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The problem we address in this paper is how to learn joint representation from data lying on multiple
manifolds. We are given multiple data sets, and there is an underlying common manifold among the
different data sets. Each data set is considered to be an instance of this common manifold. The goal is to
achieve an embedding of all the points on all the manifolds in a way that preserves the local structure of
each manifold and that, at the same time, collapses all the different manifolds into one manifold in the
embedding space while preserving the implicit correspondences between the points across different
data sets. We propose a framework to learn embedding of such data, which can preserve the intra-
manifolds' local geometric structure and the inter-manifolds' correspondence structure. The proposed
solution works as extensions to current state-of-the-art spectral-embedding approaches to handling
multiple manifolds.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Dimensionality reduction techniques have proven useful in
many computer vision problems. In particular, nonlinear dimen-
sionality reduction techniques [1–7] can achieve embedding of
data lying on a nonlinear manifold by changing the metric from
the original space to the embedding space, based on the mani-
fold's local geometric structure. Many of the introduced nonlinear
dimensionality reduction techniques are instances of graph spec-
tral-embedding [8]. Spectral-embedding approaches, in general,
construct an affinity matrix between data points that reflects the
local manifold structure, i.e., constructing a graph with edge
weights reflecting the local geometry of the manifold. Embedding
is then achieved through solving an eigenvalue problem on the
affinity matrix. Examples of nonlinear dimensionality reduction
techniques in this category include: isometric feature mapping
(Isomap) [1], locally linear embedding (LLE) [2], Laplacian eigen-
maps [3], and manifold charting [4], among others. Bengio et al. [9]
and Ham et al. [10] showed that these approaches are all instances
of kernel-based learning, in particular, kernel principle component
analysis (KPCA).

All these nonlinear embedding frameworks were shown to be
able to embed data lying on a nonlinear manifold into a low-
dimensional Euclidean space for toy examples, as well as for real
Learning representations fr
images. Such approaches are able to embed image ensembles
nonlinearly into low-dimensional spaces where various orthogo-
nal perceptual aspects can be shown to correspond to certain
directions or clusters in the embedding spaces. However, the
application of such approaches is limited to embedding of a single
manifold and, as we shall show, fails to embed data lying on
multiple manifolds.

The problem we address in this paper is how to learn useful
representation from data sets lying on multiple manifolds. We are
given multiple data sets, and there is an underlying common
manifold among the different data sets. Each data set is considered
to be an instance of this manifold. For example, images of different
objects with similar geometry are observed from different views,
where the images of each object are one data set. The images of
each object lie on the view manifold of that object, i.e., each data
set is an instance of a view manifold of a different object. We can
think of such manifolds as quasi-parallel in the space. Different
objects' manifolds are distributed in the space. We can even think
of such manifolds themselves as lying on a manifold (assume that
we collapse each data set into a point). Another example comes
from embedding motion manifolds for different people (e.g.,
consider data on different people walking). Each person's data set
represents an instance of the “walking” manifold, while each
person's walking manifold (as a whole) is lying on a different
location in the input space. None of the existing manifold learning
techniques can be used to learn such complex structures: both
intra-manifold and inter-manifold structures.
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Our contribution: We propose a framework for learning
embedded representation from different data sets, each assumed
to lie on a nonlinear manifold. The embedding achieves repre-
sentation of the common underlying manifold shared between the
different data sets. The problem of learning a common embedded
representation from multiple data sets becomes trivial if we
assume that there are given correspondences between the differ-
ent data sets, i.e., the data sets are aligned. In this paper, we do not
assume that such correspondences are given. The results we
achieve are superior to existing state-of-the-art embedding
approaches when applied to such a setting. The proposed solution
works as extensions for the current state-of-the-art spectral-
embedding approaches, such as Isomap [11], LLE [2], and Laplacian
eigenmaps [3], to handle multiple manifolds.

The organization of the paper is as follows. Section 2 discusses
some motivating applications of the proposed approach. Section 3
presents related works. Section 4 presents the proposed joint
manifold embedding with inter-manifold correspondence esti-
mation. Section 5 presents some examples of experimental results
on different data sets.
2. Motivation and problem definition

Suppose we are given K sets of data lying on K different
manifolds, e.g., different people performing the same set of
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Fig. 1. Example embedding for facial expressions of three people: the first three plots s
manifolds together, which is dominated by the inter-person manifold distance.
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gestures or facial expressions. These data represent two different
factors: body configuration variability, which typically lies on a
low-dimensional manifold, and different people's variability,
which might be higher in its dimensionality. One objective is to
learn an embedding of the body-configuration manifold invariant
to the person performing the motion. Learning such joint person-
invariant body-configuration manifold embedding is essential for
estimation of the intrinsic configuration, for providing dynamic
models for tracking, and for recognition of gestures and activities.

