené$ b; by

solving a system of linear equations [100].

6.2.2 Enforcing Manifold Locality Constraint

To achieve a smooth image similarity kernel from local features, we learmaedded rep-

resentation of the features and their spatial arrangement, as was ddsarichaptef13. Let
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k¥ ¢ R? denotes the embedding coordinate of pgirft, f¥), whered is the dimensionality of
the embedding space, i.e, we seek a set of embedded point coordﬁ’faies{y’f, o ,y]’i,k}
for each input feature sef*,

The embedding approach as described in chapter 3 satisfies two castraar-image
feature affinity and Intra-image spatial structure. Besides these twarains, we need to
add a third constraint that enforces manifold locality, we denote th&umervised Manifold
Locality Constraint The idea is to enforce existing manifold structure in the data, features from
images neighboring each other on the manifold should be embedded clos totear. For
example, ifimages are labeled with viewpoints, such label can be used te defaighborhood
for each image. Since we are using the labels to define the neighborhizod, drsupervised
enforcement of data manifold constraint. Enforcing manifold constraints beaen shown to
highly improve regression results in many applications [6,] 102} [133, 58jveder all these
applications used vectorized representations of the raw intensity.

We can enforce the manifold constraint in a supervised way from the labelShis can
be achieved by amending the objective function in chdgter 3 Ef. 3.1 bywsg weights
between images as

ZZII?Jz —yFIPSE + A D Iy — v Pw(p, o)UY, (6.3)
P4 4,
wherew(p, q) denotes a weight function that measure the supervised affinity betweeasmag
XP andX? as implied by their labels? andv?. There are many way to define such weights. If
we set all the weights to one, we reduce to an unsupervised embeddinghapiaf Ed. 3]1.
The weights can be set to reflect labels distancesi@.,q) = G(vP — v?). For example a
Gaussian function can be used or alternatively, the weights can be sétetd neighborhood

structure by using a uniform window kernel. Therefore the mairigan be redefined as

pqg __ v
AP = R (6.4)
G(vP —v) - Uij pP#q

6.2.3 Feature Embedding based Regression

Since each image is represented in the embedding space by a set of Euctidedinates in

that space, the similarity in the embedding space can be measured by a seit&blamel that
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measure the distance between two sets of embedded features repretsemimngges. There
are a variety of similarity measures that can be used. For robustnessewaepercentile-based
Hausdorff distance to measure the distance between two sets of featuresvo images in

the embedding space, defined as

1% . % .
Hy(XP, X1) = max{max min gy — y?llamgxnljln v —yilI} (6.5)

wherel is the percentile used. Since this distance is measured in the feature embsuidiag
it reflects both feature similarity and shape similarity. However one problemtiigtdistance
is not a metric and therefore does not guarantee a positive semi-definite. k& herefore
we use this measure to compute a positive definite m&frixby computing the eigenvectors
corresponding to the positive eigenvalues of the orighiig) = H;(X?, X9). The regression
problem now can be solved by using kernels based on mEkixin the embedding space,
e.g., Radial Basis Function (RBF) kernels are used. Therefore, nvgabee for the regression
parameter in Eq. 6]2.

Given the learned regression function, it can be applied to any new intémeever, the
features in that new image has to be mapped first to the embedding spacefofidethe

regressor for a new test imagewill be in the form

v =4(X) = Y HK(0(X), Y7) (6.6)
J

whereO(X) is a function that maps the features in a test imageto a set of coordinates in

the embedding space, i.e.,
O(X) : {(zs, fi)} — {wi}

The out of sample solution described earlier used to obtain such a funé®ocan achieve a

closed form solution for this function given the spatial and feature affigricesL”, U”
YV = (Lu)flUuYT

whereY7 is anN x d matrix stacking of the embedding coordinate of the training features.
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6.2.4 Image Manifold-based regression:

The regression can be also learned from an image manifold embeddirgy ggach can be
obtained using the similarity kernel defined on the feature embedding sphiseis a second
embedding where each image is represented by a single point in a Euclpeam slowever
the problem with this approach is that for any test image two out of sampléepnethave
to be solved: First, out of sample on the features should be used to map theefeature
embedding space. Second, the embedded set of features has to be askidve the image
coordinate in the image embedding space using a second out of sample dvEimage of
learning a regressor from the image embedding space is that enforciifglchannstraints on
the images can be easier in that space. However, a two stage embedding auod of sample

problems disencourages this approach.

6.3 Experiments

6.3.1 Regression on a single car example

We use a single car sequence (first car) from the dataset introdycf@&Joto demonstrate
the different setups for our approach and to show the effect of tifereliit parameters. The
sequence contains 118 views of a rotating car. We changed the folloamgpters: 1) The
number of training samples to learn the feature embedding, which are atsasiIB8F centers:
15,30, and 40. 2) The dimensionality of the embedding space: 20, 40080160 and 200. 3)
Manifold supervision neighborhood siz&%°, 45°, 60° andoo, whereoo means unsupervised
embedding. We change one parameter at a time while we fix all other paramigheasiefault
value (shown in bold above) . In all experiments we fix the RBF scale to G.€¢eanedian
Hausdorff distance in the data. We measure the mean and standard devidtierabsolute
error (MAE, std(AE)), between the estimated and the ground truth viewgpadiablé 6.1l shows
the obtained results for various settings. [Fig 6.1 shows the estimated amd groth angles
for the default base case: 30 training samples, 100 dimensiohsedfhborhood. The MAE
in this case is 1.94 From the table we can see that, in general, the accuracy in the regression
does not change much with the change in the parameters. We can seeghdahe/humber of

training samples increased from 15 to 30 the mean absolute error droppalf ¢ its value,
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Train | Supervised Dim | MAE® | std(AE)
30 Yes/30 20 | 234 |1.99
30 Yes/30 40 | 2.06 | 1.65
30 Yes/30 80 | 204 |164
30 Yes/30 100 | 1.94 | 1.63
30 Yes/30 160 | 1.93 | 1.63
30 Yes/30 200 | 1.95 | 1.59

15 Yes/30 100 | 5.47 4.21
30 Yes/30 100 | 1.94 1.63
40 Yes/30 100 | 1.84 1.66
30 Yes/45 100 | 1.94 15

30 Yes/60 100 | 2.09 1.66
30 No/oo 100 | 2.16 1.83

Table 6.1: Regression on a single car

increasing the training size after that does not change the accuracy rAlsthwe can see
that the dimensionality of the embedding space is insignificantly affecting MAEc#l that
the there is an error in the ground truth itself of the same order as the etttar @stimation.
So, this experiments basically shows that we can achieve accuratesiegras a single object
from local features from a small number of sparse training samples. Imettteexperiment we

show results on the whole dataset.

6.3.2 Multi-View Car Dataset

In this experiment we use ‘Multi-View Car Dataset’ that was introducedmdcen [95] which
captures 20 rotating cares in an auto show. The dataset is very chajjeagyiihe cars are
accompanied with much clutter even within the detected bounding boxes. largasclass
variation in appearance, shape, and texture of the cars in this datasaise/hkis data set
since it provides finely discretizes viewpoint ground truth, the discretizatigies in each car
sequence. Such ground truth facilitates evaluation of the accuracy oégnession approach.
Other datasets like PASCAL VOC 2006 gives only 4 viewpoint class lapEtent’, ‘Back’,
‘Left’, ‘Right’ } and the dataset that was used|in [105,/106| 116] only has 8 viewpoistesla
Moreover, it is really hard to find a dataset with ground truth that coversathole range

of viewpoint with realistic challenging conditions. However, there are sorae/faacks and
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challenges in this dataset: 1) The high within-class variation makes it haedriEgressor or
classifier to generalize. 2) Ground truth accuracy problems: The vietnigaalculated using
the time of capturing assuming a constant velocity, which affects on thedjtauth. There are
some frames of the same car that are having same time of capturing but thegktistenge
in the pose and in few frames the cars are partially occluded by passiptep&p Some cars
are highly symmetric from a side view, that makes classifiers subject toré8@ction error
in some views. Such reflection error exist in other datasets as well aodedpn the results
of [95,[105/116]. 4) Some cars are very odd, and even visually itrishvard to discriminate
between whether the car front or rear is facing the camera.

The dataset has been used for viewpoint classification in [95] wherei¢hgoint was
discretized into 16 bins. In_[95] their goal was to classify the car poseyusinag-of-words
technique that is based on a spatial pyramid of histograms. They build 16 @54difiers
for the 16 bins to cover the 360 range of rotation (i.e., bin size is 22.5Ve use the results
of [05] as a baseline since it incorporates both the features and the# sgeangement through
the spatial pyramid structureThe approach proposed in [95] resulted in 41.69% viewpoint
classification accuracy from bounding box input. In contrast, given a sirtiiabin setting,
our approach results in 70% accuracy using the same bounding boyatsirthat is over 67%
improvement over the state of the art result.

