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Abstract

Creating descriptors for trajectories has many ap-
plications in robotics/human motion analysis and
video copy detection. Here, we propose a novel
descriptor for 2D trajectories: Histogram of Ori-
ented Displacements (HOD). Each displacement
in the trajectory votes with its length in a his-
togram of orientation angles. 3D trajectories are
described by the HOD of their three projections.
We use HOD to describe the 3D trajectories of
body joints to recognize human actions, which is
a challenging machine vision task, with applica-
tions in human-robot/machine interaction, inter-
active entertainment, multimedia information re-
trieval, and surveillance. The descriptor is fixed-
length, scale-invariant and speed-invariant. Exper-
iments on MSR-Action3D and HDM05 datasets
show that the descriptor outperforms the state-of-
the-art when using off-the-shelf classification tools.

1 Introduction
A trajectory is defined as the path of a point moving with
time. For videos, these points can be low level visual fea-
tures, or high level visual features like human skeletal joints.
If we can extract these features with acceptable accuracy and
adequately describe their trajectories, we can perform better
video classification. One of the most popular video classifi-
cation applications is human action recognition.

Human action recognition in videos has been an active re-
search topic in computer vision. One of the problems in the
recognition is the availability of data. Accurate data like Mo-
Cap, such as CMU MoCap 1 and HDM05 [Müller et al.,
2007], is expensive to acquire. Recently, Microsoft Kinect
and other low cost sensors provided the depth data with ac-
ceptable accuracy. [Shotton et al., 2011] developed a real-
time approach to extract 3D joints positions from a single
depth image. Despite requiring extensive training on syn-
thetic data, extracting the joint locations in real-time became
a doable task. With all these available data, interactive touch-
less games became tractable. However, researchers still have

1http://mocap.cs.cmu.edu/

a lot to do to enhance current recognition approaches and pro-
vide better gaming experience.

In this paper, we exploit these skeletal joint 3D locations
to develop an efficient action recognition approach. We intro-
duce a novel 2D trajectory descriptor: Histogram of Oriented
Displacements (HOD). To construct HOD, each displacement
in the trajectory votes with its length in an orientation angles
histogram. We use HOD to describe the three projections of
each 3D trajectory for each body joint. For temporal model-
ing, we apply a temporal pyramid that describes the trajectory
as whole, halves and then quarters. We show how the pro-
posed descriptor is efficient and discriminative on two pop-
ular datasets: MSR-Action3D [Li et al., 2010] and HDM05
[Müller et al., 2007]. For the two datasets, our descriptor out-
performs the state-of-the-art using off-the-shelf classification
approaches.

The paper is organized as follows: In Section 2, we review
the related work in both trajectory description and activity
recognition. Our approach is described in Section 3. Section
4 introduces the datasets used with the experimental results.
Section 5 concludes the paper.

2 Related Work
2.1 Trajectory Description
The problem of finding efficient and representative trajectory
descriptors has many applications in robotics/human motion
analysis and video copy detection. Most work in literature
that tried to create a descriptor for the trajectories did not tar-
get a fixed-length descriptor.

[Wu et al., 2008] and [Yang and Li, 2010] introduced a
variable-length descriptor using the curvature and torsion of
each point on the trajectory and their derivatives. They devel-
oped a similarity measure to match their trajectory descrip-
tors. In [Wang et al., 2011], they described each trajectory
using the normalized displacement vector, but limited the tra-
jectory length to a fixed value, instead of handling different
lengths.

In their work on activity recognition in unconstrained
videos, [Sun et al., 2009] used a fixed-length trajectory de-
scriptor. They normalize and quantize the displacement vec-
tor D in terms of magnitude and orientation. Each displace-
ment has a state between 1 to 25 (3 magnitude levels × 8
orientation levels + 1 for the zero level). After quantizing all
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Figure 1: Given a sequence of body joints locations of a human performing an action in n frames, our goal is to provide
a discriminative descriptor for this sequence. We describe the 3D trajectory of each individual joint, then concatenate the
descriptors of all joints to form the final descriptor. Each 3D trajectory is represented by the HOD of its three 2D projections
(xy, xz and yz).

displacement vectors along a trajectory, they translate the se-
quential relations between these vectors into a directed graph,
which is similar to the state diagram of a Markov chain. Fi-
nally, they calculate the transition matrix P and the descriptor
is the stationary distribution row vector π of P .