Obviously, we can achieve embedding of each person's data set
individually, which yields person-specific body configuration
manifold embedding, as can be seen in Fig. 1. Such embedding will
be different from one person to another, and will not be useful in
any general tracking or recognition task where the goal is to track
and recognize the facial expression. On the other hand, if we put
all the data together in one set and try to embed them using any
nonlinear embedding technique, we will not be able to achieve
meaningful embedding either, since the inter-manifold distance
between data for different people will be much larger than the
intra-manifold distance (within one specific person). So, we will
end up with K separate clusters in the embedding space, as can be
seen from the bottom-right embedding in Fig. 1. In this example, a
Gaussian process latent variable model (GPLVM) [5] is used to
achieve the embedding.

Another example is shown in Fig. 2, where we used shapes
representing side-view walking sequences for multiple people
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how embedding for an individual person. The last plot shows embedding of three
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Fig. 2. Individual manifold embedding: (a) Input data. (b) Person-specific manifold embedding by Laplacian eigenmaps. (c) Laplacian eigenmap manifold embedding for all
the data sets together.
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from the CMU-Mobo Gait database [12]. An individual person's
manifold embedding, as seen in Fig. 2(b), gives an excellent
intuitive representation of the walking cycle as a one-dimensional
manifold. On the other hand, if we put all the data together and
embed them, a very messy and useless embedding is achieved, as
seen in Fig. 2(c). The embedding is dominated by the inter-mani-
fold distances, and does not reflect by any means the local intra-
manifold structure of the manifold. Therefore, such embedding
will not be useful in any general tracking or recognition task.

Problem definition: We are given multiple sets of data, each
representing data lying on a nonlinear manifold where all these
manifolds are conceptually similar, i.e., each set of data represents
an instance of a common underlying manifold. The question is,
how can we learn useful embedded representations of these data?
How can we learn joint manifold embedding representing this
common underlying manifold, regardless of the cross-manifold
variability? All the manifolds are supposed to share the same
geometric structure, and it is desired that embedding should
reflect such a common geometric structure. In other words, we
need to learn an “average” manifold.

We propose a framework to solve this fundamental problem.
This problem has not been addressed before, and most of the
research is focused on learning individual manifolds, assuming
that all the data lie on a manifold. If correspondences among the
manifolds are given, the problem becomes trivial. One solution in
this case is to stack the data from the multiple sets together to
form a joint space and embed the resulting high-dimensional
(stacked) vectors. This is similar to the solution proposed by Ham
et al. [13] for the problem of learning joint embedding across
different spaces. We solve the problem within the embedding
framework where, from the data geometry, we can achieve joint
embedding. Fig. 3 shows that conventional manifold embedding
can find nonlinear manifold characteristics from individual gait
sequences but fails to find common characteristics from the
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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collection of gait sequences for multiple persons, whereas the
proposed joint manifold embedding method can discover common
manifold structures. Preliminary results of this work were pre-
sented in [14] and revised in this journal version with additional
experimental results. The proposed solution works as extensions
to current state-of-the-art spectral-embedding approaches, such
as Isomap [11], LLE [2], and Laplacian eigenmaps [3], to handle
multiple manifolds.
3. Related works

Traditional nonlinear manifold learning, such as Isomap, LLE,
and Laplacian eigenmaps, fails to find a proper embedding space
when there are disconnected multiple manifolds. Wu and Chan
proposed an extension of Isomap embedding from separate com-
putation of intra-class and inter-class geodesic distance for mul-
tiple manifold learning [15]. Souvenir and Pless presented another
extension of Isomap embedding for multiple and intersection
manifolds using manifold clustering [16].

Related to multiple manifold learning, we can categorize mul-
tiple cluster manifold learning and multiple-manifold learning;
multiple cluster manifold learning is learning multiple manifolds
that can be separated into different clusters, whereas multiple-
manifold learning is learning overlapping manifolds in different
structures. In the case of multiple cluster manifold learning, even
though we cannot directly apply conventional manifold learning,
we can solve the manifold learning problem by decomposition of
all data into independent clusters and learn “inter-cluster” con-
nections using conventional manifold learning. Further alignment
or composition can be applied as post-processing to further align
all manifold structures.

Manifold identification using multi-scale clustering algorithms
was applied to multiple cluster manifold learning by Kushnir et al.
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Fig. 3. Diagram to compare conventional manifold embedding for individual data sets and collection of data sets with the proposed joint manifold embedding.
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[17]. Meng et al. [18] proposed a decomposition–composition
(D–C) Isomap method for multiple cluster manifold learning.
Neighborhood graph is used for decomposition. Wang et al. [19]
showed that spectral clustering based on an affinity matrix of a
local tangent angle and spatial neighborhood constraints can
achieve clustering from multiple manifolds. Algorithm to resolving
singularities was proposed for simultaneously achieve multiple
manifold clustering and learning [20]. Recently, semi-supervised
learning algorithms were also applied for manifold clustering with
smoothness constraints [21], to discriminative metric learning
from multiple manifold structures [22,23], and to predict the label
of a data point according to its neighbors and to preserve intra-
class local information [24].