In our regression experiment, we use the same split of training and testssEX8]. The
dataset contains 20 sequences for 20 rotating cars. The total numipesiges is 2137, the
first ten cars are used for training (1103 images) and the last ten caesting (1034 images).
We used only 135 images (sampled randomly from 4 sequences of trainalkadn an initial
feature embedding. Each image is represented using 50 geometric blufelatceie descrip-
tor [11]. The initial feature embedding is then expanded using out-ofd&agnio include all
the training images with maximum of 350 features per images (the number offeatiracted
per image varies).

We learn our regression model using Radial Basis Functions (RBF)sasiloed in sec-
tion[6.2. We examine the effect of “supervision”, i.e., enforcing the viewifolhconstraint on
the initial embedding by defining a neighborhood for each image not to éxi®ealifference.

For quantitative evaluation, we use the Mean Absolute Error (MAE) betwheeestimated and
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Method MAE 90% | MAE 95% | MAE | AE<22.5| AE<45
percentile | percentile
Results [[95] (Baseline) - - 46.48 | 41.69% | 71.2%
Unsupervised(RBF) 27.17 32.65 39.2 | 50.09% | 73.6%
Unsupervised(RBF)Leave One Out22.57 27.12 35.87| 63.73% | 76.84%
Supervised (RBF) 194 26.7 33.98| 70.31% | 80.75%
supervised (RBF)Leave One Out| 23.13 26.85 34.9 | 55.83% | 76.65%
Unsupervised(SVR) 29.52 34.44 40.60 | 41.19% | 70.12%
Supervised (SVR) 25.23 30.63 36.07 | 57.9% 78.6%

Table 6.2: Regression on Multi-View car dataset, baseline and diffeagiaints of our approach

ground truth viewpoint. In addition we also used the MAE of®percentile of the absoulte
errors and the 9% percentile of the absoulte errors. These are used because, typicadly, a
small percentage of the test data produces very large errot)(@88 to reflection, which biases
the MAE. While MAE is a good measure for validating regression accuiaisynot suitable
for comparison with classification-based viewpoint estimation approachiet wses discrete
bins, such a< [95, 105, 116]. Therefore, we also used the estimatepount to compute the
error in discritized viewpoint classifier. For example, to achieve an atgrivof a 16 bin view-
point classifier, we compute the percentage of test samples that satigfies22.5, where the
absolute errodE = |Est.Angle — GroundT'ruth|. With this measure we can compare to
16 bin classifier used in [95]. To achieve an equivalent of an 8 bin d@vtglassifier, we also
compute the percentage of test samples that satidfiesC 45.

For comparative evaluation, we evaluate different supervised anghengsed setting within
our framework as described in chapter 3, in addition we used the resutt49€] as a baseline.
We also evaluated a support vector regressor (SVR) based oraouviiork. For each setting
we evaluated the 10/10 split as described above and also a leave opditdigasn on 19 cars
and test on 1).

We show our results in table 6.2, we might find the following observations:

— The MAE is ranging from 339to 40.60 which seems to be a large error. However, this
might be misleading because if we compare reported results like in [116] iy learn
classifiers for 8 bins, the reported average accuracy on the diagbtted confusion matrix
is 66%. In this case this means only 66% of the testing set is recovered withininthend

any error adds at least 45 In the last two columns of table 6.2 show that around 65% of
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testing samples are givindE < 22.5 ° and aroun80% or more are givingAE < 45 °.
The source of the higher MAE is then coming from few instances with laridect®n errors
(around 180 degrees), this also clear in the percentiles MAEs. Comparmgsults to the
reported confusion matrices in_[95, J_HWe can find that our approach has a lower reflection
effect in the estimated angles. In figlrel6.3 a, only few test samples lies insthgineof the
histogram.

— As we can see the supervised setting is giving the best results for théedakais confirms
that enforcing the neighborhood constraint on the manifold is in facttlmapthe regression
results.

— Also we can observe that using the leave one out settings for regréssiot improving

beyond few degrees over the split settings. This means that our appsogeneralizing well

so that it does not gain much by including as many training samples.

Figure 6.2: Regression on a Multi-view car dataset: Top left corner shmw the arrows
reflect he estimated angle. The ground truth is shown along with the estimagied sallow
arrows for ground truth and Magenta for our results, features aerslas blue dots(Best
viewed in color)

1The confusion matrix in[[95] was shown without the actual numbers in ttafiar we contacted the authors
of [95] they sent us the actual values in their confusion matrix.
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Figure 6.3: Histogram of absolute error. Left: for Multi view car datsetghR for face
dataset.

6.3.3 Face Pose Estimation in Uncontrolled Environment

In this experiment we used ‘Face Pose’ dataset that was introducetlsem [3,[4]. It has

been used in inferring the face pose of freely downloaded facestfremveb. The pose ranges

from -90° to 90°, the ground truth is manually labeled for 11900 images, 10900 of them were

used for training and 1000 for the testing. The images that were used iexp8fiments are
60x60 bounding boxes that were normalized using a Euclidean warp.ddtaset is a real
world challenging set which exhibits much variation in controlling factors like illuation,
scale, expression and pose as well as partial occlusion and baolgrhuiter. However, we
want to mention the drawbacks of the dataset. First the distribution of thedegsees is very
biased and only few examples are beyond the rang&,B8q which affects the regression we
learn. Second as mentioned in! [3] the manual labeling is not so accuragefgincsubjects
were asked to label every image and the pose is then averaged. Télatiamrof the manually
labeled poses between different subjects wa%5 [3].

In our regression experiment, we use the same training set and samé éssfBeand we
compare our results in terms of the MAE and Pearson Correlation Coeff{El@C) as they
provided in [3]. We used 250 images (sampled randomly from train data) o flea initial
feature embedding of dimensionality 50 for each feature. Each image iseaped using 24
geometric blur local feature descriptors. The initial feature embedding isettEanded using
out of sample to include all the features from training images with maximum ofat@ries per
images (the number of features extracted per image is not equal). The @imefhsnages is

the reason for fewer extracted features per image when compared trshdataset.
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We learn our regression model as we did in the cars dataset. We examirnigetiieok
supervision on the initial embedding by defining a neighborhood for eacipeimat to exceed
15 ° difference. The histogram of absolute error in figuré 6.3 show thatoarat 86% of the
case the estimated error is less thart 20

We achieved an MAE error of 10.92nd 11.18 for the unsupervised and supervised cases
respectively and PCC of .81 and .79 respectively. In [3] the repoesalts is MAE=13.21 and
PCC=.76. We have better MAE for both the supervised and unsupesasugs. This shows
that from sparse local features we can achieve better results insiegrés this example. The
most noticeable point is that the unsupervised is behaving better than thised setting.
Although this might seem strange, but the distribution of poses of the traiamgles and the
testing samples is very biased towards the regior’[880] and actually in the 10900 training
samples there is not a single image with pose in the intervat [[80'], Under this condition
enforcing the neighborhood in the region that have few samples in the gahilinresult in
a poor generalization. We show in figurel6.3 the histogram of absolute ieslows high

accuracy of the estimating the face pose using our framework.

Figure 6.4: Regression on a Face Pose estimation dataset: Top leftgluonerhow the arrows
reflect he estimated angle. The ground truth is shown along with the estimagied &reen
arrows for ground truth and Yellow for our results, features are stamblue dots(Best viewed
in color)
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6.3.4 Arm Posture Estimation

As we mentioned earlier, our approach is general and can be usedairedtffegression prob-
lems, not only viewpoint estimation. We show here articulated body posttineagion for a
subject who moves his arms freely. We used the sequence [frorn [1B2]loTal features are
affected very much by the clutter. The ratio of features on the hands tatifeeted features is
about 10%, all the features in each frame are used in the regressimsedbence contains 200
frames, 25 equally spaced are chosen for training (12.5% of the ssgjudmitial Embedding:
150 features from 20 training frames, dimensionality 250. We then compuitef ample
embedding for all 25 training frames, each with 450 features. Then we tearegressor pa-
rameters for the hands and elbows joints positions from the 25 training frarhesegressor
was used to estimate the position of the hands and elbows joints in the rest crtiesf We
evaluated the estimation using 75 frames marked with ground truth and thdéseti®pixel
in average per estimated parameter (image size is 640x480). Sample resghewan in the

figure.

Figure 6.5: Regression example for articulated body posture estimatiomnsire frames
20,40,60,80,100,120,140,160
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Chapter 7

Multi-Set Feature-Spatial Matching

We introduce a novel framework for multi-set feature matching among multipdarsa way
that take into consideration both the feature descriptor and the featwatal sprangement.
As introduced in chaptérd 3 we can learn an embedded representatiomihiaines both the
descriptor similarity and the spatial arrangement in a unified Euclidean einexfthce. The
solution can be obtained directly by solving one Eigenvalue problem whichearlim the
number of features. Therefore, the framework is very efficient amscale up to handle a
large number of features. The matching step is taking place after the feg@atial embedding
which ensures that the resulting feature embedding preserves within irpatigl structure
and in same time it preserves the feature similarity between different imageeriBental
evaluation is done using different sets showing outstanding results cedhjgethe state of the

art; up to 100% accuracy is achieved in the case of the well known Hajeésee.