In their work on video copy detection, [Chen et al., 2010]
used a fixed-length descriptor for a 2D trajectory. The de-
scriptor was used to classify the trajectories into four cate-
gories: static, horizontal motion, vertical motion and complex
motion. They quantize the displacement vector D and build a
5-bin histogram for them. They used 2 quantization levels for
magnitude and 4 for orientation. Each histogram bin counts
the number of displacements in the quantization range.

2.2 Action Recognition
The availability of skeleton joints locations at real-time [Shot-
ton et al., 2011] was a great motivation for researchers to
develop more efficient and powerful recognition approaches.
[Yao et al., 2011] showed that pose-based features outper-
form low-level appearance features, even when heavily cor-
rupted by noise, suggesting that pose estimation is beneficial
for the action recognition task.

Researchers used generative models like Hidden Markov
Model (HMM), or discriminative models, such as Condi-
tional Random Fields (CRF) [Han et al., 2010]. These meth-
ods use the joint positions or histograms of the joint positions
as observations. In [Xia et al., 2012] a histogram of 3D joints
descriptor in a frame is computed, a dictionary is built and the
temporal modeling is done via HMM. However, these com-
plex generative models are easy to overfit due to the limited

amount of training data. Moreover, the 3D joint positions that
are generated from depth map sequences are noisy (compared
to that of the MoCap data). That makes determining the ac-
curate states from the observations very difficult, especially
in similar actions.

[Wang et al., 2012] showed that the complex and non-
linear dynamics can be characterized by a Recurrent Neu-
ral Network [Martens and Sutskever, 2011]. However, the
performance was not promising. Another applicable neural
network method is the Conditional Restricted Boltzman Ma-
chines [Mnih et al., 2012]. Due to the large number of pa-
rameters to tune, the latter two models need lots of data and
epochs to be able to estimate model parameters accurately.

For MSR-Action3D dataset, the state-of-the-art classifica-
tion accuracy using joint positions was done by [Wang et al.,
2012]. They used the 3D joints positions to construct a de-
scriptor of relative positions between joints. The descriptor is
then concatenated with Local Occupancy Patterns to capture
the human-object interaction. To capture the temporal behav-
ior, a Fourier Pyramid of this descriptor was introduced. Fi-
nally, they used this descriptor to mine a set of actionlets for
each class. The weights of the actionlets are then learnt via
Multiple Kernel Learning to perform the classification. We
have proposed another descriptor in [Hussein et al., 2013],
which describes the action using covariance of joint features.
However, our simple descriptor here with linear SVM outper-
forms [Wang et al., 2012] sophisticated classification proce-
dure. It also outperforms our other approach [Hussein et al.,
2013] on the datasets tested here.
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3 Approach
Our approach is to describe the 3D trajectory of each joint
separately, as shown in figure 1. First, we replace the 3D tra-
jectory of each joint with three 2D trajectories representing
the three projections on the three orthogonal Cartesian planes
(xy, yz, and xz). The 3D trajectory descriptor is the concate-
nation of the three. Temporal pyramid is built for each 2D
trajectory to capture the temporal information. We describe
each 2D trajectory using a Histogram of Oriented Displace-
ments.

In the next subsections, we explain the 2D descriptor:
HOD, temporal pyramid and the final descriptor for each
joint. The final descriptor, for each video sequence is the
concatenation of this descriptor among all available joints.

Figure 2: For a 2D trajectory where Pt is the position of
the joint at time t. This figure shows a general displacement
between Pt and Pt+1. In this example, the trajectory is de-
scribed by a histogram of 8 bins. For each displacement, the
angle θ and the length of the displacement are calculated. The
length is added to the appropriate histogram bin. For the dis-
placement shown in this figure, the length of (Pt, Pt+1) will
be added to the second histogram bin.

