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Local Features 

 An interest point (local feature) 
is a point in the image which in 
general can be characterized as 
follows:  
◦ Invariant: invariant to scale, 

rotation, affine, illumination and 
noise for robust matching across 
different imaging conditions. 

◦ Distinctive: a single feature 
should be rich in information 
that can be matched with high 
probability. 

◦ Repeatable: produced whenever 
it appears. 

 



Local Features 

 Every local feature is having: 

◦ Feature Descriptor 𝑓𝑖 and 

spatial location 𝑥𝑖 

 Feature descriptor usually 

describes the appearance of 

the local feature.  

◦ SIFT (Lowe 99) 

◦ Geometric Blur(Berg et al. 01) 

◦ HOG (Dalal et al. 05) 

◦ ,…etc. 

 

 



Applications of Local Features  

 Local features are the core of the current 

state-of-the-art research in object 

recognition for the last decade. 

◦ Image retrieval. 

◦ Object classification. 

◦ Object detection. 

◦ Unsupervised category discovery. 

◦ Scene understanding. 

◦ …,etc 



Spatial Structure for Shape 

Representation 
 The spatial structure, or the arrangement 

of the local features plays an important 

role in perception since it encodes the 

shape. 



The role of Spatial Arrangement 

 No Spatial Structure 
◦  Bag-of-visual words model (Csurka et al. 2004) 

 Spatial Partitioning 
◦ Pyramid Matching Kernel (Grauman et al. 05). 

◦ Spatial Pyramid of Histograms (Lazebnik et al. 06). 

 Part Models 
◦ Constellation model (Weber et al 00). 

◦ Pictorial Structure (Felzenszwalb et al 05). 

 Descriptor Free (shape only) 
◦ Point based matching approaches (Scott and 

Longuett-Higgins91). 

 

 



Graph-Based Methods for Manifold 

Learning 
 Manifold Assumption 
◦ The high-dimensional data lie on a low-dimensional 

manifold. 

 Dimensionality reduction methods are examples 
of graph based methods 
◦ Laplacian EigenMaps(Belkin et al 2001) 

◦ LLE (Roweis et al 2000) 

◦ …,etc. 

 Representing data as graph nodes. 

 Edges are labeled with the pairwise distances of 
the incident nodes.  

 Approximates the geodesic between two points 
with respect to the manifold of data points.  



Manifold Learning in Recognition 

Context 
 Eigenface for face recognition (M. Turk 

and A. Pentland 1991). 

 Linear Dimensionality reduction using 

PCA to learn appearance manifolds 

(Murase et al 95). 

 Dimensionality reduction in activity 

recognition. 

 

 



Holistic Representations 

 Using holistic approaches; image as a 

vector 

◦ Silhouettes 

◦ Whole image  

 Full correspondence of point sets (Land 

mark based ) 
 Active appearance model (Cootes et al. 1998). 

 



Learning the Manifolds of Local Features 

and Their Spatial Arrangement 
 Goals 

◦ From collections of local features from 

different images we want to 

 Learn a smooth manifold capturing appearance and 

spatial arrangement of local features . 

 Model within-class variations and object view 

manifolds. 

 Address computer vision problems like recognition, 

detection, regression and matching. 

 

 



Local Features and Manifold 

Structures 
 Appearance described by descriptors is 

having a manifold structure. 

◦ Descriptors of similar feature should be close to 
each other in the descriptor space. 

 Spatial configuration of the local features 
gives another manifold structure. 

◦ Spatially neighboring features describe the shape 
of an object. 

 Putting both manifold structures together is 
important to gain strengths from both 
structures. 

 



Outline 

 Introduction 

 Contributions 

 Feature-Spatial Embedding Framework 

 Image Embedding from Local Features 

 Regression from Local features 

 Multi-set Feature Matching. 

 Implicit Feature-Spatial Manifold 

 Conclusions 

 



Contributions 

 We propose a novel framework for 

learning manifold representations from 

local features and their spatial arrangement 

in a smooth way to achieve a feature-

spatial embedding.   

 We learn a manifold representation of the 

images that is suitable for recognition 

tasks. 



Contributions 

 We propose a novel solution for regression 

based on sets of local features. 

 We propose novel solution for matching 

multiple sets of local features with scalable 

approach. 

 We propose to deal with the joint structure 

implicitly for recognition tasks. 
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Elements of Graph-Based Methods 

 A graph 𝑔 = 𝑉, 𝐸 with set of vertices V and real 
edge weight 𝐸. 