When there are combinations of multiple factors, joint mani-
fold learning or product manifold learning methods are developed
for multiple manifold learning. In the case of product manifold
learning, it assumes that pairwise combinations of data are avail-
able for data points on the manifold. For example, when we want
to find joint manifold embedding for N objects and M views, we
expect to have a pairwise combination of each object with M
views. Therefore, N M× samples are available for learning joint
manifold embedding, as in the Columbia Object Image Library
(COIL)-20 database.

Coupled visual and kinematic manifold learning based on view-
invariant configuration manifolds and configuration-invariant
view manifolds is an example of product manifold embedding
using a marginalized embedding manifold [25]. Torus manifold
embedding is also a product manifold based on embeddings of
two conceptual circular manifolds and their product [26]. Cylind-
rical manifold embedding is used for topologically constrained
low-dimensional manifold embedding from multiple locomotions
at different speeds [27] or conceptual manifold embedding of joint
views and hand-shape variations [28]. For multiview sequence
data, intra- and inter-sequence neighbor constraints using repre-
sentative views and their Laplacian eigenmaps are applied to find
joint modeling of similar concepts [29].

Multilinear analysis frameworks and their kernel extensions
are extended into Grassmann manifolds using principal angles as
geodesic distance [30], which are parameterizations of average
factors. To preserve characteristics of individual submanifolds,
factor-dependent submanifolds are learned and local coordinates
are aligned for a joint parameter space [31]. Product manifold
embedding techniques are applied for action recognition [32] and
temporal motion sequence analysis [33]. In human motion
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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analysis from video data, manifold learning with spatial and
temporal constraints is applied for cyclic motion using a multiple
kernel learning framework [34].

In the case of joint manifold learning, the data consist of
multiple intersecting manifolds. Goldberg et al. presented a joint
manifold learning algorithm using semi-supervised learning
algorithms to separate different manifolds and supervised learning
within each separated manifold [35]. Davenport et al. defined a
joint manifold as a subset of the product manifold and applied it to
sensor data fusion [36]. Groupwise manifold alignment was
achieved via registration-based inter-dataset kernel for high-
resolution dynamic magnetic resonance (MR) imaging [37]. A
hierarchical mixture of density models was used for multiple
manifold learning [38].

Alternatively, our proposed framework provides a way to pre-
serve inter-manifold structure by forcing embedding coordinates
of any corresponding points to be close together, in addition to
preserving an intra-manifold structure by preserving the local
manifold structure. An extension similar to our approach was
proposed using an intra-manifold weight matrix and a soft cor-
respondence matrix for the inter-manifold structure [39]. The
difference is in the computation of the inter-manifold structure:
we solve inter-manifold correspondences by finding a permuting
orthogonal matrix constraint from inter-manifold geometry
encoded by Gaussian kernels, whereas the other approach com-
putes a soft correspondence matrix from the inter-manifold
structure directly. In comparison, the experiment in Section 5.1.1
shows limitations when soft correspondence is estimated directly
from the inter-manifold structure.
4. Joint embedding from multiple manifolds

4.1. Inter- and Intra-manifold structures

The input is K different data sets in a D-dimensional space,
denoted by X x i N k K, 1, , , 1, ,k

i
k D

k= { ∈ = … } = … . The points
on each data set are assumed to lie on a manifold, and there is a
common structure between the different manifolds, i.e., each data
set represents an instance of the manifold, which we intend to
learn. Each data set might have a different number of points.
Therefore, we denote by Nk the number of points in the data set k.
Let N be the total number of points in all data sets, i.e.,
N Nk

K
k1= ∑ = . Throughout this paper, we will use superscripts to
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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indicate the manifold index (equivalently, the data set index) and
subscripts to indicate the point index, i.e., xi

k denotes point i on
manifold k. The correspondences between the data sets are not
known and, since the data sets are of different sizes, no one-to-one
correspondences can be assumed.

In such data sets, there are two different geometric structures:
the intra-manifold structure and the inter-manifold structure. We
represent these geometric structures separately using two kernels:
the intra-manifold kernel and the inter-manifold kernel, respec-
tively, as detailed next.

4.1.1. Intra-manifold structure
The intra-manifold structure is the geometric structure within

a given manifold. All spectral-embedding approaches construct an
affinity matrix W between data points x xX , , n1= { … } that reflects
the local manifold structure. Such a matrix represents the intra-
manifold structure. The procedure for constructing this matrix
differs, based on the approach. For example, Isomap [11] finds the
shortest geodesic paths on the manifold. LLE [2] finds local linear
weights to construct each point from its local neighbors. Laplacian
eigenmaps [3] use a heat kernel given the nearest manifold
neighbors. In all cases, the entries W represent a special data-
dependent kernel [9,10] K x x,D i j( ). Given such a kernel matrix,
embedding is achieved directly using the principle eigenvectors of
KD. Here, we do not make any assumptions about how the intra-
manifold structure is obtained.