3.1 Histogram of Oriented Displacements (HOD)
We introduce a novel 2D trajectory descriptor, we call it
HOD. The trajectory is described using a histogram of the
directions between each two consecutive points. Given a tra-
jectory T = {P1, P2, P3, ..., Pn}, where Pt is the 2D position
at time t. For each pair of positions Pt and Pt+1, calculate the
direction angle θ(t, t+ 1), as the angle of the line with slope
in equation 1.

slope =
Pt+1.y − Pt.y

Pt+1.x− Pt.x
(1)

Value of θ is between 0 and 360. A histogram of the quan-
tized values of θ is created. If the histogram is of 8 bins, the
first bin represents all θs between 0 and 45.

The histogram accumulates the lengths of the consecutive
moves. For each θ, a specific histogram bin is determined
using equation 2. The length of the line between Pt and Pt+1

is then added to the specific histogram bin. Figure 2 shows an

example of a displacement when using a histogram of length
8.

histogram bin =
angle× histogram length

360
(2)

To show the intuition behind the descriptor, consider the
action of waving hands. At the end of the action, the hand
falls down. When describing this down movement, the de-
scriptor does not care about the position from which the hand
started to fall. This fall will affect the histogram with the ap-
propriate angles and lengths, regardless of the position where
the hand started to fall.

HOD records for each moving point: how much it moves in
each range of directions. HOD has a clear physical interpreta-
tion. It proposes that, a simple way to describe the motion of
an object, is to indicate how much distance it moves in each
direction. If the movement in all directions are saved accu-
rately, the movement can be repeated from the initial position
to the final destination regardless of the displacements order.
However, the temporal information will be lost, as the order
of movements is not stored-this is what we solve by applying
the temporal pyramid, as shown in section 3.2. If the angles
quantization range is small, classifiers that use the descriptor
will overfit. Generalization needs some slack in directions-
which can be done by increasing the quantization range.

3.2 Temporal Pyramid
Dealing with the trajectory as whole misses the temporal in-
formation. In order to capture the temporal evolution, we
apply a temporal pyramid approach. In the first level, the
whole trajectory is used to construct a part of the descriptor.
At the second level, the trajectory is divided into two halves
and each one of them is used separately to obtain the second
two parts of the descriptor. If the number of levels is 3, the
descriptor is made of 7 parts: 1 for the first level, 2 for the
second level and 4 for the third. The final descriptor is the
concatenation of the seven parts. In other words, a histogram
at a specific level will be split into two histograms in the next
level. Similar spatial and temporal pyramids were used in
[Lazebnik et al., 2009] and [Wang et al., 2012]. The values
of the histogram at a specific level to be the summation of the
two histograms that result from its splitting.

Figure 3 shows an example of the pyramid using 3 lev-
els for the xy projection in figure 4. The figure shows how
the pyramid catches the temporal variation. Most moves hap-
pened in the second part of the video as clear from second
level. The third level captured the difference in movement
between the third quarter and the forth.

3.3 3D Trajectory Descriptor
In order to describe the 3D trajectory of one joint, we use the
HOD of the three 2D projections (xy, yz and xz). The final
descriptor for the joint is the concatenation of the three 2D
descriptors.

Figure 4 shows the projections of the Right Hand joint
when the first subject int the MSR-Action3D dataset performs
the action of High Arm Waving.

1353



Figure 3: The figure shows the 3-level temporal pyramid of
the xy projection at figure 4. At the first level, the whole tra-
jectory is considered. At the second level, the trajectory is
divided into 2 halves. At the third level, it is divided into 4
quarters. The final descriptor of this trajectory is the concate-
nation of the 7 histograms. It can be seen that each histogram
at a level is a summation of the two histograms that result
from its splitting.

Figure 4: From the Action3D dataset, this figure shows the
three projections of the Right Hand joint when a subject is
performing the action of High Arm Wave. For each pro-
jection, HOD is used to describe the movement. The figure
shows a pyramid of only one level. The final descriptor of the
joint is the concatenation of the 3 HODs.

