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Abstract—The problem we address in the paper is how
to learn a joint representation from data lying on multiple
manifolds. We are given multiple data sets and there is an
underlying common manifold among the different data set. We
propose a framework to learn an embedding of all the points
on all the manifolds in a way that preserves the local structure
on each manifold and, in the same time, collapses all the
different manifolds into one manifold in the embedding space,
while preserving the implicit correspondences between the
points across different data sets. The proposed solution works
as extensions to current state of the art spectral-embedding
approaches to handle multiple manifolds.

I. I NTRODUCTION

Dimensionality reduction techniques have proven useful
in many computer vision problems. In particular, nonlinear
dimensionality reduction (NLDR) techniques such as Iso-
metric feature mapping (Isomap) [1], Local linear embed-
ding (LLE) [2], Laplacian eigenmaps [3], and others [4],
[5] can achieve embedding of data lying on a nonlinear
manifold through changing the metric from the original
space to the embedding space based on the manifold local
geometric structure. All these nonlinear embedding frame-
works were shown to be able to embed data lying on a
nonlinear manifold into a low-dimensional Euclidean space
for toy examples, as well as for real images. However, the
application of such approaches is limited to embedding of a
single manifold and they fail to embed data lying on multiple
manifolds.
Our contribution: we propose a framework to learn an
embedded manifold representation from multiple data sets.
We are given multiple data sets and there is an underlying
common manifold among the different data sets. An em-
bedding can be achieved for each data set using any NLDR
technique. However, if we put all the data sets together,
tno useful embedding can be achieved. This is because the
inter-manifold distance between different data sets will be
much larger than the intra-manifold distance within each
data set. This can be seen in the example in Fig. 1 where
GPLVM [5] is used to achieve the embeddings. The problem
becomes trivial if we are given correspondences between the
different data sets, i.e., the data sets are aligned, in suchcase
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Figure 1. Embedding of three people’s facial expressions. As can be
noticed, the embedding is dominated be the inter-person manifold
distance.

corresponding data points can be stacked as a single point in
a new space and any NLDR technique can be used. This is
similar to the solution proposed by Ham et. al. in [6] for the
problem of learning joint embedding across different spaces.

In this paper we do not assume that such correspondences
are given. We solve the problem within the embedding
framework where, from the data geometry, we can achieve
the joint embedding. The results we achieve are superior
to existing state of the art embedding approaches when
applied to such a setting. The proposed solution works as
extensions for the current state of the art spectral-embedding
approaches, such as Isomap [7], LLE [2], and Laplacian
eigenmaps [3], to handle multiple manifolds.

II. JOINT MANIFOLD EMBEDDING

A. Inter- and Intra- Manifold Structure

The input isK different data sets in aD-dimensional
space, denoted byXk = {xk

i ∈ R
D, i = 1, · · · , Nk}, k =

1, · · · ,K. The points on each data set are assumed to lie
on a manifold and there are a common structure between
the different manifolds. Each data set might have a different
number of points. We denote byNk the number of points in
the data setk. LetN be the total number of points in all data



sets, i.e.,N =
∑K

k=1
Nk. 1 The correspondences between

the data sets are not known and, since the data sets are of
different sizes, there is no one-to-one correspondences that
can be assumed.

In such data, there are two different geometric structures:
The intra-manifold structure and the inter-manifold structure.
The intra-manifold structure is the local geometric structure
within a given manifold. This is the geometric structure
that is captured in any NLDR approach by constructing
an affinity matrix W between data points using a data
dependent kernelKD(·, ·) depending on the technique used2

Given thek-th data set, we can construct anNk×Nk sym-
metric weight matrixWk representing its local geometric
structure as typically done in LLE, Isomap, etc. Therefore,
we haveK weight matrices whereWk

ij = KD(xk
i ,x

k
j ).

On the other hand, the inter-manifold structure is the
geometric structure between the different data sets in the
space. Given any two manifoldsp andq, their pairwise inter-
manifold structure is be represented by aNp × Nq kernel
matrix Upq, such thatUpq

ij = G(xp
i ,x

q
j), whereG(·, ·) is

a global kernel between pointxp
i and x

q
j on manifoldsp

and q respectively. This collection of matrices captures the
pairwise manifold relations. Notice that the matricesU

pq

are not symmetric. However, there exist a hyper-symmetry
structure sinceUpq = U

qpT

B. Objective Function

Given the intra-manifold and the inter-manifold structures,
the goal is to achieve an embedding of all the points on all
the manifolds in a way that preserves the local structure
on each manifold and, in the same time, collapses all the
different manifolds into one manifold in the embedding
space while preserving the implicit correspondences between
the points across different data sets. Since we want to find a
common embedding among all the data sets, we do not need
to preserve the inter-manifold structure. The inter-manifold
structure is needed to solve for soft correspondences between
the data sets.