7.1 Introduction

Finding correspondences between features in different images playpartant role in many
computer vision tasks. Several robust and optimal approaches heweleeeloped for finding
consistent matches for rigid objects by exploiting a prior geometric consfi&é}. The prob-
lem becomes more challenging in a general setting, e.g., matching featurasadticalated
object, deformable object, or matching between two instances (or a modeinstance) of
the same object class for recognition and localization. For such problemy, nesearchers
recently tend to use high-dimensional descriptors encoding the locahiappe, (e.g. SIFT
features[[79]). Using such highly discriminative features makes it pestitsolve for corre-
spondences without much structure information or avoid solving for spardences all to-

gether, which is quite popular trend in object categorization [31]. This & ralstivated by
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avoiding the high complexity of solving for spatially consistent matches.

The problem we address in this chapter is how to find matches betwakiple sets of
features where both the feature descriptor similarity and the spatial armemy of the features
need to be enforced. However, the spatial arrangement of the feaikesds to be encoded and
enforced in a relaxed manner to be able to deal with non-rigidity, articulataformation, and
within class variation.

The problem of matching appearance features between two images in #yspatiaistent
way has been addressed recently (€.9.[[73, 29, 20, 125]). Typtb#lproblem is formulated
as an attributed graph matching problem where graph nodes represdeatire descriptors
and edges represent the spatial relations between features. Egfoocisistency between the
matches led researchers to formulate this problem as a quadratic assigmoidein where
a linear term is used for node compatibility and a quadratic term is used ferazagpatibil-
ity. This yields an NP-hard probler [20]. Even though some efficienttisols (e.g. linear
complexity in the problem description length) have been proposed forasspobblem([[29] the
problem description itself remains quadratic, since consistency has to headdmbtween ev-
ery pair of edges in the two graphs. This puts a huge limitation on the applicaliléyot
approaches to handle large number of feaires

Besides this scalability limitation, most of the state of the art algorithms for matching ca
only match two sets of points. They do not generalize to match multiple sets ofdgatu

In this chapter, we introduce a framework for feature matching among muligdeod
features in one shot, where both the feature similarity in the descriptor,sgsaeell as the local
spatial geometry are enforcedhis formulation brings three achievements to the problem:

1) Graph Matching through EmbeddingVe formulate the problem of consistent matching as
an embedding problem where the goal is to embed all the features in a Encliodsedding
space where the locations of the features in that space reflect bothstrgtta similarity and
the spatial arrangement. This is achieved through minimizing an objectivédorenforcing

both the feature similarity and the spatial arrangement. Such embeddingaspiaes a new

'For example, for matching features in two images, an edge compatibility matrix of sizex n?, i.e.,O(n"),
needs to be computed and manipulated to encode the edge compatibilitazdas®bviously this is prohibitively
complex and does not scale to handle a large number of features.
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unified feature space (encoding both the descriptor and spatial datsteehere the matching
can be easily solved. The framework is illustrated in[Eig 7.1.
2) Matching Multiple sets in one shothe proposed framework directly generalizes to match-
ing multiple sets of features in one shot through solving one EigenvaludéepnolConsistent
matching of multiple sets of features is a fundamental problem, for which eansblutions
have been proposed.
3) Scalability: An interesting point in this formulation is that the spatial arrangement for each
set is only encoded within that set itself, i.e., in a graph matching context mpatdility
needs to be computed between the edges (no quadratic terms or highretearts, yet we
can enforce spatial consistency. Therefore the proposed appi®acalable and can deal
with hundreds and thousands of features. Minimizing the objective funititime proposed
framework can be done by solving an Eigenvalue probldrith size is linear in the number of
features in all images

Extensive evaluation on several standard datasets shows that tlsguiggpproach gives
better or comparable results to the state of the art algorithmiss [73, 129, J]9haPbses quadratic
assignment. In fact, we achieve 100% correct matching on a standaarbark with our mul-
tiset setting. The experiment results also show that the proposed apmaradind consistent
matching under wide range of variability including: 3D-motion, viewpoint deirrotation,

zooming, blurring, articulation and nonrigid deformation.

7.2 Related Work

7.2.1 Matching Under Geometric Constraints

Geometric matching techniques such as RANSAQC [44], interpretation {r&}sHbéugh trans-
form [7], or alignment [[126] can be used to efficiently explore conststenrespondence
hypotheses when the mapping between image features is assumed to haveasametric
form (e.g., a planar affine transformation), or obey some parametrit¢raoris (e.g., epipolar
ones). These methods work well for rigid transformations. Howevesetheethods cannot be
easily extended to the case of non-rigid transformations where the nurhtvansformation

parameters often scales with the cardinality of the datalset [25].
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7.2.2 Shape Vs. Appearance Based Matching Approaches

Depending on the application, matching algorithms are either using the appeasathe
shape (arrangement) of the feature points to decide matches. Appedsed matching,
e.g. [34[79, 86], requires a good descriptor that is invariant uritfereht viewing condition.
In such case, the matching is done in the descriptor space. Comparatiies dike [86,89]
recommended SIFT [79] based descriptors for the task of feature mgitebimthe other hand,
shape matching algorithms are desired for recognition tasks,[elg.] [9189132]. Such algo-

rithms use the spatial location of the feature points or descriptors deriwertifiese locations.

7.2.3 Spectral Correspondences as Graph Matching

Spectral methods| [108, 111, 132) 62, 127,73/ 29| 34,1141, 153éen widely used for the
problem of feature matching. All mentioned approaches solve a graph ingfatoblem to
compute correspondences. The definition of the graph matching probless.v

The feature matching problem can be casted B#Partite Graph Matching [34,[109]
in which a node compatibility matrix is built using either the spatial locations of fegtaints
[109] or the descriptor information_[34].The goal is to find a permutation m#takmaximizes
tr(PTC) whereC is the node compatibility matrix .

The problem also can be casted aSraph Isomorphism problem [111] 132, 62, 127].
The intuition behind such approaches is that the spectrum of a graph imimvander node
permutation and, hence, two isomorphic graphs should have the sameispebe converse
does not hold. This formulation uses the spatial locations of feature porassiruct weighted
or Unweighted graphs to be matched and the goal is to find a permutation matrixiltha
bring one graph to the other. Spectral methods for Graph Isomorphigen ulifthe way of
building the weighted/unweighted graph and in the way they compute the solutione &f
them use the adjacency matrix [111, 1132,[62,127] buiin [[118] they tigeldaplacian of the
adjacency matrix. Typically the weighted matrix that represent the grapBwdiglean based
kernels because it is both rotation and translation invariant. Alternativeheaffvariant kernels
might be better to build the weight matrix. Using Affine invariant kernel wowdhrtore robust

towards image transformation$ _[141]. However, the affine invariametarsed in [[141] is
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not robust to noise and can break easily. Also some approaches efsef éhe eigenvectors to
compute the correspondenceés |[62,1141]) 132] instead of using allveigjers.

The graph matching can also be caste@aadratic Assignment Problemin which both
node compatibility and edge compatibility are used together. Unfortunately turajic as-
signment problem is NP-Hard[|[5] and thus most of the techniques thattheeguadratic
assignment formulation will end up with approximations to the solution. A speetiatation
of the quadratic assignment problem is done in both [[733, 29] by consgenity the spectrum

of the edge compatibility matrix which of quadratic size of the original graptssize

Graph Matching and Problem Size

As we discussed above the spectral correspondences depends aefitiition of the graph
matching problem. The complexity of the matching problem will vary accordinggavtty the
graph matching problem is defined.

Bipartite graph matching (Linear Assignment): Given two graphs the matching is solved
via combinatorial graph matching algorithm such as the Hungarian algorithfhwich is
polynomial timeO(n?) wheren is the number of nodes in a graph. Instead, spectral decom-
position of the cost matrix can yield an approximate relaxed solution, e.gl. [1(#4,to the
permutation matrix’. The size of the problem is linear in the number of nodes of each graph.

Graph Isomorphism: The problem size remains linear in most of graph isomorphism
formulation for spectral methods and it reduces to compute the eigenvaloemgesition of
each graph. An alternative approach for solving graph isomorphisistre@ts an associate
graph of the two graphs and uses replicator equations to reach equilistaienof the graph
nodes [[99]. The number of nodes of the associate graph is of quasizaiof the number of
nodes of original graphs(i.eN = n?) and they solve for a quadratic programming problem
iteratively.