Given K data sets, the objective is to preserve the intra-mani-
fold structure or the local geometric structure within each mani-
fold. Given the kth data set, we can construct an N Nk k× symmetric
weight matrix Wk representing its local geometric structure, as
typically done in LLE, Isomap, etc. Therefore, given the K data sets,
we have K weight matrices. This collection of matrices captures
each manifold's local geometric structure. We denote this collec-
tion by the tensor , where

K x x, .ij
k

D i
k

j
k= ( )

4.1.2. Inter-manifold structure
The inter-manifold structure is the geometric structure

between the different data sets in the space. Given any two
manifolds p and q, their pairwise inter-manifold structure is
represented by an N Np q× kernel matrix Upq, such that

x xGU , ,ij
pq

i
p

j
q= ( )

where G ,(· ·) is a global kernel between points xi
p and x j

q on
manifolds p and q, respectively. This collection of matrices cap-
tures the pairwise manifold relations. We denote this collection by
the tensor , where

x xG ,ij
pq

i
p

j
q= ( )

Notice that the matrices Upq are not symmetric. However, there
exists a hyper-symmetry structure in because ,ij

pq
ji
qp= i.e.,

U U .pq qpT=

4.2. Objective function

Given the intra-manifold structures and the inter-manifold
structure , the goal is to achieve an embedding of all the points
on all the manifolds in a way that preserves the local structure of
each manifold and, at the same time, collapses all the different
manifolds into one manifold in the embedding space while pre-
serving the implicit correspondences between the points across
different data sets. Since we want to find common embed-
ding among all the data sets, we do not need to preserve the
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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inter-manifold structure. The inter-manifold structure is needed to
solve for soft correspondences between the data sets.

Formally, we seek an embedding for the data, i.e., we seek the
coordinates of N points yY i N k K, 1, , , 1, ,i

k d
k= { ∈ = … = … } in a

d-dimensional embedding space where a point yi
k is the embed-

ding of the data point xi
k. The desired embedding should satisfy

three goals:

1. The embedding of any two points within the same manifold
(data set) should preserve that manifold's local structure.

2. The embedding coordinates of any corresponding points on two
different manifolds should be close together.

3. The embedding of any two points within the same manifold
should preserve the local geometric structure of their corre-
sponding points in all other manifolds.

The third goal is implicitly satisfied by the first two goals. That is,
ensuring that corresponding points across different manifolds are
embedded close to each other, while preserving the local structure
of each manifold, guarantees the third goal.

If the correspondences between the different data sets are
given, the problem becomes trivial, as will be shown. In our case,
the correspondences are not given. Moreover, since the data sets
are of different sizes, no optimal one-to-one correspondences are
possible. Therefore, given the inter-manifold geometric structure,
we aim to obtain an inter-manifold soft correspondence structure by
solving for soft correspondences between the different data sets.
The inter-manifold correspondence structure is denoted by

Cpq= { }, where a soft correspondence matrix between manifold p
and manifold q is denoted by an N Np q× matrix Cpq. There are
different ways to find such soft correspondence matrices. Gen-
erally speaking, a high Cij

pq value indicates a strong correspondence

between point xpi and point xqj . Therefore, C Cpq qpT= . In Section 4.3,
we will show how such soft correspondence matrices can be
obtained.

Given the above-stated goals, we reach the following objective
function on the embedded points Y, which need to be minimized:

y y y yY W C .

1k i j
i
k

j
k

ij
k

p q
p q

i j
i
p

j
q

ij
pq

,

2

, ,

2∑ ∑ ∑ ∑ϕ ( ) = ( − ) + ( − )

( )≠

The objective function is intuitive. The first term of the objective
function preserves the intra-manifolds' local geometry because it
tries to keep the embedding (yi

k, y j
k) of any two points (xi

k, x j
k) on a

given manifold close to each other based on their inter-manifold
weight Wij

k . The second term of the objective function tries to
bring close the embedded points ( yi

p, y j
q) on manifolds p and q if

their soft correspondence weight Cij
pq is high. This objective func-

tion can be rewritten using one set of weights defined on the
whole set of input points as

y yY A ,
2p q i j

i
p

j
q

ij
pq

, ,

2∑ ∑ϕ ( ) = ( − )
( )

where the weight matrix A is defined as

⎧
⎨⎪
⎩⎪

p q k

p q
A

W

C 3
ij
pq ij

k

ij
pq

=
= =

≠ ( )