3.4 Discussion
The descriptor does not require any pre-processing for the
joints positions. It is scale-invariant, given that the histograms
are normalized. Our current implementation is not rotation-
invariant. However, it can be made rotation-invariant by map-
ping all the positions such that two specific sticks become the
x and y axes. For example, the stick between the two shoul-
ders and the stick between head and spine.

Using the magnitude of the displacement to update the
histogram makes the descriptor speed-invariant. If the lin-
ear movement between Pt and Pt+1 is performed between 2
frames, it will affect the histogram by the same amount as if
it is performed over 20 frames.

One important advantage of HOD is the efficiency in com-
putations. For each frame, the only computation required is:
1) calculate the displacements of positions. 2) calculate the
angles. 3) update the appropriate histogram bins. Even when
applying multiple levels for the pyramid, we do not need to
compute all levels. Due to the dependency between levels, we
only need to compute the deepest level, then the higher levels
are computed in constant time(for a specific number of bins).

One of the main reasons why the proposed descriptor has
the potential to be applicable to real world is the low number
of parameters to tune. Section 4.2 shows that our weakest
configuration competes favorably with some of the popular
approaches in literature.

4 Experiments
In this section, we explain our experimental setup and show
our experiments and experimental results. We used two
datasets: MSR-Action3D and a subset of the HDM05 dataset
used in [Ofli et al., 2012]. All experiments are done on the
original raw data without any normalization before calculat-
ing the descriptor. After creating the descriptor, we apply L2
normalization on the descriptor to achieve scale-invariance.
The used classification algorithm is a linear SVM using LIB-
SVM [Chang and Lin, 2011].

4.1 Datasets
MSR- Action3D
We use the MSR-Action3D [Li et al., 2010] which has 20 ac-
tion types, 10 subjects, each subject performs each action 2
or 3 times. There are 567 depth map sequences in total. We
use the standard setup, which divides the data into three ac-
tion sets. Each set has 8 actions with some overlap between
action sets. The same setting has been used recently in [Wang
et al., 2012]. We used the 20 joints locations as extracted in
[Shotton et al., 2011]. The actions are high arm wave, hor-
izontal arm wave, hammer, hand catch, forward punch, high
throw, draw x, draw tick, draw circle, hand clap, two hand
wave, side-boxing,bend, forward kick, side kick, jogging, ten-
nis swing, tennis serve, golf swing, pickup & throw. The ac-
tions are divided into 3 action sets as shown in table 1. The
available 20 joints are shown in figure 5.

Figure 5: Skeleton joint locations and names as captured by
the Kinect sensor.
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ActionSet1 (AS1) ActionSet2 (AS2) ActionSet3 (AS3)
Horizontal Wave High Wave High Throw
Hammer Hand Catch Forward Kick
Forward Punch Draw X Side Kick
High Throw Draw Tick Jogging
Hand Clap Draw Circle Tennis Swing
Bend Hands Wave Tennis Serve
Tennis Serve Forward Kick Golf Swing
Pickup & Throw Side Boxing Pickup & Throw

Table 1: Action sets of MSR-Action3D

Set 1 level 2 levels 3 levels
Action Set 1 91.3 92.39 91.3
Action Set 2 89.29 90.18 90.18
Action Set 3 91.43 91.43 91.43
Mean 90.61 91.26 90.94

Table 2: Classification accuracy (%) on the MSR-Action3D
dataset using 50% subjects split and linear SVM applied to
the descriptor directly, using different number of levels for
the temporal pyramid and 16-bin HOD.

HDM05
Similar to [Ofli et al., 2012], we applied our approach to
a Motion Capture dataset, namely the HDM05 database
[Müller et al., 2007]. There are three main differences be-
tween this dataset and the preceding dataset: First, it is cap-
tured using motion-capture sensors, which leads to much less
noise than in the data acquired by a Kinect sensor. Second,
the number of joints recorded is 31 instead of 20. This leads
to a longer descriptor. Third, the frame rate is much higher,
120 fps instead of 15 fps as in the preceding dataset.