 𝑾 is the weighted adjacency matrix of 𝑔 

 𝑾𝑖𝑗 =  
𝜔 𝑒 ,   𝑒 ∈  𝐸(𝑖, 𝑗)
0,        𝑒 ∉ 𝐸(𝑖, 𝑗)

 

 The diagonal matrix 𝑫 defined by 𝑫𝑖𝑖 =  𝑾𝑖𝑗𝑗 is 

the degree matrix of 𝑔. 

 The normalized graph Laplacian𝐿 and the 
unnormalized Graph Laplacian𝐿 are defined: 

◦ 𝑳 = 𝑰 − 𝑫−𝟏 𝟐 𝑾𝑫−𝟏 𝟐  

◦ 𝑳 = 𝑫 −𝑾 



Framework for Learning Joint 

Feature-Spatial Embedding 
 The goal is to learn an explicit representation 

for joint feature-spatial structure for local 

features in images for different tasks. 

 Given 𝐾 sets of feature points, 𝑋1, 𝑋2, … 𝑋𝐾 in 

𝐾 images where 

𝑋𝐾 =  𝑥1
𝑘, 𝑓1

𝑘 , … , (𝑥𝑁𝑘
𝑘 , 𝑓𝑁𝑘

𝑘 )  

 Each feature point 𝑥𝑖
𝑘 , 𝑓𝑖

𝑘  has Spatial 

location 𝑥𝑖
𝑘∈ ℝ2and its feature 

descriptor 𝑓𝑖
𝑘∈ℝ𝐷  

 Torki and Elgammal CVPR10a 



 The intra-image spatial (structure) in each image 
can be represented by a weight matrix 𝑆𝑘. 

◦ 𝑆𝑖𝑗
𝑘 = 𝐾𝑠(𝑥𝑖

𝑘 , 𝑥𝑗
𝑘)and 𝐾𝑠(. , . ) is a spatial kernel local 

to the 𝑘 − 𝑡ℎ image that measures the spatial 
proximity.  

 The inter-image feature affinity between features 
in image 𝑝 and 𝑞 can be represented by the 
weight matrix 𝑈𝑝𝑞. 

◦ 𝑈𝑖𝑗
𝑝𝑞

= 𝐾𝑓 𝑓𝑖
𝑝
, 𝑓𝑗

𝑞
 and 𝐾𝑓(. , . )is a feature kernel that 

measures the similarity in the descriptor domain 
between the 𝑖 − 𝑡ℎ feature in image 𝑝 and the 𝑗 − 𝑡ℎ 
feature in image 𝑞. 

 

Framework for Learning Joint 

Feature-Spatial Embedding 



Framework for Learning Joint 

Feature-Spatial Embedding 
 The embedded representation of local 

features should capture both kinds of 

affinities. 

 Let  𝑦𝑖
𝑘∈ ℝ𝑑 denotes the embedding 

coordinate of point 𝑥𝑖
𝑘, 𝑓𝑖

𝑘  

 We are seeking a set of embedded point 

coordinates 𝑌𝑘 = {𝑦1
𝑘 , ⋯ , 𝑦𝑁𝑘

𝑘 } for each 

input feature set 𝑋𝑘 . 

 



Framework: Objective Function 

 Φ 𝑌

=   𝑦𝑖
𝑘 − 𝑦𝑗

𝑘 2
𝑖,𝑗𝑘 𝑆𝑖𝑗

𝑘 +   𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
2

𝑖,𝑗𝑝,𝑞 𝑈𝑖𝑗
𝑝𝑞

 

 The first term preserves the spatial 

arrangement within each set. 

 The second term of the objective function 

tries to bring close the embedded points 𝑦𝑖
𝑝
 

and 𝑦𝑗
𝑞
if their feature similarity kernel 𝑈𝑖𝑗

𝑝𝑞
 is 

high. 

 



Framework: Objective Function 
 Rewrite the objective function 

◦ Φ 𝑌 =   𝑦𝑖
𝑘 − yj

𝑘 2
𝑖,𝑗𝑘 𝑆𝑖𝑗

𝑘 +  𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
2

𝑖,𝑗𝑝,𝑞 𝑈𝑖𝑗
𝑝𝑞

 

 Use one sets of weights 

◦ Φ 𝑌 =   𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
2

𝑖,𝑗𝑝,𝑞 𝐴𝑖𝑗
𝑝𝑞

 

 Where the matrix A is defined as 

 𝐴𝑖𝑗
𝑝𝑞

=  
𝑆𝑖𝑗
𝑘                𝑝 = 𝑞 = 𝑘

𝑈𝑖𝑗
𝑝𝑞
                   𝑝 ≠ 𝑞

,𝐴 =
𝑆1
𝑈21

⋯

𝑈12

𝑆2

𝑈𝐾1

      

⋮

⋱

𝑈1𝐾

⋯ 𝑆𝐾

 

 The |A| is linear in the number of input points. 