This construction defines an N�N weight matrix A with K K×
blocks where the p q− block is of size N Np q× . The pth diagonal
block is the intra-manifold weight matrix Wp for the pth manifold.
The off-diagonal p q− block is the soft correspondence matrix Cpq.
The matrix A is symmetric by definition because diagonal blocks
are symmetric, and C Cpq qpT= . The matrix A can be interpreted by
the weights between nodes on a graph where all the input points
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Fig. 4. COIL data set: examples of (a) input object appearance with view variations. (b) Object-specific view manifold embedding using LLE. (c) Object-specific view manifold
embedding using Laplacian eigenmap.
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are nodes on this graph. Nodes from a given data set are linked
with weights representing their intra-manifold geometric struc-
ture, whereas nodes across different data sets are linked by
weights representing their inter-manifold correspondence
structure.

Given this construction, the objective function in Eq. (1) redu-
ces to the problem of Laplacian embedding of a graph defined by
the weight matrix A . Therefore the objective function reduces to

Y Y LYarg min tr ,
4

T

Y DY 0T
= ( ) ( )

⁎
=

where L is the Laplacian of the matrix A , i.e., L D A= − , where D is
the diagonal matrix defined as D Aii j ij= ∑ . The N� d matrix Y is

the stacking of the desired embedding coordinates such that,

y y y y y y y y yY , , , , , , , , , , , , .N N
K K

N
K T

1
1

2
1 1

1
2

2
2 2

1 2 k1 2
= [ … … … … ]

Minimizing this objective function is a straight-forward gen-
eralized eigenvector problem: y yL D .λ= The optimal solution can
be obtained by the bottom d nonzero eigenvectors. The required N
embedding points Y are stacked in the d vectors in such a way that
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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the embedding of the points of the first manifold will be the
first N rows followed by the points of the second manifold,
etc. (i.e., the obtained d eigenvectors are the stacking
y y y y y y y y y, , , , , , , , , , , ,N N

K K
N
K T

1
1

2
1 1

1
2

2
2 2

1 2 K1 2
[ … … … … ] ).

4.3. Inter-manifold correspondences

Solving for correspondences between two data sets is a hard
well-studied problem in computer vision. The difficulty is in
finding a kernel weight matrix Upq between data sets Xp and Xq

that is invariant to any geometric transformation on the two data
sets. If a kernel invariant to geometric transformation is known,
then the problem is a bipartite graph-matching problem, and
therefore, efficient combinatorial algorithms, such as the Hungar-
ian algorithm, can be used to obtain hard correspondences, i.e., a
permutation matrix that brings the two sets into correspondence.
Obviously, such geometric invariant kernels are not easy to
achieve. Therefore, researchers have resorted to algorithms that
can obtain soft correspondences between the data sets, i.e.,
relaxing the permutation matrix requirement. Ullman's minimal
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Fig. 6. COIL data set: learning a joint view manifold from multiple objects. (a) Pairwise correspondence matrices C C C C C C C C C C, , , , , , , , , .1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5( ) (b) Pair-
wise permutation matrices P P P P P P P P P P, , , , , , , , , .1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5( ) (c) Binarization of pairwise permutation matrices. (d) Pairwise soft correspondence matrices
M M M M M M M M M M, , , , , , , , ,1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5( ) [39].

Fig. 5. COIL data set: learning a joint view manifold from multiple objects. (a) LLE embedding for all the data. (b) Laplacian eigenmap embedding of all the data.
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mapping theory maximizes the inner product of a given matrix G
and its pairing matrix P with an explicit constraint in linear pro-
gramming [40]. Scott et al. proposed a pairing matrix P for a given
proximity matrix G mutually orthogonal to maximize the inner
product of PG to model human perception in motion [41].

Given two data sets Xp and Xq with their inter-manifold geo-
metric structure weight matrix Upq, maximum weight matching
can be achieved by solving for a permutation matrix P that per-
mutes the rows of Upq in order to maximize its trace, i.e.,

P P Utr T pqψ ( ) = ( )

The permutation matrix constraint can be relaxed into an ortho-
normal matrix constraint on matrix P. Therefore, the goal is to find
an optimal orthonormal matrix P⁎ such that

P P Uarg max tr
5

T pq

P P Is.t. T
= ( ) ( )

⁎

=

Scott et al. [41] showed that the optimal solution for Eq. (5) is

P UEVT=⁎
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where the singular value decomposition (SVD) of U USVpq T= , and
E is obtained by replacing the singular values on the diagonal of S
by ones.

In our case, we have K K 1 /2⁎( − ) inter-manifold weight
matrices Upq and we need to obtain K K 1 /2⁎( − ) correspondence
matrices Cpq that simultaneously maximize

C Utr
6p K q p K

pq pq

1: , 1:

T∑ψ ( ) = ( )
( )= = +

Notice that the soft correspondences required for the embedding
do not need to provide partitioning of the data, i.e., the corre-
spondences do not need to be transitive. Solving for simultaneous
hard correspondences is a weighted multipartite graph-matching
problem, which is a much harder combinatorial problem. In
our case, the objective function in Eq. (6) can be directly max-
imized by finding each of the pairwise correspondences Cpq by
solving Eq. (5).

