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Abstract

The advent of inexpensive depth augmented color
(RGBD) sensors has brought about a large advance-
ment in the perceptual capability of vision systems and
mobile robots. Challenging vision problems like object
category, instance and pose recognition have all ben-
efited from this recent technological advancement. In
this paper we address the challenging problem of pose
recognition using simultaneous color and depth infor-
mation. For this purpose, we extend a state-of-the-art
regression framework by using a multi-kernel approach
to incorporate depth information to perform more effec-
tive pose recognition on table-top objects. We do exten-
sive experiments on a large publicly available dataset
to validate our approach. We show significant perfor-
mance improvements (more than 20%) over published
results.

1. Introduction
The availability of inexpensive (color+) depth sen-

sors (e.g. Microsoft Xbox Kinect [1]) has brought about
a large advancement in 3D perception over the last cou-
ple of years. This has had an immediate impact in mo-
bile robotics where robots are being fitted with Kinects
to enhance their perceptive capability. A challenging
problem for the robot is to automatically identify the
object (category and instance) as well as its pose. We
feel that in this space, while the problems of object
category and instance recognition have received a lot
of attention, pose recognition has not been addressed
adequately. Pose recognition is an important problem
than can help the robot answer important questions,
for example, what is the arrangement and orientation
of various objects or people?, Where is the handle of
the mug?...etc. Addressing these questions is important
for a variety of tasks like scene understanding, activity
recognition, object manipulation in mobile robotics as
well as for the wider areas of computer vision.

3D object pose recognition is a rich field of research
[13, 5, 11, 3, 9]. However, the cheap availability of

Figure 1. Ground truth and estimated poses overlaid
for sample images. The red line signifies the ground-
truth pose, green represents the estimated pose us-
ing visual + depth and blue is the estimated pose
using visual local features only. 1

scene depth information synchronized with photometric
(RGB/grayscale) is only a recent phenomenon. As a re-
sult, approaches that use both modalities of information
are rather sparse. It is expected that this new modality
has the potential to provide considerable boost in the
accuracy of pose recognition systems.

The most relevant work in the area of pose (along
with category and instance) recognition using syn-
chronized multimodal photometric and depth data (i.e.
RGBD) is by Lai et al. [8, 7]. In [8], the authors show
significant performance improvements for simultane-
ous recognition of object category, instance and pose
recognition. They use machine learning to build an
object-pose tree model from RGBD images and per-
form hierarchical inference on it. Although the perfor-
mance improvements on category and instance recog-
nition are impressive, object pose recognition perfor-
mance is modest. The main reasons for this is that they
use a classification strategy for pose recognition (result-
ing in coarse pose estimates) and do not fully utilize
the information present in the spatial distribution of fea-
tures on object surfaces.

In our previous work [12], we have addressed these
two issues. Since the pose space is continuous, we
developed a regression framework for estimating ob-
ject pose (using only color images). Moreover, along



with the appearance properties, our framework explic-
itly represents and models spatial distributions of salient
features on the object surfaces to get a (continuous)
pose estimate. This framework was shown to achieve
state-of-the-art results on pose estimation from 2D im-
ages and significantly improved estimation on a variety
of difficult datasets.

This paper makes the following contributions: firstly,
we use a multi-kernel learning (MKL) approach to ex-
tend our framework for pose estimation to use multi-
modal RGBD data and show the benefits of doing this.
This confirms that 3D shape information captured in the
form of depth-maps provides valuable additional infor-
mation about object pose as well as the fact that the
proposed framework is able to exploit this information.
Using depth is very useful for objects which lack vi-
sual features and/or suffer from partial occlusion (e.g.
second pitcher in fig. 1) which severely limits pose es-
timation using visual cues alone. Furthermore, depth
features also have the advantage of being illumination-
invariant.

Secondly, we do extensive experimentation on a
large, publicly available RGBD dataset [7] specially
suited for this purpose. The dataset consists of RGBD
data for 300 objects. The objects were put on a turntable
and the Kinect sensor was used to gather data from 3
different sensor heights and 250 different object poses
at each sensor height2. We evaluate our algorithm on
this dataset and demonstrate that we achieve significant
performance improvements over best published results.

In section 2, we describe how we extend our re-
gression framework to use multiple kernels to incor-
porate depth information. In section 2.1 we describe
the method of building the visual and depth kernels and
lastly in section 2.2 we describe the various methods we
have explored to learn using multiple kernels (MKL).