Quadratic Assignment: The quadratic assignment is considered as the state of the art so-
lution for the graph matching problem_[20], such formulation enforcegwtig consistency
on the matching. Since the size of the problem is quadratic because of the@dgatibility
matrix , the solutions introduced for the quadratic assignment problem irgctliferent ap-

proximations,such as spectral methods! [73, 29]. Graduated assign@@nivHich consists
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of a series of first-order approximations to the quadratic assignmentigbjéanction. Dual
decomposition which solves for linear subproblems and small quadratiteprsbnstead of
solving large quadratic problem_[125]. In_]11] a gradient descept@pmation was done
to get rid of the integer quadratic programming overhead. Another ajppativns using Re-
laxation labeling and probabilistic methods define a probability distribution ovepimgs,
and optimize using discrete relaxation algorithms_[138, 24].[In [18]thelemolitself is ap-
proximated by identifying approximate models for the original problem andnfinthe exact

solution for these models.

7.2.4 Learning Graph Matching:

In [20] an approach was introduced to learn the compatibility functions éxamples and was
found that linear assignment with such a learning scheme outperformsatjoaassignment
solutions such as [29], which is an important finding. [In|[74] using smogthased optimiza-
tion they learned the edge compatibility matrix of quadratic $ze-= n? instead of the node

compatibility matrix as[[20] and they showed that it leads to better matching results.

7.2.5 Matching Multiple Sets

There is very few papers that addressed solving for multiset corrdspoas in a fundamen-
tal way. In image sequences the problem can be addressed by fdragkihg a set of fea-
tures [110] also this appears in structure from motion applications and phwism [113].

In [26] a deterministic annealing-like approach was introduced to findespondences be-
tween multiple point sets and was used to obtain a shape average, whichatsdifttough

the iterations of the deterministic annealing optimization. These approachdifferent from

our framework in several aspects. First they do not consider theréeddscriptor as[ [110, 26]
information and thus there have been used in the context of tracking oirngudd average
shape from examples. They don’t generalize to be used in objectni¢éioogscope. Also the
matching is computed in a pairwise manngr][26] or incrementally a5 inl [113,atiDihese

approaches can't be computed in one shot.
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7.3 Feature Matching

The embedding achieved through minimizing the objective functioh Hq 3.2semea Eu-
clidean “Feature” space encoding both the descriptors’ similarity and tlad $patial struc-
tures. Solving for matching will be a straight forward task in such spacebeflding all the
input points in such a way will result in a consistent set of matches, whicimsriba pairs of
matches will obey some common transformation between the two point sets forbdtere

is no need to explicitly add pairwise consistency constraints as done inafigagiratching
approaches [11, 29, 73, 125]. The objective function in Eq 3.2 isrgén@/e can easily see
that algorithms that use only spatial constraints are a special case bsimgplze off-diagonal
blocks in the affinity matrixA by a unity block. On the other hand, matching algorithms that
use the feature similarity constraints only is a special case by replacing tiendiablocks in
the affinity matrixA by an identity block. Notice that the size of the matfixis linear in the
number of input points, i.e., for the case of matching two sktis an(N; + Na2) x (N1 + Na)
matrix. In contrast, other approaches that enforces pairwise corwigteh (29, 73| 125] use
a consistency matrix that is quadratic in si¥eN, x Ny N5. Such quadratic order hinders the
scalability of such matching techniques. Figurg 7.2 summarizes our framéwvdHe case of
two sets only. It shows the generality of the framework, also it shows theaitten between

different components in our approach.

7.3.1 Matching Settings

We present three settings in which our framework can be used depesrdthg application.
Pairwise Matching (PW): Given two sets of features, the matching reduces to solving a bi-
partite graph matching problems between two sets of embedding coordinaeagvéetails
about how to obtain the matching in Sec 7.3.2.

Multiset Pairwise Matching (MP): If we have multiple sets of features and we would like
to find pairwise matching between each pair of sets, then embedding all tineefean all

the sets will give a global unified feature space. Pairwise matches bebmgawo sets can
also be solved as a bipartite graph matching where the weights are definedemittedding

coordinates. In this case, the global solution is expected to enhancdrheseaolution. This
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is shown in the experiment in Sec 7]4.2. We give details about how to obtain thhingain
Sed7.3.P.
Multiset Clustering (MC): If we have multiple sets of feature points the unified embedding
should bring correspondent features from different sets to be tdasgch other. In that sense,
clustering can be used to in the embedding space to obtain matching featutbss paper
we applied k-means clustering in the embedding coordinate to find the featunesg Other
clustering techniques can be used. The problem can also be formulatddieis-partite graph
matching in the embedding space.

In Sec[7.4.2 we show the results obtained by applying these three settirige wrell

known ‘Hotel’ sequence.

7.3.2 Matching Criterion

The embedding coordinates achieved by solving the objective furiclibrudramgtees that the
Euclidean distances between the embedded points reflect both the spatitdsaniptor con-
straints. Therefore, the matching problem reduces to solving a bipartite in@fmoblem in
the embedding space. This can be solved by many approaches suchHasmgagian algo-
rithm [97] and others. However, in particular we used the Scott and letrigiggins (SLH)
algorithm [109] as matching criterion in the embedding space. The conditguged for the
Scott and Longuet-Higgins matching are satisfied by the embedding since gbihts are
lying on the same plane and there are no large rotation. We computg an/N» Ecuildian
distance based weight mati¥ in the embedding space using a Gaussian kernel and then we
compute an orthonormal matriR* in a way similar to Eq.[.3]5. We decide a match if the
elementP;; is maximum in its row and its column. In addition we add the condition that the
second largest element in its row and its column is far by threshold ratio asinidB4].

The main reason we chose the SLH algorithm over the Hungarian algoritarmasgching
criterion is its ability to reject false matches. The Hungarian algorithm finds ahimgtéor

each feature even though that match might not be good, which is not adlekiracteristic.
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7.4 Results

In this section we show both quantitative and qualitative results on diffeleatset. Despite
that our focus is on non-rig:d matching, we also show results on rigid matohgsantitative

and comparative evaluaticr

7.4.1 Non-Rigid Matching

Fig.[Z.3 shows some matching results on nonrigid motions. We used seqfremee¢kse KTH
dataseH. Fig.[7.3-top shows the results of our pairwise matchiRg/(setting) using SIFT
features on four frames of a walking motion, i.e., 6 pairs. Our approacktbo the matches
obtained to double of the original SIFT matches. Eigl 7.3-bottom showsgh# of the multi-
set settingMC) applied on 13 frames of a half cycle of hand waving. Due to the low resalutio
in the sequence, a small number of features are detected (around@®ggaer frame). En-
forcing the global matching with the spatial constraints boosted the numbeltci@sao from
44 to 73 and correct matches can be found on the moving parts for all thama8s.

Fig.[7.4 shows sample matches on motorbike and airplane images from Caltd@b1.0
In each case we used eight images and used the Multiset Pairlvi?9ed match all pairs. In

these experiments we used affine kernels and Geometric/Blur [11] feature

7.4.2 Comparative Evaluation: 3D Motion (Wide Baseline Matchim)

Goal: This experiment aims at evaluating our proposed framework comparedstateef the
art reported results including linear and quadratic assignment baseabapps/([29, 20, 125,
132,72[35] .

Data: We use the CMU ‘Hotel’ sequence with the same manual labeling of 30 landroarts p
employed in[[20]. This dataset has been used in[[20, 125] to comparertioerpance of graph
matching methods. The sequence contains 101 frames that shows a 3D maotierHotel’
object. The experiment is done using the same setting as [20, 125]: 15sfemmasampled

(every 7 frames), that gives 105 pairs of images to match.

2To the best of our knowledge there is no available non-rigid dataset witingrtruth matches.

3http://www.nada.kth.se/cvap/actions/
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Figure 7.3: Top: Results on non rigid walking sequence (matched pairséeom: Sample
results on hand waving sequence matched on a 13 frames in one shot tnudtissvn is the
first image matches with the consecutive odd frames in the 13 frames
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in color.

Sample results on Caltech 101 images. Best seen i

Figure 7.4
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Competitive Approaches:In all cases we used the Shape context [9] as the feature descriptor
(except for KPCA). We compared the following: 1)The KPCA matchin@g?[1i8 an example

of an algorithm that only uses the spatial structure. 2) Descriptor-onlgrliagssignment: we
used the Hungarian algorithm applied to the shape context descriptois rage only feature
similarity is used. We used the histogram distances as our metric as it was aadadu[9]. 3)

Our approaches: The three settings described in_Sed 7.3.1: PaiRM&e Kultiset pairwise
(MPW) and Multiset with clusteringMIC). We used a Euclidean double exponential kernel
to encode the spatial structure, and Gaussian kernel osatneshape context descriptor for
descriptor similarity. 4) Dual Decomposition approach proposed inl [1Bbiks is a quadratic
assignment approach that uses an iterative solution. 5) Results reipdti28], which are state

of the art algorithms using quadratic optimizations. That includes [29] arspeelaxation

of the graduated assignment, [72] 35] and max-product belief propagm a quadratic pseu-
doboolean optimization [125]. 6) Results reported_in [20] after learningrather sequence
(CMU ‘House’ sequence) using both quadratic and linear assignmenteaithing.