We use a Gaussian kernel to encode the inter-manifold geo-
metry, i.e., x xU exp /2ij

pq
i
p

j
q 2σ= ( − ∥ − ∥) where s is a global scale

that is estimated as a percentile of the overall data scale. Scott
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Fig. 7. COIL data set: learning a joint view manifold from multiple objects. (a) Joint embedding of the view manifold obtained using the proposed algorithm. (b) Joint
embedding with random sample images along the manifold. (c) Multiple manifold embedding of the view manifold obtained using [39]. (d) Multiple manifold embedding
with random sample images along the manifold. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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et al. [41] showed that the Gaussian kernel fits the objective
function for resolving the correspondences between image fea-
tures related by an affine transformation, as long as no rotation
component is involved. This conclusion is valid for data sets in
higher dimensional spaces as well. In our case, since the data is
high-dimensional, we expect the relation between the different
manifolds to be close to an affine transformation with no much
rotation involved. The experimental results we obtained confirm
our speculation, because a Gaussian kernel was successful in
bringing the different manifolds into correspondence in the
embedding space. For partial intersection manifolds, the proposed
estimation of soft correspondence may work well, with high cor-
respondence in the intersection area. However, if the intersection
regions are large, there may be confusion in the soft correspon-
dence estimation.

One obvious question arises: can the inter-manifold kernels Upq

directly (or after scaling) be used in the objective function in
Eq. (1) instead of Upq, since it also provides a measure of affinity
between the points from the different data sets. The answer is no.
The soft correspondences obtained by solving Eq. (5) incorporate
the principle of exclusion because of the orthogonality constraints.
However, to avoid direct estimation of the correspondence from
high-dimensional sample data points, soft correspondence of
inter-manifold geometry was estimated from the inter-manifold
weight matrix in [39] as follows. The soft correspondence matrix
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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in each pair Xc and Xb is calculated by

w w

w w
M

,
,

7
qr
cb q

c
r
b

q
c

r
b

=
∥ ∥∥ ∥ ( )

where wq
c n1 c∈ × and wr

b n1 b∈ × are row vectors of W c and Wb.
The assumption in this approach is that the inter-manifold simi-
larity represents an intra-manifold correspondence, which can be
easily violated, as shown in our experiment in Section 5.1.1. So it is
necessary to estimate correspondences from a high-dimensional
sample comparison and their transformation.

The computational time of the proposed approach can be analyzed
by considering the computational steps compared with a Laplacian
eigenmap. When the total sample number is N with K different data
sets with Nk, a Laplacian eigenmap requires O N2( ) to construct a local
neighborhood graph in the input space. In our proposed algorithm, we
need to estimate K intra-manifold structures Wk for each k. The
computation time for an intra-manifold structure is O KN

k
2
max( ), where

N Nmaxk k kmax = is the maximum number of samples in each data set.
If each data set has an equal number of sample data, N N K/k = and
N N K/kmax = . In this case, the computational complexity of the intra-
manifold structure is O KN O K N K O N K/ /

k
2 2 2
max( ) = ( ( ) ) = ( ). Since each

intra-manifold structure is a block-diagonal element of the total
weight matrix, the computation time is K times less than the original
total local neighborhood graph when each sample data set has an
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Fig. 8. COIL data set with viewpoint shift: (a) Input object appearance with view variations starting from a shifted viewpoint. (b) Object-specific view manifold embedding
using Laplacian eigenmap. (c) Laplacian eigenmap for all the collected sample data.
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equal number of sample data. In addition, inter-manifold structure and
inter-manifold correspondence have to be learned for K K 1 /2⁎( − )
matrices with each N Np q× size. The computational complexity for the
inter-manifold structure can be computed with the computational
complexity of O K N

k
2 2

max( ). Inter-manifold correspondence can be
estimated using SVD as in Eq. (5), which requires computational
complexity O K N

k
2 3

max( ). With an equal number of sample data, the
computational complexity of inter-manifold complexity becomes
O K N O K N K O N K/ /

k
2 3 2 3 3

max( ) = ( ( ) ) = ( ). After computation of N N×
weight matrix A with K K× blocks similar to the N N× weight
matrix W , the generalized eigenvalue problems need to be solved
with O N3( ) computational complexity in both Laplacian eigenmap and
the proposed approach. Overall, in both cases, the computational
complexity is the same O N3( ). That is, the proposed approach does not
require additional computational complexity compared with the
Laplacian eigenmap.
5. Experimental results