2. RGBD Multi-Kernel Regression
Let an image Xk be represented by its features –

Xk = {xk
i ∈ R2, fk

i ∈ RF, dk
i ∈ RD} where i =

1, ..., Nk. Let xk
i denote the ith spatial location, and fk

i

and dk
i the respective RGB and depth feature descriptors

at that location. Nk is the number of local features (vari-
ant across images). Each image is also associated with
a pose vk ∈ RV. The goal of regression is to learn a reg-
ularized mapping function ĝ from input image features
to the pose space from (paired) training data: (Xk, vk).
As shown in [12], the regression can be reduced to:

v = ĝ(X) =
X

j

bjK(X,Xj) (1)

2Other RGBD datasets are also available which are smaller and
less suitable to validate pose-estimation performance – for a compre-
hensive description refer to [6].

K(·, ·), a p.d. kernel, measures the similarity be-
tween images. We extend this approach to use multi-
ple kernels. We define two kernels – K for representing
visual similarity and G(·, ·) for depth similarity. Multi-
kernel regression is similarly reduced to:

v = ĝ(X) =
X

j

(bjK(X,Xj) + cjG(X,Xj)) (2)

where G measures depth similarity between im-
ages and K measures similarity of visual local features
within and between images.

We depict the proposed multi-kernel regression
pipeline in fig. 2. It consists of two steps: feature em-
bedding (section 2.1) and pose regression (section 2.2).

2.1. Feature Embedding
Our pose regression framework uses the feature em-

bedding concept defined in our prior work [12] (please
refer for details). This section summarizes the key ideas
of this work focusing on the extensions to use depth
information. The goal of feature embedding is to en-
force regularity constraints: inter-image feature affinity,
intra-image spatial affinity and prior manifold structure
(topology, 1D...etc). At the same time, we want the em-
bedded feature space to be independent of the variant
number of features in input images. In this work, we
learn two feature embeddings: one for the RGB fea-
tures and another for the depth features. This requires
the specification of corresponding affinity matrices.

RGB feature embedding follows [12]: The spatial
affinity within each image and the feature affinity be-
tween images is computed using kernels resulting in
two weight matrices. We use Geometric Blur (GB) as
the RGB feature. A regularized objective function is
then optimized (eqn 7, [12]) from training images to ob-
tain a Laplacian Eigenmap embedding. Depth feature
embedding is done in a slightly different (albeit sim-
pler) way. Kinect depth data has many missing holes
(see fig. 4) due to infrared absorption by some mate-
rials. We empirically established that a single global
depth feature (per image) is more reliable than locally
anchored multiple depth features. We use HOG applied
to the depth images (dHOG) as a single depth descriptor
per image. We now obtain a Laplacian embedding for
the depth features also.

Consequently, each training image is mapped to two
embedded feature representations corresponding to the
RGB and depth data. Embedding the features from an
unseen test image is done by solving an out-of-sample
problem which estimates the mapping between the in-
put space and embedding space.

2.2. Pose Regression
Once the feature embedding is done, pose regression

is performed to learn the model for predicting pose from



Figure 2. Pose Regression Using Feature Embed-
ding. Model is learnt using training data. Estima-
tion is done for test data by treating them as out-of-
sample cases.

embedded features (see fig. 2). We experimented with
two simple approaches.

In the first approach, called Multiple Kernel Re-
gression (MKR), we estimated coefficients bj and cj
in eq. 2 from the training data using Euclidean er-
ror norm on the estimated pose. Note that the X in
eq. 2 now corresponds to embedded features computed
in the last section. The advantage of this approach
is that since weights for both RGB and depth kernels
are learned simultaneously for each training example,
example-specific weights are learnt than can achieve a
good tradeoff between the relative quality of informa-
tion (or lack thereof) in depth or RGB data. Thus, ob-
jects with good discriminative visual features can be ro-
bust to noisy or non-discriminative depth features and
vice versa. The resulting pose estimator can be repre-
sented as follows:

v = ĝ(X) =
ˆ
K|G

˜ 24 b−
c

35 (3)

The second approach we tried is Multi-Kernel Learn-
ing (MKL) [2] where effectively a new kernel is repre-
sented as a weighted sum of several kernels (as in eq.
4). This method is analogous to a system with multi-
ple experts. Weights must be assigned to each kernel
according to its discriminative power in the regression
problem. For our scenario, this approach has an effect
of learning an apriori relative bias for/against the RGB
information vis-a-vis the depth information.

K =

MX
j

ηjKj (4)

M is the number of kernels and η are the scalar
weights corresponding to each individual kernel. There
are multiple ways of learning the discriminative power
of each kernel. A common way is to use a correlation
measure between individual kernel regressor and the
ground truth values in the training data. This paper uses

two heuristics: F-measure and M-measure [10]. The
former measures the kernel alignment using the Frobe-
nius norm between the kernel regresser and the inner
product of the pose labels. The higher this value is for
a kernel, the more it contributes to the combined ker-
nel. The latter measure is based on the mean square
error when performing regression using each kernel on
training data. The smaller the MSE per kernel is, the
less contribution that kernel has to the combined kernel.
These two measures give us the weights ηj correspond-
ing to each kernel Kj . The weighted sum kernel is now
used to learn the pose regression from (1). We call the
two pose regressors MKL-F and MKL-M respectively.