Evaluation: Evaluation is based on the mismatch ratio and the complexity of the problem.
Table [7.1 shows that our bad®V outperforms all approaches that use linear complexity and
outperforms some of the state of the art quadratic algorithms,[e.gl, [29)3@)g our multiset
MPW and MC we reach 95.56% and 100% accuracy, which is not reached by any of th
competing algorithms. It is very important to notice that the size of our affinityirndtin the
case of the multiset of 15 frames is ju$t) x 450 and for the case of the pairwise matching is
60 x 60, where the size for one edge compatibility matrix for any of the quadraticrassigt
approaches i900 x 900. Table[7.1 shows the complexity of the problem and the mismatch

ratio. Fig[7Z.5 shows the matches obtained from all the 15 frames using our rmaittg@ach.

7.4.3 Robustness: INRIA datasets

Data: In this experiment we use the INRIA datasets, which has been usedbipf@®mpar-

ing descriptors. This dataset contains seven subsets that coveral sffexts such as view-
point change, zooming, rotation, blurring and lighting change. Each cfdhen datasets has

a ground truttHomographymatrix computed between the first image in each set and the other

images in same dataset. Overall there are 36 matching problems given theid gnath.
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Algorithm Error Rate Problem complexity
KPCA [132] 35.5% Linear
Linear Assign. W/SCL[97] 11.81% Linear
Our Approach PW 9.24% Linear
Our Approach MPW 4.44% Linear
Our Approach MC 0.0% Linear
SMAC [29] 15.97% Quadratic
Fusion [72] 13.05% Quadratic
COMPOSE [[35] 4.51% Quadratic
Belief Propagation[[125] 0.06% Quadratic
Dual Decomposition[[125] 0.19% Quadratic
Learning(LA) [20] 12-17% Linear
Learning(GA) [20] 10-14% Quadratic

Table 7.1: State of the art results on the ‘Hotel’ Sequence

Figure 7.5: Matches obtained in 15 frames of the ‘Hotel' sequence usiegloot multiset
matching
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Goal: We use the INRIA data set to evaluate the robustness of the pairwise matehsign of
our framework to the various imaging effect in a dataset with ground truéhaléd evaluate the
behavior of the matching under strong affine transformation using bothutledEan and the
affine invariant kernels. This set demonstrates the scalability of oupagpiptto handle a very
large number of feature points ( from 130 to 1250 SIFT features per imddwt shows the
value of our approach compared to the quadratic assignment appspadtieh typically can
only handle a number of features limited to around 100. We use the grouhdHmmography
matrices just for evaluating the resulting matches, since our approacindbassuming any
geometric transformation prior.

Competitive Approaches:in this experiment we compare 1) The basic SIFT matches [79] as a
baseline. 2) SVD-SIFT [34]: This approach uses SVD decompositian@aussian proximity
matrix in the SIFT descriptor space. 3) Our Pairwise matching approach ettirelEuclidean
Gaussian spatial kernel and an affine invariant kernel. In all casesewsing the same set of
SIFT descriptors.

Results: Table[7.2 shows that for all the datasets, our approach with either kgjimetsthe
highest number of correct matches. The last column gives the numbeatofés in the first
image for each dataset. This result shows that enforcing the spatiastesty improves the
descriptor matches. Fig. 7.6 shows the number of matches as a functiowvigitipeint change
or the blurring. The results show that the Euclidean kernel gives c@hlgaresults to the affine
invariant kernel even under a very large viewpoint change. Wetsel¢lne scale for the spatial
kernel as a constant-multiple of the maximum distance between feature poimishimeage.
In general, we found that selecting a scale large enough for the Eutlideaels would give

results comparable to affine invariant kernels, this is consistent with wdeastated in [109].
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Dataset(Effect) SIFT SVDon SIFT  Our  Our Affine 15 Image
Matching [79] Matching([34] Approach Approach Feature Count
Graf (ViewPoint) 47 54 66 67 464
Boat (Zoom&Rotation) 99 87 108 108 467
Bark (Zoomé&Rotation) 49 47 55 55 392
Bricks (ViewPoint) 46 44 58 59 310
Trees (Blurring) 146 153 186 191 642
Cars (Lighting) 60 17 65 70 134
Bikes (Blurring) 227 229 239 237 400

Table 7.2: Average number of correct matches for each dataset fiBidldatasets
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Chapter 8

Implicit Feature Spatial Manifold Learning through spatial
consistent label propagation

In this chapter we propose a novel approach to integrate feature similadtgpatial consis-
tency of local features to achieve the goal of localizing an object of isitémean image. The
goal is to achieve coherent and accurate labeling of feature points in éesimg effective
way. We adapt the Global and Local Consistency Solution to our methoteifgaopagation
to infer the labels of local features in a test image from known labels. Thigris th a trans-
ductive manner to provide spatial and feature smoothing over the leatreld.l&Ve show the
value of our novel approach by a diverse set of experiments witlesgfid improvements over

previous methods and baselines classifiers.

8.1 Introduction

Object localization is a fundamental problem in computer vision. The deteatidmaecurate
localization of a given object under general settings with high class varjatifferent viewing
conditions, presence of occlusion and clutter is a challenge. Locatésadescriptors, such as
SIFT [79] and other similar descriptors, have been shown to be usefobject localization
and recognition as they are highly discriminative and possess invarigmenpies. The spatial
configuration of the local features is also important to decide the presgragsence of an
object since it captures shape information which markedly reduces thefrfatise positives.
A good localization algorithm should find good object candidates with low &lksens.

Many researchers have addressed the localization problem as fididiglate patches that
have high probability/score of lying on the object and at the same time reje@iobgs that
are likely to be false alarms [382, 112,196, 84] 71} |47,(32, 70]. Most cfelapproaches use

multiple cues and do not depend on local features alone._Ih [82] actagagh encodes the
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Figure 8.1: The left image shows the SVM classification of the local featmdsthe right
image shows the result of our localization approach. Red and green poenfisreground and
background, respectively

shape of the object arshape maskare learned to reduce the hypothesis spacel _In[[96, 70]
segmentatiortues are augmented with local features to find accurate localizatiorl. [ha [84
hard matchings established. Other approaches use different types of contex{é8ps

Although it is reasonable to consider more cues beyond local featucemtess and their
locations to solve localization, it is also desirable to enhance localization widltioling more
cues. Enhancing the usage of local features is complementary to othesfdtageart achieve-
ments in localization. In this chapter we only use local features defineddntaré descriptor
and location in the image. We do not use any more cues.

Similar to our approach are [101,160,68] in which the local featuresramgep heavily to
find the good features to be used in sophisticated localization algorithms. Sindd&xIfo our
approach can be understood as a way of pruning local featurestamtih@andidate features
for the object class and background class are considered for iflitfteer level processing to
accurately find the object of interest.

In this chapter we pose the object localization problem as a transductivinigg@roblem
on a graph structurésraph-based methodsr both transductive and semi-supervised learning
are widely used in many applications where the structure of unlabeled datzeczombined

with the structure of labeled data to learn better labelingl [21]. This appraadks well if
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there is a valid manifold assumption on the underlying data and hence the intriasitold
describes neighborhood relationships over the labels. A characterigiem is that a feature
may lie in more than one feature-space and hence lie in more than one maniiokample,
in the object localization problem using local features, local featurediean two different
spaces, hamely, the feature descriptor space and the spatial x-yefkatation on the image
coordinates.

A successful approach of object class localization using local featurest handle the
feature descriptor and feature location spaces accordingly. Under wdaiation (like many
real objects) there might exist multiple manifold structures in the descriptoesg@mply, the
manifold can be broken into several clusters where every cluster hagitmanifold structure.
This is what visual code book methods try to capture. The idea of exploitangnémifold struc-
ture in the feature descriptor and spatial domain was recently addregd@@jnUnlike [123
where they explicitly embed the feature manifold and perform inductive ilegin that em-
bedded space, we exploit the manifold structure in the data implicitly without edfivapend
within a transductive learning paradigm.

The spatial arrangement of local features is useful in many aspe@salSgighborhoods
gives us local geometry and collectively provides shape informationtabgiven object. Spa-
tial neighborhoods also inherently provide smoothness over labels smexpect to see the
same labels in close proximity to each other. This is used in MRFs for segmentAtadi
where the points are typically defined on a grid.