We ran experiments on different data sets. Here, we show
experiments on four different data sets: object recognition data, facial
expression data, human shape data, and human kinematic data.
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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5.1. Example I: Learning a view manifold for different objects

In this experiment, the goal is to learn the visual view manifold
from different objects' data. We used five objects with similar
geometry from the COIL-20 data set [42] with different views for
each object taken along a view circle. We used 72 views for each
object, i.e., the data include 360 images. Each instance is a
128�128 grayscale image. Although the different views are in
correspondence in the data set, we did not use this correspon-
dence information. Examples of the input data are shown in
Fig. 4(a). Fig. 4(b) shows the individual manifold embedding for
each object data obtained using LLE, and (c) using a Laplacian
eigenmap. Putting all data together, traditional manifold embed-
ding approaches fail to discover the structure of the data. This can
be seen in Fig. 5(a) and (b) where LLE and Laplacian eigenmaps
embedding results, respectively, are shown.

The proposed approach succeeds in learning a joint view
manifold of all five objects. Fig. 6(a) shows pairwise inter-manifold
structure among selected objects. There are 10 pairs from selected
five objects. Fig. 6(b) shows estimated pairwise inter-manifold
correspondence structure among selected objects. In the sample
objects, the first object (O1), the third object (O3), and the fifth
object (O5) are automotive with similar appearance. Therefore, the
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Fig. 10. COIL data set with viewpoint shift: learning a joint view manifold from multiple objects with viewpoint shift. (a) Joint embedding of the view manifold obtained
using the proposed algorithm. (b) Joint embedding with random sample images along the manifold. (c) Multiple manifold embedding of the view manifold obtained using
the proposed algorithm. (d) Multiple manifold embedding with random sample images along the manifold.
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permutation matrix between the first object and the third object
(P1,3), the first object and fifth object (P1,5), the third object and the
fifth object (P3,5) show higher correspondence along diagonal axis
than other pairs. Binarized matrices by thresholding the permu-
tation matrices clearly show this trend as shown in Fig. 6(c).
Pairwise soft correspondence matrices proposed in [39] are also
shown in Fig. 6(d).

Fig. 7(a) shows the common view manifold obtained, where
different line colors are used to represent different objects.
Fig. 7(b) shows a visualization of the objects along the manifold
using representative images, which were chosen at random from
the five objects along the manifold. This clearly shows that all the
objects are arranged in this representation according to the
viewpoint and invariant of the object. Similar results can be
achieved using the correspondence estimation from the embed-
ding space when there are meaningful correspondences between
the embedding points and actual observation data as shown in
Fig. 7(c) and (d).

5.1.1. Comparison with other multiple manifold learning: learning
view manifolds for different objects with shifted view samples

In the previous experiment, the data set are implicitly aligned
by view points in different objects. If viewpoint is shifted in a
different object with a different offset, which remove implicit
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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alignment, can the presented framework or similar algorithm find
correspondence in different objects? To answer this question, we
collected each object data set after shifting view point as shown in
Fig. 8(a). The first object has no shift, the second object view
point was shifted by 20 degree (4 samples), the third object by
40 degree, and so on. The maximum offset value of the shifted
view point was 80 degree compared with the original one.
Fig. 8(b) shows the individual embedding manifolds for each
object data obtained using Laplacian eigenmap, which are similar
to the case of no shift in Fig. 4(c). Similar to the no shift case,
putting all data together, the Laplacian eigenmap fails to discover
the structure of the data that is shown in Fig. 8(c).

Whenwe apply proposed approach to the shifted view data set,
a joint view manifold of all five objects is learned similar to the no
shift case. Fig. 9(a) shows pairwise correspondence matrices
among selected objects. Fig. 9(b) shows estimated pairwise per-
mutational matrices among selected objects. Viewpoint shift
causes high off-diagonal correspondence. This tendency is clarified
when we create binary matrices by thresholding the permutation
matrices as shown in Fig. 8(c). Pairwise soft correspondence
matrices proposed in [39] are also shown in Fig. 9(d), which does
not show shift effect of view point in the correspondence esti-
mation because the weight matrix does not change. We observe
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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Fig. 12. Embedding of joint facial expressions across different people. (a) and (b) Sample input data for two subjects. (c) Embedding of all the data with Laplacian eigenmaps.
Notice the separation between the different people's manifolds. (d) Joint expression embedding obtained by the proposed approach.
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similar individual manifold embedding with viewpoint shift in
Fig. 8(b), and without shift of view point in Fig. 4(c), respectively.

Fig. 10(a) and (b) shows the common view manifold obtained
using the proposed method. View point shifted object is now
arranged well without shift effect by finding correct correspon-
dence using estimated permutation matrix. However, the method
in [39] fails to find correct alignment of manifold point according
to view point. Some of the visualized nearby images show very
different view point images in Fig. 7(d). When the algorithm
estimate correspondence, the circular view embedding shows very
small or no change in structure and fails to find shifting of the
corresponding view points.