Framework: Objective Function 

 The problem reduces to Laplacian Embedding of 

the point set defined by the weight matrix A. 

 The Solution is 𝒀∗ = 𝑎𝑟𝑔 min
𝒀𝑻𝑫𝒀=𝑰

𝑡𝑟(𝒀𝑻𝑳𝒀) 

 Where 𝑳 is Laplacian of matrix 𝑨. 

 Minimizing this objective function is a straight 

forward generalized eigenvector problem:  

o 𝑳𝑦 =  𝜆𝑫𝑦. 

 The 𝑁 × 𝑑 matrix 𝒀 is the stacking of the desired 

embedding coordinates such that 

 𝑌 = [𝑦1
1, ⋯ , 𝑦𝑁1

1 ,𝑦1
2, ⋯ , 𝑦𝑁2

2 , ⋯, 𝑦1
𝐾 , ⋯ , 𝑦𝑁𝐾

𝐾 ]. 



Framework: Spatial Structure 

Weights 𝑆𝑘 
 Euclidean-based weights: 

◦ Based on the Euclidean distances between 
features defined in each image coordinate 
system.  

◦ Weights are invariant to translation and 
rotations. 

◦ Examples: 

  Gaussian Kernel  𝑺𝑖𝑗
𝑘 = 𝑒

− 𝑥𝑖
𝑘−𝑥𝑗

𝑘
2
/2𝜎2

 

 Double Exponential Kernel 𝑺𝑖𝑗
𝑘 = 𝑒

− 𝑥𝑖
𝑘−𝑥𝑗

𝑘 /𝜎
 

 



Framework: Spatial Structure 

Weights 𝑆𝑘 
 Affine invariant-based weights:  

◦ A configuration matrix of the features in a given set   𝑿 
=  x1  x2⋯ xN ∈ ℝ𝑁×3. 

◦ Where x𝑖 is the homogenous coordinate of point 𝑥𝑖 . 

◦ The range space of such configuration matrix is invariant 

under affine transformation (Wang et al 09). 

 An affine representation can be achieved by 𝑸𝑹 decomposition 

of the projection matrix of 𝑿. 

◦ 𝑸𝑹 =  𝑿 𝑿𝑻𝑿
−𝟏
𝑿𝑻 

 The columns of 𝑸 give an affine invariant representation of the 

points. 

 Kernels can be used on the computed affine representation 

using Gaussian or other kernel as before. 

 



Framework: Feature Similarity  

Weights 𝑈𝑝𝑞 
 Weights should be soft encoded. 

 𝑼𝑖𝑗
𝑝𝑞

= 𝑒
− 𝑓𝑖

𝑝
−𝑓𝑗

𝑞 2
/2𝜎2

 

 Nearest neighbor can also be used to 

bound the weights as well 



Outline 

 Introduction 

 Contributions 

 Feature-Spatial Embedding Framework 

 Image Embedding from Local Features 

 Regression from Local features 

 Multi-set Feature Matching. 

 Implicit Feature-Spatial Manifold 

 Conclusions 

 



Learning Image Manifolds from 

Local Features 
 Manifold Learning From Local Features 
◦ Current manifold learning methods use holistic 

representation like whole images or silhouettes 
to learn visual manifolds 

◦ Using our framework we can replace the holistic 
representations representation by local features 
extracted. 

 By embedding a bulk of images using the 
proposed feature-spatial embedding we can 
compute image to image distance . 

 The distance matrix can be used to learn 
image manifolds for recognition tasks. 

 

 

 



Image Embedding 

 Measure the similarity between two images in 
the feature-spatial space. 

 For robustness, we use a percentile-based 
Hausdorff similarity based measure  between 
two sets of features from two images 

 𝐇 𝐗p, 𝐗q

= max {max𝑗
𝑙%min

𝑖
𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
,max𝑖

𝑙%min
𝑗

𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
} 

 Once a distance measure between images is 
defined, any manifold embedding techniques, 
such as MDS ,LLE, Laplacian Eigen maps, etc., 
can be used to achieve an embedding of the 
image manifold. 