The contribution of this chapter is that we pose the object class localizatidoepn as
classifying the features of a test image using transduction on a graph sethpbthe training
features as well as the test features. Every training feature has afabeking transduction
we can infer the labels of the test features. We propose a new technigapttoe similarity
among data points which share two structures: the spatial structure, vefiich to the spatial
arrangement of local features within an image, and visual structurehwdiiers to the feature
similarities between local features in the whole data set. We call our app8pattal-Visual
Label Propagation (SVLP) and can be used to detect objects and/opé#ntsrin images. In
addition our approach is independent of the actual local featureigi@scbeing used (e.g.

Geometric Blur (GB) [[11], SIFTL[79], etc.).



76

8.2 Problem Definition

We denote the® feature in thek'™ image by ff = (vF,2F,), wherev? € RPe is the
feature descriptor an.czij-€ € R? is the feature coordinate in the image. The feature descrip-
tor can be an image patch or local descriptor such as SIFT, GeometriceBtur, The la-
beled training data consisting &f sets of feature pointsy', X2, --- XX in K images where
Xk = {(fF,y¥)}. Herey? € RY denotes the class label aatiis the number of classes (e.g.
foreground/background or object parts as classes). For the iaaef’ = 2 and for thek!"
image we have)® = [1,0] if the featuref* belongs to the object class apfl = [0, 1] if
otherwise.

During testing, an unlabeled test image is given with its associated set ofefe@fiy =
(z;,v;)} and corresponding labels = {y;} which are unknown. The goal is to label these
features in the test image. Once the labels are discovered we can localibgetie(or part) of
interest by its local feature labels. The labeling should reflect what vedddrom the training
data about the features and their local spatial arrangement as welie@grbregions in the test
image.

A fundamental assumption in label propagation is label consistency: poioksse prox-
imity to each other are likely to have similar labels_[145]. This is often called the widnif
assumption. The key difference in our problem is that the consistencyrifatltbassumption
in our case has two folds: spatial consistency: close by features oartieisiage should have
the same label, feature consistency: similar features across the diffeegygs should have the
same label. The question is how to construct a graph that reflects spdtigaduare similarity
and allows label propagation in a way that preserves both similarities. Simpbatemation
of the feature descriptor and its location in the image cannot be consideocedlsis will give
rise to the issue of how to do deal with a test image without knowledge abolgictiion(s) of
object(s) of interest.

The SVLP approach captures the local spatial arrangement betwetrathee points by
computing a local kernel based on the spatial arrangement of the lataftde in one image
(intra-image). SVLP also captures the similarities between the features indbiepder space

across the different images (inter-image). Thus augmenting these two df/s@silarities
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in one graph is important to find a meaningful, accurate and coherent lgb€line intra-
image spatial structure in the test image is also important to find the coherdiridalbénally

SVLP aims at finding long range (global) relations between the featuresopagating local
information through diffusion between the spatial and visual appeaiafarenation. We use
the SVLP as a transductive solution to induce the desired labeling of thedgadints in the

test image.

8.3 Background on Label Propagation Algorithms

As explained in [[211], label propagation relies on the idea of building algvdmse nodes are
data points and edges represent similarities between points. Known labetsearto propagate
information through the graph in order to label all nodes [146| 145].irRghd way to propagate
labels from labeled data to unlabeled data has many applications, for exartgriegtive image
segmentation[[130], image annotatian |[59], visual code book gener@@jn [

Graph Construction: Given a point seX = {z1, -2, 2141+ ,z,} and a label set =
{1,--- ¢} thefirstl points have label§y,, - - - ,y;} € L and the remaining points are unlabeled.
The goal is to predict the labels of the unlabeled points.

The graph built by label propagation methods represents the geometry déth induced by
both labeled and unlabeled data. It defines a weight méitrix 1V;; is non zero iffz; andz;

are "neighbors”. One choice of th& matrix is ak-nearest neighbor matrity;; = 1 iff x; is
among the:-nearest neighbors af; or vice versa (and 0 otherwise). In our approach we used
k-nearest neighbors with = 20 to create a sparse graph to ease computational load.
Propagation By Iteration: Given the similarity graph of = [ 4+« nodes [ labeled nodes and

u unlabeled nodes), the labeled nodes, - - - , [ will propagate their labels to their neighbors.
The process is repeated until convergence of the labels is achievedteTdtive formula can
take different forms depending on fixing or changing the labels of thdddlpmints.

Harmonic Function Solution: One example of a label propagation algorithms is the harmonic
function solution by [[146]. In this algorithm the known labels remain unckdngrhe al-
gorithm consists of computing an affinity matfiik using a gaussian kernel. The intra-image

local structures are not utilized to compute the unknown labels.
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Global and Local Consistency (GLC) Another solution for label propagation is the GLC
method[[145]. This method provides more interactions between the labelehkteled data.
The known labels are not fixed and so they can also change throughrti@its. The algo-

rithm is summarized in the following steps.

(1) Compute an affinity matri¥/” using Gaussian kernel with bandwidih

(2) Compute the normalized affinity = D~'/2WD~/2, inwhichD = 3~ Wj; .

(3) Initialize Y = (y1,--- ,4,0,0,--- ,0).

(4) Choose parameter € [0, 1).

(5) Iteratey (*+1) = 0.5V (") 1 (1 — )Y (®), until convergence.

(6) Label pointz; by the converged upogl(oo). The convergence of the sequence is proved
regardless of the initial labelinyy. During iterations each point receives two contributions

coming from its neighbors through and its initial valuet” () respectively.
V) = (1 —a)(I —as)" 1Y (8.1)

Now computingy (>} can be done without iterations. This shows that the iteration result does

not depend on the initial value of the iteration. Also we can notice(that «S)~! is in fact a
Su St
Sul Suu

graph or a diffusion kernel. We can also defie-

8.4 Approach

8.4.1 Motivating Example

Two-Image Example We illustrate the interaction between labeled and unlabeled features on
a simple example where the features in the first image are all labeled and tinedea the
second image are all unlabeled.

The Harmonic Function Solutioatilizes the visual structure across the two sets of feature
points and also the spatial structure of the feature points in the test imageotévbare that

the the spatial structure of the first image is not utilized in any way to computelitks laf the
feature points of the second image.

The GLC Solutiorin equation 8.1l utilizes the fulb' matrix, this actually means the whole
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graph structure in th& will be utilized to induce the labels of the unlabeled features in the
second image. More precisely the intra-image spatial structure that wasdgndahe harmonic
solution (represented by;; in GLC) will be diffused to the unlabeled feature points in the

second image. We write down the expansion of equatidn 8.1 for the unldatedes only as

V) = (a8l + 0282y + - ) Vi

(Lt aSly + 0?82, +++ ) Ya (8.2)

We note that théA/u(OO) is getting its label from two terms. The first term depends on the labels

P
) The termsS(ul)

similarities between labeled (training) and unlabeled (testing) features.upeessriptpy rep-

of the ground truth label¥; and it also depends Qﬁful are the normalized
resents the order of the block matricesvhich can be replaced by a summation of components
consisting ofS,,,,, S,; and.S;; which will be shown in equation 8.3. The second term in equa-
tion[8.2 depends on the unknown lab¥]s(which can be given some initial values using some
external classifier, it also can be initialized as zeros) and it also demr%u). The terms
o

The first order blockss?:

(uu)

are the normalized similarities between the unlabeled (testing) features.

and S(lul) do not encode the spatial structure of the training

image S;;. On the other hand, the higher order blod*i%u) and S?

(ul) do encode the spa-

tial structure of the training imag#;. This can be noticed if we further expand the terms

Sz 82 83

(ul)? P (uw) P (ul) andS

(uu)

in terms of the originab blocks

5(2”) = SuSu + SuuSu

S(2 Sulslu + SuuSuu

wu)
S?ul) = SulSllSll + SulSluSul + SuuSulSll + SuuSuuSul

S? SulSllSlu + SulSluSuu + SuuSulSlu + SuuSuuSuu (83)

uu)

The higher orders block§fuu),5f’ul)) already have the terifi;. This shows that the unknown
Iabelsﬁfoo) are not only affected by the similarity across the labeled and unlabeledalats,p
but in fact it is affected also by the similarity in the training points. In other wdhe spatial
structure of the training points is reflected on the propagated labels.

Conclusiont The two-image example above leads us to a number of conclusions. First, the
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diffusion kernel(I — a.S)~! that is used in the GLC solution is capturing the long-term re-
lationships {e. between pre-convergence and post-convergence labels) inhible graph
constructed from the two sets of feature points, labeled and unlabeleih@érom the single
training image and single testing image). On the other hand the diffusion kesedlin the
harmonic function solution is capturing only the long term relationships in thébaldd data
(in our case, the test image).

Second, although it seems less intuitive to change the labels of the trainimgedatd that
it is fundamental to change the labels in the training features so that we pafitbeom the
spatial structure in the training image. We understand that changing theflablelseled data
is sound when the labeled data has some overlap between the classeaddreased problem
of object class localization from local features this is also sound, bed¢hadeatures that are
close to the boundary of an object will have much confusion between itmakigbel and the
labels of surrounding features. This will lead to find some features thatt iigimge its label
depending on its neighborhood structure.