5.2. Example II: Learning a gait manifold for multiple subjects

In this experiment, the goal is to learn embedding of the gait
manifold from observations (silhouettes) of different people. We
used data sets for different people's walking shapes from a side-
view camera. The data are from the CMU-Mobo gait data set [12],
and some examples of these data are shown in Fig. 2(a). For this
experiment, we used data from seven people with six walking
cycles each. Each input instance is an image sized 100�60. The
number of frames in each data set varies from 189 to 234
(depending on the person's walking speed). This is an example of
where the data sets are not necessarily in correspondence,
with a different number of instances in each set. As was shown in
Fig. 2(b), we can embed each person's data, which results in
embedding that person's gait manifold. However, putting all the
data together, LLE and other embedding techniques fail to obtain a
useful embedded representation for the purpose of visualization
or analysis, as shown in Fig. 2(c). The proposed approach can
successfully learn joint embedding of the gait manifold across the
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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different subjects, invariant to the different people's shape varia-
bility, as shown in Fig. 11. The figure shows different viewpoints of
the 3D embedding. The embedding shows a figure “8” embedding
of the gait manifold. Different line colors mean embedding from
different subjects in the data set. Fig. 11 (d) shows a visualization
of the manifold with sample images chosen randomly from the
input sets along the manifold. This is a two-dimensional projection
of the three-dimensional embedding, and therefore, it is hard to
visualize the images along the manifold. We can see similar body
postures across different people along the manifold.

5.3. Example III: Learning a facial expression manifold for multiple
subjects

In this experiment, the goal is to learn embedding of a joint
facial expression manifold across different subjects. We used facial
expression data from the CMU AMP facial expression database
[43]. The data contains different people and different expressions.
The input is four data sets. Each set contains a person performing
three expressions (smiling, angry, surprised). Fig. 12(a) and (b)
shows examples of the input images for two of the subjects. The
number of images in each data set varies from 45 to 59 images.
Each input instance is a 64�64 grayscale images.

Fig. 12 (c) shows the embedding obtained using Laplacian
eigenmaps with all data sets together. As can be seen in this figure,
the embedding is dominated by the inter-manifold structure, and
the embedding shows four separate clusters for the four subjects.
LLE, regardless of the settings, also resulted in embeddings with
four different clusters. Using the proposed approach, we can
achieve common facial expression manifold embedding, invariant
of the subject, and Fig. 12(d) shows the embedding obtained. We
can clearly see that the three different expressions are located at
om multiple manifolds, Pattern Recognition (2015), http://dx.doi.
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three different parts of the embedding space (the smiling
expressions are in the lower left; the angry expressions are at the
top; surprise is in the lower right; neutral is in the center of the
embedding. Visualizing randomly chosen images on the manifold
shows that the corresponding frames across the different subjects
are close to each other).

5.4. Example IV: Learning a kinematic locomotion manifold from
different people

In this example, the goal is to learn a joint kinematic manifold
for human locomotion from different subjects and from different
running speeds. The input is 15 data sets from the EPFL motion
capture data [44] for five subjects with three different speeds each
(9, 10, and 11 km/h). Each data set has three running cycles with
different numbers of input instances for a total of 3923 input
frames. Each input instance is a 75-dimension motion-capture
kinematic frame. As expected, although non-linear dimensionality
reduction techniques can successfully achieve embedding of each
data set alone, they fail, with different parameter settings, to
achieve embedding of the 15 data sets together. An example is
given in Fig. 13(a) for a Laplacian eigenmap embedding result. Five
different colors (red, blue, green, cyan, and pink) are used to
represent five different subjects even though the Laplacian
eigenmap embedding does not show all the subject color because
of overlapping in the point plot. The proposed approach success-
fully achieves embedding of the locomotion manifold, invariant of
the different subjects and the different running speed variability.
This is shown in Fig. 13(b).
6. Conclusion

In this paper, we introduced an approach for learning embed-
ded representations from multiple manifolds. Given different sets
of data lying on conceptually similar manifolds, we can achieve
joint embedding of such common manifolds that preserves the
intra-manifold's local structure. This is an important problem in
data analysis where the goal is to learn an embedded repre-
sentation of data from multiple sources (e.g., different people,
objects, and spaces) regardless of the variability of the sources. We
presented results from four real data sets, including object
recognition data, visual gait data, facial expression data, and
Please cite this article as: C.-S. Lee, et al., Learning representations fr
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kinematic locomotion data. In all cases we reached meaningful
embedding of the underlying manifolds across different input data
sets. The approach we introduced provides an important extension
to state-of-the-art spectral-embedding techniques, such as LLE,
Isomap, and Laplacian eigenmaps, for handling cases of multiple
manifolds.
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