We used the same setup in [Ofli et al., 2012] with the same
11 actions performed by 5 subjects. We had 249 sequences in
total. We used 3 subjects (140 action instances) for training,
and 2 subjects (109 action instances) for testing. The set of
actions used in this experiment is: deposit oor, elbow to knee,
grab high, hop both legs, jog, kick forward, lie down floor, ro-
tate both arms backward, sneak, squat, and throw basketball

4.2 Results and Discussion
MSR-Action3D
For the MSR-Action3D dataset, we compare our approach to
the state-of-the-art classification results using skeletal joint
positions at [Wang et al., 2012]. They use Multiple Kernel
Learning to classify a testing example using different action-
lets for each action.

Method Accuracy(%)
Recurrent Neural Network 42.5
Hidden Markov Model 78.97
Action Graph on Bag of 3D Points 74.7
Random Occupancy Patterns 86.5
Actionlets Ensemble 88.2
Proposed Descriptor 91.26

Table 3: Classification Accuracy Comparison for MSR-
Action3D dataset.

The best classification accuracy they obtain is 88.2% using
the ensemble and the accuracy is lower when they apply their
descriptor directly to a linear SVM, they did not report the
results of the latter case. However, they reported that remov-
ing ensemble from experiments on MSR-DailyActivity3D
dataset, decreased their accuracy from 85.75% to 78%. This
shows how the accuracy decreases considerably when the en-
semble is removed.

Using 16-bin HOD and 2-level temporal pyramid, we get
classification accuracy of 91.26% without using boosting nor
ensemble methods.2

Table 2 shows the classification accuracy using linear SVM
and when using temporal pyramids of different number of
levels and using 16-bin HOD. Results show that adding more
levels enhances the classification accuracy. When the accu-
racy decreases upon increasing the levels, it means that the
available frames in each histogram of the new level are too
few to make a meaningful histogram. Even with only one
level, our descriptor still outperforms the state-of-the-art. Ta-
ble 3 shows the results reported in [Wang et al., 2012] in ad-
dition to our obtained accuracy.

The number of bins of the histograms affects the results.
We studied this effect by changing the length of the histogram
and repeating the experiments of table 2. Figure 6 shows the
classification accuracy when using different lengths of his-
tograms. We tried 4 histogram configurations: 4, 8, 12 and
16. The 4-bin histogram is the least accurate but still a lot
better than a random classifier.

One of the interesting observations is that our weakest
configuration (4-bin HOD with only 1-level temporal pyra-
mid) outperforms Recurrent Neural Networks [Martens and
Sutskever, 2011], Hidden Markov Model [Xia et al., 2012]
and Action Graph on Bag of 3D Points [Li et al., 2010] as
shown in table 3. This superiority is due to the physical mean-
ing of the descriptor that we illustrated in section 3. It con-
tains more information about the sequence, that is you may
be able to recover more of the original data than from other
descriptors. Moreover, the descriptor for this configuration
is only 240 values for the complete video (3 projections ×
20 joints × 4 bins of histogram × 1 histogram for the only
level). This means that our descriptor is still discriminative
even without careful parameter tuning. Requiring careful pa-
rameter tuning is a problem that decreases the applicability
of any recognition method. For instance, [Wang et al., 2012]
needs to choose the number of Fourier coefficients to use,
confidence and ambiguity values to mine the actionlets.

One way to show the strength of the descriptor is to study
the classification accuracy when using only one joint at a
time. Table 4 shows that using the information of only one
joint is much better than a random classifier. The descriptor’s
length is only 144 (3 projections × 1 joint × 16 bins of his-
togram × 3 histograms for the two levels). When using the

2We excluded 13 sequences with around 1/3 of each sequence
with zero-measurements in actions bend and pickup & throw.
When we include the corrupted sequences but remove the cor-
rupted frames, we get 90.24%. In our method, removing the zero-
measurement frames means a linear interpolation for these frames.
With the corrupted sequences and the corrupted frames, we get
88.11%.
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Joint Accuracy(%) Joint Accuracy(%)
Left Shoulder 39.38 Right Wrist 70.32
Right Shoulder 48.67 Left Hand 56.49
Neck 44.25 Right Hand 74.07
Torso 43.22 Left Knee 34.7
Left Hip 43.26 Right Knee 41.55
Right Hip 37.84 Left Ankle 24.87
Center Hip 41.79 Right Ankle 32.63
Left Elbow 57.44 Left Foot 32.86
Right Elbow 64.17 Right Foot 36.66
Left Wrist 52.6 Head 42.34