Third, the two images example gives us an intuition of how to design the terms iretgbtw
matrix W when we construct the graph, this will be reflected on the normalized weigtntx
(S). We see that we need to define some spatial structure for the featuresdch image in the
training set. We see that we need to define some structure that represenssitti appearance
similarity between the image in the training set and the image in the test set. In dlemro
where the local features are defined by two different vectors (gié¢sicand spatial location), it
is easy to see that the spatial structure can be inferred to assurentdabeding in the spatial
space. Also the visual structure can be inferred from the featureipiscsimilarity in the
descriptor space so that the features that have high similarity in descippice san be labeled

similarly.

8.4.2 ConstructingW¥ for SVLP

We first define théV” matrix as a block matrix where the blo€K,,,, is computed as a Gaussian
kernel K,(.,.) on the spatial structure of the local features spatial arrangements orsthe te
image. The blockdV,; and W;, are computed as Gaussian kernals(.,.) on the visual

appearance structure of the local features between test and trainingsim@ige blockil;
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should be designed to reflect both the intra-image spatial structure withifineagé of training
images as well as the inter-image visual appearance structure betwasedeaa different
training images.IW;; is defined as a block matrix where the blocks on the diagonal represent
the spatial structure within each of the training images and the off-diagémak<orepresent
the visual structure between different images in the training set.

Equation[8.4 shows an examplé matrix that hask training images and one test im-
age.W,f is the spatial structure for image WhereWi‘j’ is an visual structure kernel between

features in image and features in imagg

WP Wl e W
wY ws ... wV
Wy = _21 _ 2 2K Wl"[,/;
W = WY, - - WE (8.4)
Wi W,

8.4.3 Objective Function for SVLP

We write down our objective function as the sum of three terms. The firatissthe smoothness
constraint on the intra-image spatial structures, The second term is théhsres® constraint
on the inter-image visual structures. The third term is the fitting constrainthwhéans there
should not be too much change from the initial label assignment. This avaid&tons in the
label values during the iterations.

In our formulation the first two terms mean that nearby points defined by tpé gteucture
should not change their labels very often to allow the neighborhood steuttiucontrol the

labeling process.

w7y =3 S w2 0.
P ,j

VDii  /Dj;
oY) Y()
+ Y W)l - P
. Dz‘i Djj
0,4, p#q 1]

+a Y IV ) - YO ©5)
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WhereD is the diagonal matrixD = > . W;;. W is defined in[84.p andgq are the image
indices. OncédV is constructed, equation_8.5 can be rewritten as
Y0 e
W (i H |
Z vD Djj
+ uZ 1Y (@) — Y @) (8.6)

Equation[8.6b reduces directly to the same cost function as| [145] and the mitiimizan be

computed in closed form as equatfon]8.1.

8.4.4 Algorithm

We summarize our algorithm in the following steps

e Training (Constructing?;). Given K training images with labeled local features.

1. Fork=1:K
Construct the block®;” asW (i, j) = exp(||=} — %|?/(203)).
2. For acertaip andg = 1 : K wherep # g

Construct the block®/,; asW,, (i, j) = exp([v] — v]||*/(207)).

3. Construct?; as in equatioh 814

e Testing (Construct fulli and do the transduction) Given a test image with unlabeled

local features

1. Construct the blockV;, asWy, (i, j) = exp(||z — 24]?/(202)).

2. Fork=1:K
Construct the block®/, asWy, (i, j) = exp(|lvf — v¥[/(207)).

3. ConstructV, = [W3|Wio| - W]

4. Construct), = (W),

5. ComputeS = D~'/2WD~1/2,

6. lteratey (‘+1) = a.SY® + (1 — a)Y(©) until convergence, where is a parameter
in the rang€0, 1).

7. Let Y* denote the limit of the sequem{é/ ). Label each poing; as a label

~ *
Ui = argmax;<c Yl]
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8.5 Experiments

In the experiments reported in this chapter we used Geometric Blur (GBRtILBIFT [79] as
the local feature descriptors. Towards the end of this section we br@fipare between these
two descriptors. The datasets used in the experiments are: Caltech80TUD Motorbikes

and Cows [[80], ETHZ Shape Classes-Giraffes [101], GRAZ02-Bi[&].

8.5.1 Caltech-101

In this experiment we performed object class localization via feature lalfeliragl the classes
in the Caltech-101[75], each class separately. The Caltech-101 wiatasdely used by the
community in categorization tasks. Here we carried out the localization foreall@h classes
to show that we can apply our method for object class localization acrogslifierent kinds
of objects ranging from animals, man-made, indoor objects, etc. One maonrbahind using
this data set is that the ground truth is given via a contour surroundingofbet®f interest,
which facilitates the quantitative validation of our localization approach.

Every training image has at most 300 (the number of local features actaaifysignifi-
cantly depending on the class) local features. These local featweesecribed by GB[[11]
descriptors and their spatial location in their images. The detected locatdsatithin the
contours are labeled as object class and the features outside the sar®urarked as back-
ground class. We ran our algorithm 5 times on all classes for each ofdfifernt training
settings (sizes 10, 20 and 30). By using our SVLP method the labels of timtege feature
points are inferred and thus this leads to localization of the object of intSestlar to many
other researchers in object class localization from local features68A.01], we report the
percentile of features that scored the highest in the object class agroackl class.

In figure[8.2 the performance of our localization method is compared to twelibes
which are the 1-NN classifier based on the feature descriptor alone ar&Mi classifier
based on the feature descriptor alone. We applied SVLP given diffatenbers of training
samples per class and we fed the SVM estimated solution to our algorithm as drvjniflde
figure shows that the percentile SVLP significantly improves over the baselines, even with a

very large portion of features included in the accuracy measure3(%. We note here that
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Figure 8.2: Learning Trend: changing the training size per class imptbheagsults.

F M A W K
SVLP | 0.1028] 0.0384| 0.1365| 0.0213| 0.0769
SVM | 0.2359| 0.0487| 0.2030| 0.0902| 0.1372
1-NN | 0.3229| 0.1667| 0.2721| 0.0732| 0.2197
0] | .30 | 0.11 | 021 | .08 19

B8] | .15 | 0.07 | 0177 | .03 | 0.08
[M23]| .31 | .003 | .02 - -

Table 8.1: False Positive Rates (FPR) for different methods. F:. Fateblotorbikes, A:
Airplanes, W: Watches and K: Ketch. Results by [123] ar@@% percentile and is not
comparable directly with other entries.

most other localization approaches use only the b@&t of the local features in measuring
the accuracy. This improvement is very meaningful as the SVLP is alwagmdj a spatially
coherent feature labeling. Asdecreases the localized features on the object of interest become
more and more confident localized features. We also made anotheratiisetkiat the closer a
feature lies to the core of the object, the stronger the confidence it esaging our approach.
For comparative evaluations we mainly consider the approaches_[60,T6&] reasons
behind this selection are the following. Firstly, similar to_I[60] 68], our goal itotalize
features into foreground/background classes. Due to this, we usartfeeevaluation measure
(FPR) as [[6D 68]. Using FPR is a more sensible choice over boundixg\eslap ratio
when evaluating sparse local feature localization. Secondly, since tilekion in [60[ 68] is
performed after clustering the images with very high accuracy (ar9&#d. These approaches

localize the features that belong to the object in every individual clustepeatently and
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Figure 8.3: Sample Results on ETHZ-Giraffes, TUD-Cows, TUD-Motabi&nd Caltech-101.

Every row represents the percentile at which the localization is inferreeltdp row shows the

top80% percentile of the features are localized, second2o¥. Red are foreground localized
features. Green are background localized features. Detectedefieatar shown in cyan. Best
viewed in color with zooming.

hence the object is known to be in the image with high probability (arc2s)d In other words

the unsupervised part é. clustering) of their approaches does not increase the hardship of their
feature ranking problem. Thirdly, we use onl§ — 30 training images which is much more
challenging than theé00 images per class in[_[60, 68]. The much larger number of training
images they select balances the unsupervised ranking they perforreipfetitures. Lastly,

we favored the setup in[_[60, 68] over ours because localization resultsibapproach are
based on the object contour while their approaches are based on bpbodas. In addition,

we reported accuracy 0% of the scoring features which adds weaker features thabOie

they use in their evaluation. This addition of weaker features degrad€SRIR) in our case.