 



Sample View Manifold Using Image Intensity 

from COIL-20 (Murase et al 95) 

𝐾 = 6 
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Sample View Manifold Using Our 

Framework from COIL-20 
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Sample View Manifold Using Image Intensity 

from Caltech-101(Li et al 04) 

 



Sample View Manifold Using Our 

Framework from Caltech-101 



Example Image Embedding from 

Shape Dataset of Stark et al 07  

Embedding captures shape similarity as well as 

appearance similarity 



Out-of-Sampling for Features from 

New Image Train/Test 
 The out-of-sample is essential to 

◦ Embed large number of images with large 

number of features.  

◦ Embed features from a new image for 

classification purpose. 



Out-of-Sampling Solution 

 For every new image instance compute 

extended affinity matrix A. 

 𝑨 = 𝑨𝝉 𝑼𝜈𝑇

𝑼𝜈 𝑺𝜈
𝑼𝜈 = [𝑼𝜈,1, 𝑼𝜈,2, ⋯ , 𝑼𝜈,𝐾] 

 The objective function we use for 

embedding new points is  

 𝒀∗ = 𝑎𝑟𝑔min 𝑡𝑟(𝒀𝑻𝑳𝒀) 

 𝑠. 𝑡 𝑦𝑖
𝑘 = 𝑦 𝑖

𝑘 , 𝑖 = 1,⋯𝑁𝑘 𝑎𝑛𝑑 𝑘 = 1,⋯𝐾 

 𝒀𝜈 = (𝑳𝜈)−1𝑼𝜈𝒀𝝉 

 



Feature-Spatial Embedding Framework 

for Object Classification. 
 Putting the features from different images 

in the same embedding space. 

◦ Very problematic because the size of the 

eigenvector problem will increase rapidly with 

the number of features in the datasets. 

◦ Solution is to use two step approach 

 Initial Embedding. 

 Populating Embedding. 



Populate Embedding 

 Embed the whole training data with a 

larger number of features per image, one 

image at a time by solving an out-of-

sample problem using the initial 

embedding solution. 



Results for Object Classification 

 Shape Dataset  

◦ 10 classes 

◦ 724 Images 

◦ Comparative evaluation to baseline of bag of 
words and localized bag of words. With 
different splits. 

 Caltech 4I, 4II, 6 subsets from Caltech-101 

◦ Larger datasets with clutter. 

◦ Compare SVM to 1-NN classifiers for 
different training sizes. 



Shape Dataset 

 



Caltech subsets 

 



Caltech 4 Image Embedding after Out-of-

Sampling for All Features in All Images 



Caltech-6 Image Embedding in 2D 



Feature localization on Caltech 4I 

 We used Caltech-4I subset for evaluation.  

 We learned the feature embedding from 

four classes, using only 12 images per 

class.  

 For evaluation we used 120 features in 

each query image and embed them by 

out-of-sample. The object is localized by 

finding the top 20% features closer to the 

training data 

 



Feature localization on Caltech 4I 
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Regression from Local Features 

 Using feature-spatial Embedding 

framework for regression. 

◦ Without vectorized representation of images 

we obtain embedding as before. 

◦ The regression is achieved by defining a 

proper kernel in the embedding space. 

◦ Further we enforce manifold locality 

constraint on the embedding using label 

information in train set. 

Torki and Elgammal  ICCV11 



Regression from Local Features 

 Input is pairs in the form (𝑋𝑘 , 𝑣𝑘), 𝑣𝑘 ∈  ℝ. 

 learn a regularized mapping function to minimize a regularized 
risk criteria, which can be definedas 

 

 

 Where the first term measured the error in the approximation, 
the second term is a smoothness function on g for 
regularization, and λ  is a regularization parameter. 

 We seek a regression in the form 

 

 

 Therefore, it suffices to define a suitable kernel K(·, ·) that 
measures the similarity between images. 
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Regression from Local Features 
 𝐾 𝐗p, 𝐗q = max {max𝑗

𝑙%min
𝑖

𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
, max𝑖

𝑙%min
𝑗

𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
} 

 Kernel is measured in the feature embedding space, so it 

reflects both feature similarity and shape similarity 

 Radial Basis Function (RBF) kernels can be used. 

 The features in new image has to be mapped first to the 

embedding space 

 Where O(X) is a function that maps the features in a test 

image X into a set of coordinates in the embedding space, 

 

 The out of sample solution described earlier used to obtain 

such a function. 

 Ο(𝑿) = (𝑳𝜈)−1𝑼𝜈𝒀𝝉 



Enforcing Manifold Locality 

Constraint 
 Feature-spatial embedding preserves Inter-image feature 

affinity and Intra image spatial structure. 

  We add a third constraint that enforces manifold locality. 

 Supervised Manifold Locality Constraint. 
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Enforcing Manifold Locality 

Constraint 
 We can enforce the manifold constraint in a 

supervised way from the labels 𝑣𝑘. 