Table 4: Results on MSR-Action3D when using each joint
separately using 50% subjects split. Each video is represented
by only 144 values (3 for the three projections × 3 for the 2-
level temporal pyramid × 16 for each histogram).

Histogram length 1 level 2 levels 3 levels
4-bin HOD 80.9 95.45 97.27
8-bin HOD 86.36 94.55 97.27
12-bin HOD 87.28 92.73 94.55
16-bin HOD 88.18 93.64 94.55

Table 5: Classification accuracy (%) on the HDM05 dataset
using linear SVM on the descriptor directly, using different
number of levels and different number of bins for the his-
tograms.

right hand joint only the accuracy is 74.07%, this outperforms
RNN and is very close to HMM and Action Graph on Bag of
3D Points, as shown in table 3.3

These interesting results propose that, we may not need
to detect all joints to recognize actions. Only a subset of
these joints (possibly one joint only) can discriminate actions
well. If the joint movement is similar in two actions, this joint
won’t be enough for discrimination. This is clear when ob-
serving right hand joint results. The right hand joint mainly
failed to discriminate between high arm wave and two hand
wave, because its movement is similar in the two actions.
Only 30% of the testing examples of the high arm wave ac-
tion are classified right, while 58% of them are mis-classified
as two hand wave.

Figure 6: Classification accuracy when using different his-
togram lengths. The three lines represent the three levels con-
figurations(one, two and three levels)

HDM05
For the HDM05 dataset, we compare our approach to [Ofli et
al., 2012]. The best classification accuracy they get is 84.4%.

3Subjects who recorded this dataset were informed to perform
the action using their right hand, if it is done using only one hand.

Joint Accuracy(%) Joint Accuracy(%)
root 60 headtop 68.18
lhip 63.63 lshoulder 67.27
lknee 58.18 lelbow 62.73
lankle 53.64 lradius 60
lfoot 43.64 lwrist 55.45
ltoes 53.64 lhand 60.91
rhip 60 lfingers 64.55
rknee 50 lthumb 61.82
rankle 55.45 rshoulder 58.18
rfoot 48.18 relbow 82.72
rtoes 46.36 rradius 80.91
belly 68.18 rwrist 79.09
chest 58.18 rhand 75.45
thorax 62.72 rfingers 66.36
lowerneck 69.09 rthumb 77.27
head 68.18

Table 6: Results on HDM05 using each joint separately. Each
video is represented by only 168 values (3 for the three pro-
jections × 7 for the 3-level temporal pyramid × 8 for each
histogram).

We get 97.27% using 4-bin HOD and 3-level temporal pyra-
mid. As shown in table 5, all our configurations outperform
them except for the weakest one.

Using only the right elbow positions, we get classification
accuracy of 82.72%. This is very close to the prior work
of [Ofli et al., 2012] and with descriptor of length 168 (3
for the three projections × 7 for temporal pyramid × 8 for
each histogram). The classification accuracy when using each
joint separately are shown in table 6. We use the 31 available
joints.

5 Conclusion
This paper addressed the problem of human action recog-
nition using the skeletal joint locations. We introduced a
novel 2D trajectory descriptor: Histogram of Oriented Dis-
placements (HOD). We used HOD to efficiently describe the
3D joints trajectories. HOD is scale-invariant and speed-
invariant. Recognition using this descriptor directly with lin-
ear SVM outperforms the best published results that use more
elaborate classification procedures on two public datasets:
MSR-Action3D and HDM05. The discrimination power of
the descriptor allowed our weakest configuration to outper-
form three popular methods in literature: Hidden Markov
Model, Recurrent Neural Networks and Action Graph on Bag
of 3D Points.
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