The best 5 classes that improved over the SVM baseline using 20 trainingsmaage
{crocodile, crocodile-head, pagoda, hedgehog, cougarjbaaly the least 5 improving classes
were{ewer, car-side, watch, dollar-bill, inline-skatéNe notice that the biggest improvement
takes place when the object of interest is a living object class which eppeeery cluttered

background. The least improvement is for well localized objects in theisdita
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Classname | ¢ =80% | ¢ =60% | ¢ = 40% | ¢ = 20%

1 car-side .9896 .9963 .9982 .9986
2 dollar-bill .9788 9917 .9967 .9986
3 | windsor-chair| .9691 .9869 .9968 .9992
4 nautilus .9686 .9849 .9910 .9972

5 faces-easy .9644 .9850 .9946 .9984
97 sea-horse .7837 .8246 .8625 .8876

98 ant 779 .8107 .8353 .8489
99 | flamingo-head .7756 .7968 .8176 .8414
100 star-fish 7740 .7965 .8156 .8320
101 lamp .7670 .7933 .8178 .8404

Table 8.2: Accuracy for best 5 and worst 5 classes on Caltech-1@kelresults were taken af-
ter training using 20 sample imagegshere represents the percentile of highest scoring features
taken.

8.5.2 Generalization to Subsets of LabelMe

Caltech-101 is designed for single object categorization tasks. To év#heegeneralization of
our proposed approach on different datasets which might haveatiffdistributions, we used
training example from Caltech-101 and tested on images from the LabelMsetaié4] with

multiple object instances. We used subsets of LabelMe datasets that leawvadss byl [68].

In this experiment we trained from four Caltech 101 classes nafidbtorbikes, Cars-rear,
Faces, Airplangs Since the object scales are very different in Caltech-101 and Labelkle
adapted a pyramid of scales on the test images. We show some results ofthzetbfeatures

in Figure[8.4.

8.5.3 TUD/ETHZ Datasets

We experimented on three other datasets to analyze the performance afmoach com-
pared with an SVM and 1-NN baselines. The first dataset is TUD-Motesbikhich is part of
the PASCAL collection [[98] which is known to contain hard images for the abgmaliza-

tion problem. The hardship lies in the fact that the images have differemittiess, scales,
background, heavy clutter and multiple instances per image. The seciaseitia TUD-Cows
which is a simple dataset with varying skin textures on the body of the cows imtges. The
third dataset is ETHZ-Giraffes which contains images of giraffes unifereht deformation

conditions (i.e. the giraffes’ necks vary in shape from fully extendeddnitey downwards).
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Figure 8.4: Generalization to some example from LableMe dataset. Featitinetopv25%
confidence are shown. Red for foreground localized featureser@oe background localized
features. Detected features shown in cyan. Best viewed in color withingo
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Classnameg ETHZ-Giraffes| TUD-Cows | TUD-Motorbikes
SVM .5980 .8550 5776
KNN .5878 .8259 .5655
Accuracy q = 80% 7322 .9339 .6703
g = 60% .7649 9714 .7026
g = 40% 7977 .9874 7327
q = 20% .8251 .9933 .7601
SVM .4036 3119 4826
KNN .3972 2217 4914
FPR q = 80% .2049 .1357 .3763
g = 60% .1670 1072 .3414
g = 40% 1294 .0812 .3093
g = 20% .1061 .0536 .2835

Table 8.3: This table shows a comprehensive comparison of the presgmeshches using
different percentileg as well as two baseline classifiers: SVM and K Nearest Neighbors (K=1,
results did not vary significantly with variations of K)

The images in this dataset are also challenging as they exist in multiple scatsdstion, mul-
tiple instances per image and contain extensive clutter in the form of vegetation

For TUD-Cows and ETHZ-Giraffes we set the number of training image®ié-@r TUD-
Motorbikes we used 30 training images. The number of training images arexapptely
21 — 26% of the size of the respective datasets. The much larger portion of thetieassthen
be used for testing. In all three datasets we used 300 SIFT descripbtarseason why we used
the SIFT descriptor in these datasets is because GB failed on images cantaigétation in
the form of bushes, trees, grass, etc. The reason behind this is thiatr@Bmulti-scale and
due to the large variance in the local structures of vegetation it is not abémneraize over the
background class. SIFT on the other hand captures multiple scales ot#hstimctures in the
images and hence is able to discriminate between object and backgrousekaldth higher

accuracy.

8.5.4 Object Parts Localization

For qualitative evaluation of our approach on part localization we caaigdbject part lo-
calization for some classes. NaméI@altech-Motorbikes, TUD-cows [69] The parts of the
objects are manually annotated via bounding boxes in the train images. WEWBecdows to

test how our part localization works in the case of non-rigid objects withudation.
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Figure 8.5: Object part localization. Left: bounding boxes defining timespesed during train-
ing. Middle and Right: some part localization results on TUD-cows and CaNtathobikes.
Features with top 60% confidence are labeled. Red for part 1 localiatarés. Green for
part 2 localized features. Yellow for part 3 localized features. Blud&mkground localized
features. Detected features shown in cyan. Better Viewed in color amdiag.

We used 20 images for training, each has 300 GB features. As showruie[Bgb we
defined three parts motorbike using bound boxes by gathering the fta#lwnd some part
of the attached handle, the second part is the engine area and the thiigitharrear wheel
and some part of the seat. We defined three parts on the Cow object osing boxes as the
head, body and legs. In both cases the remaining features are cedsaddrack ground class.
Notice that in the motorbike example, the front and back wheels have similaaspe and
in the cow example the head and body have similar texture. Successfully ilogaliez parts in
these example shows that the approach is in fact learning about theefepaiiial arrangement.
We can see (Figufe 8.5) that the part labels are retrieved efficienteyweeuse0% percentile

to show the localized features for each class.

8.5.5 Multiple Base-Learners

To avoid the problem that may arise due to over-sizing méifikeyond computational bounds
when dealing with large sets of images and features, we present a slightigd@dg@proach to
the above. This approach uses multiple base-learners to train using smatlapping subsets

of the training set. Each base-learner is identical to the presented ap@oa runs using the
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Figure 8.6: Sample results from the challenging GRAZ02-Bikes dataseg dsimultiple base
learners. The top row shows tReé% percentile and the bottom shows &% percentile. What
may seem like a false positive bike detected in the background of the left imageually a
bike wheel. Same color legend as figurd 8.5 Best viewed in color, with zooming

algorithm outlined in 8.4]4. Each base-learner uses the same number oé$easibefore and
in this case we used SIFT as our descriptor. At testing, the local fedtutbs test image
with the most votes from these base-learners are selected as the mostraoioiidground /
background features.

We ran this multiple base-learner approach on the more challenging GRAkK82-tataset
[94]. The setup consisted of 7 learners. Each one of them was tram#8 imnages from the
training set of 110 (which was partitioned from the 300 images). As yousearthe small
training subsets overlap with each other to cover the full training set. H&8rehows sample

results of this approach.
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Chapter 9

Conclusions

The work we presented in this dissertation has abridged the gab betwaesateof local fea-
tures with their spatial arrangement in object recognition and manifold lepimaata analysis.
Current object recognition systems depend heavily on local featuestodts discriminative
nature, which ease the recognition tasks. However, different kinasamifolds, e.g. view
manifold and object class manifold, are already present in the data aealingythe underly-
ing manifold structure in the data is expected to boost the recognition rataswdk confirmed
through diverse set of problems that were addressed in the body disgegtation.

In this dissertation we presented a framework that enables the study of meagéolds
from local features. We introduced an approach to embed local fedbased on their inter-
image similarity and their intra-image structure. We called the embedding “fegpaites
embedding” which provides an explicit low-dimensional representatioidation of local
features from different images. We also introduced a relevant solutiothé out-of-sample
problem, which is essential to be able to embed large data sets. We defintahaalimeasure
between images using the feature-spatial embedding framework. Given ttimee compo-
nents we showed that we can embed image manifolds from local featuresaytaat reflects
the perceptual similarity and preserves the topology of the manifold. Reboligesd that the
framework can achieve superior results in recognition and localization.

Furthermore, we proposed a kernel regression framework basadwoifiolds of local fea-
tures and their spatial arrangement. To the best of our knowledge thisfisstheork to ad-
dress regression problems from local features without either estallighirrorrespondences
between features from different images or using a holistic representstitie images. We
tested the regression framework on different problems such as vievgsdimation, face pose

estimation and arm posture estimation. The results showed that the stateaof-thethods



92

can be outperformed with our kernel regression framework for viawgstimation problems.

The feature embedding framework allowed us to solve the problem of é&atatching,
which is a very fundamental computer vision problem. Feature matching witfalspan-
sistency usually involves a higher order quadratic assignment probleour linamework we
preserve spatial consistency of the features without the need ofajicaassignment. Also, our
framework allowed us to match multiple sets by solving a single graph embeddibtepr.
The results shows that both rigid and non-rigid cases can be solvedsasireggframework.

At the very end, we also proposed to learn an implicit spatial-visual manifiakbut the
need of computing an explicit low-dimensional embedding for the featurégdive achieved
that by utilizing the label information that comes with the local features. We tésa¢dnplicit
spatial-visual manifold with a transductive learning framework for objadt@art localization,

which resulted in high accuracy and low false positive localization rates.
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