3. Experiments
We evaluate the presented approach on a large, pub-

licly available RGBD dataset [7] specially suited for
pose recognition. The Kinect sensor was used to gather
data from 3 different sensor heights and poses were
densely captured per object using a turntable. We fol-
lowed the same experimental setup and loss function as
in [8] for a fair comparison with this state-of-the-art ap-
proach. Thus, images captured from elevation angles
of 30◦and 60◦were used for training while those from
45◦were used for testing.

Geometric Blur (GB) features were computed on
RGB images to represent photometric information
while HOG features [4] were computed on the depth
images to represent depth information (dHOG). While
45 most-significant GB features (local) were used, we
used a single global dHOG per image. The depth data
has large areas of missing depth (see fig. 4) due to in-
frared absorption by some materials and a single global
(dHOG) was found to be more reliable than multiple lo-
cal features. We also empirically analyzed the eigenval-
ues of the Laplacian Eigenmap embedding on the train-
ing data and found the best embedding dimensions to
be 100 for GB (204-dimensional) and 75 for the 9x9-
grid dHOG. We used Radial-Basis Function (RBF) ker-
nels with Euclidean distances between feature vectors.
These settings were used for all experiments.

The experimental results are presented in Table 1.
The baseline approach [8] is presented in the last row.
The first two rows represent our regression approach us-
ing only depth features (dHOG) and only RGB features
(gsGB [12]), respectively. MKR represents our multi-
kernel regression approach by concatenating the visual
features kernel and global depth features kernel. MKL-
F and MKL-M represent our regression approach when
the kernel weights were computed using the F-measure
and M-measure, respectively.

The dHOG approach shows worst performance, sig-
nificantly lower than gsGB. This is due to two reasons:
the depth feature is more noisy (large missing holes)



than the RGB data. Secondly, for robustness, we use
a single global depth feature while gsGB uses multi-
ple locally anchored visual features. The relative spa-
tial arrangement of these features is very informative
about the object pose and is effectively exploited by
our visual-only algorithm. It can be seen that the pro-
posed MKR and MKL approaches are able to use in-
formation from both color and depth features to provide
a statistically significant improvement over regression
using only depth or only color features. Note that we
see a larger jump in the median performance than in the
mean performance. The reason for this is that we get
a significant performance boost for most of the object
classes. A few object categories do not perform as well
which can be attributed to being objects that have uni-
form non-discriminative pose-invariant shape, such as
ball and bowl categories. In fact, asking the question
of which pose these objects are in is an ill-posed ques-
tion. Note that we get a relative improvement of approx-
imately 11% and 4% over our own color-only baseline
implementation.

Lastly, we compare the performance of the proposed
regression framework with the baseline algorithm in
[8]. The proposed MKR and MKL approaches eas-
ily outperform the baseline. In fact, MKL-M achieves
a relative performance improvement of approx. 21%
and 32% in the median and average pose accuracy, re-
spectively. The median performance using MKL-M is
shown for a representative subset of objects in fig. 3.

4. Conclusion
In this paper, we presented a novel MKL based re-

gression framework that automatically combines the
color and depth information present in the multi-modal
RGBD image data for effective object pose estimation.
We extensively evaluated the performance of the pre-
sented framework on a large dataset and showed that
we are able to significantly outperform best published
results in this area, thus validating the efficacy of the
presented framework.

Figure 3. Median % accuracy for a subset of objects
from RGBD-dataset
1Pose annotations indicate the assigned pose to the object image

w.r.t an arbitrary reference. The marker orientation is not reflective

Table 1. Pose Recognition Performance over all 51
classes of RGBD-dataset

Method Median Pose Avg Pose St. Dev.

dHOG (Depth) 51.25 50.62 5.16

gsGB (RGB) [12] 77.8 72.06 14.39

MKR (RGB+D) 85.0 74.58 13.69

MKL-F (RGB+D) 86.3 75.50 12.71

MKL-M (RGB+D) 86.7 74.76 14.21

[8] 71.40 56.80 -

Figure 4. Pose estimates with RGB and depth im-
ages. Note missing depth on parts of the flashlight
depth image (dark blue regions) 1
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of the surface normal to which the marker may seem to be anchored
(anchoring is at the center of the image). Also, we show the yaw angle
on a unit circle.