 Φ 𝑌 =   𝑦𝑖
𝑘 − 𝑦𝑗

𝑘 2
𝑖,𝑗𝑘 𝑆𝑖𝑗

𝑘 +   𝑦𝑖
𝑝
− 𝑦𝑗

𝑞
2

𝑖,𝑗𝑝,𝑞 𝜔 𝑝, 𝑞 𝑈𝑖𝑗
𝑝𝑞

 

 𝜔 𝑝, 𝑞 =ℊ(𝑣𝑝  − 𝑣𝑞) 

 Gaussian function can be used or 
alternatively, a uniform window kernel 

 𝐴𝑖𝑗
𝑝𝑞

=  
𝑆𝑖𝑗
𝑘                                       𝑝 = 𝑞 = 𝑘

ℊ 𝑣𝑝  − 𝑣𝑞 . 𝑈𝑖𝑗
𝑝𝑞
                   𝑝 ≠ 𝑞
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Datasets for Evaluation 

 Multiview Car Dataset Ozuysal et al 09 

◦ 20 cars rotating in car show. 

◦ Hard instances (some are really odd cars). 

◦ Suitable for regression.  

◦ Total 2137 images covering the range of view 

angle. 

◦ Comparisons to Ozuysal et al 09 where 16 

bins of the view angle are used as 16 

classifiers. They used spatial pyramid of 

histograms. 



Multiview Car Dataset Single Car 

Training samples are 12° apart 
MAE < 2° 



Multiview Car Dataset Single Car 
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MutiView Car Dataset 

60 

 



Datasets for Evaluation 

 Face pose data set Aghajanian et al 09 

◦ Uncontrolled environment  

◦ Different illumination, expression, occlusions, 

pose. 

◦ Comparisons to Aghajanian et al 09 

 Ours supervised 𝑀𝐴𝐸 = 11.15° 

 Ours unsupervised 𝑀𝐴𝐸 = 10.92° 

 Aghajanian et al 09 𝑀𝐴𝐸 = 13.21° 
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Body Posture Estimation 

63 
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Multi-set Feature Matching 

65 

 Graph Matching through Embedding 

 Matching Multiple sets in one shot 

 Scalability 

 

Torki and Elgammal CVPR10b 



Block Diagram for Matching Two 

Images 

66 
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Compute Soft Correspondences 𝑪 

 Weights should follow exclusion principle. 

 Weights should be soft encoded. 

 𝑮𝑖𝑗
𝑝𝑞

= 𝑒
− 𝑓𝑖

𝑝
−𝑓𝑗

𝑞 2
/2𝜎2

 

 Gaussian kerneI in feature space is not 

suitable for our formulation. 

 Use Scott and Longuet-Higgins 91 

algorithm in the feature space. 
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Matching Settings 

 Pairwise Matching (PW): 
 Only two images are matched 

 Multiset Pairwise Matching (MP): 

 Embedding all features from K sets together. Use 
Embedding coordinates to compute pairwise matches. 

 Multiset Clustering (MC): 
 Embedding all features from K sets together. Use 

Embedding coordinates to cluster the feature points in 
M clusters every cluster describes matched features. 

 

 



Comparative Evaluation (Hotel Sequence) 

70 

  101 frames sampled every 7 frames. 

  Each frame contains 30 manually labeled features. 

  105 matching pairs. 
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Comparative Evaluation (Hotel Sequence) 



72 

Comparative Evaluation (Hotel Sequence) 
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 Using our multisetMPW and MC we reach 

95.56% and 100% accuracy, which is not reached 

by any of the competing algorithms.  

 The size of our affinity matrix 𝑨 in the case of 

the multiset of 15 frames is just 450 × 450 and 

for the case of the pairwise matching is 60 × 60, 

 The size for one edge compatibility matrix for 

any of the quadratic assignment approaches is 

900 × 900.  

Comparative Evaluation (Hotel Sequence) 



Non-Rigid Matching (Walking) PW 

74 



Non-Rigid Matching (HandWaving) MC 

75 



Non-rigid Matching: within Class 

Variation (MPW) 

76 



Conclusions 

 We showed that we can find explicit 

representation of the local features with 

their spatial arrangement in the form of 

embedded coordinates. 

 The joint manifold representation enabled 

us to find proper kernel between images 

that can be used for recognition. 

 



Conclusions 

 Also, the joint manifold representation 

enabled us to do regression from local 

features without assuming holistic 

representation of the image instances. 

 The joint manifold also gives excellent 

matching results compared to state-of-

the-art methods. 
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