If the correspondences between the different data sets
are given, the problem become trivial. In our case, the
correspondences are not given. Moreover, since the data sets
are of different sizes, no optimal one-to-one correspondences
is possible. Therefore, given the inter-manifold geometric
structure, we aim to obtaininter-manifold soft correspon-
dence structure by solving for soft correspondences between
the different dataset. A soft correspondence matrix between
manifoldp and manifoldq is denoted by anNp×Nq matrix
C

pq. Generally speaking, a highCpq
ij value indicates a strong

1Throughout this paper, we will use superscripts to indicatemanifold
index (equivalently, data set index) and subscripts to indicate point index,
i.e., x

k

i
denotes pointi on manifoldk.

2For example, Isomap [7] finds shortest geodesic paths on the manifold.
LLE [2] finds local linear weights to construct each point from its local
neighbors. Laplacian eigenmaps [3] uses a heat kernel givennearest
manifold neighbors.

correspondence between pointxp
i and pointxq

j . In section III
we will show how can such soft correspondence matrices can
be obtained.

Formally, we seek an embedding for the data, i.e., we
seek the coordinates ofN points Y = {yk

i ∈ R
d, i =

1, · · · , Nk, k = 1, · · · ,K} in a d-dimensional embedding
space where a pointyk

i is the embedding of the data point
xk

i . Given the above stated goals, we reach the following
objective function on the embedded pointsY , which need
to be minimized

φ(Y ) =
∑

k

∑

i,j

(yk
i − yk

j )2Wk
ij +

∑

p,q
p6=q

∑

i,j

(yp
i − y

p
j )

2
C

pq
ij .

(1)
The first term of the objective function preserves the intra-
manifolds’ local geometry since it tries to keep the embed-
ding (yk

i ,yk
j ) of any two points (xk

i ,xk
j ) on a given manifold

close to each other based on their intra-manfild weightW
k
ij

. The second term of the objective function tries to bring
close the embedded points (y

p
i ,yq

j ) on manifoldsp andq if
their soft correspondence weightC

pq
ij is high. This objective

function can be rewritten using one set of weights defined
on the whole set of input points as:

φ(Y ) =
∑

p,q

∑

i,j

(yp
i − y

p
j )

2
A

pq
ij , (2)

where the weight matrixA is defined as:

A
pq
ij =

{

W
k
ij p = q = k

C
pq
ij p 6= q

(3)

This construction defines anN×N weight matrixA with
K×K blocks where thep−q block is of sizeNp×Nq. The
p-th diagonal block is the intra-manifold weight matrixWp

for the p-th manifold. The off-diagonalp − q block is the
soft correspondence matrixCpq. The matrixA is symmetric
by definition since diagonal blocks are symmetric and since
C

pq = C
qpT

.
Given this construction, the objective function in Eq. 1

reduces to the problem of Laplacian embedding of a graph
defined by the weight matrixA. Therefore the objective
function reduces to

Y
∗ = arg min

YT DY=0

tr(YT
LY), (4)

whereL is the Laplacian of the matrixA, i.e.,L = D−A,
whereD is the diagonal matrix defined asDii =

∑

j Aij .
TheN×d matrixY is the stacking of the desired embedding
coordinates such that,

Y = [y1
1 , · · · , y

1
N1
, y2

1 , · · · , y
2
N2
, · · · , yK

1 , · · · , y
K
Nk

]T .

Minimizing this objective function is a straight forward
generalized eigenvector problem:Ly = λDy . The desired
embedding is obtained by the bottomd nonzero eigenvec-
tors.



III. I NTER-MANIFOLD CORRESPONDENCES

Given two data setsXp andXq with their inter-manifold
geometric structure weight matrixUpq, a maximum weight
matching can be achieved by solving for a permutation ma-
trix P that permutes the rows ofUpq in order to maximize
its trace, i.e.,

ψ(P) = tr(PT
U

pq)

The permutation matrix constraint can be relaxed into an
orthonormal matrix constraint on the matrixP. Therefore,
the goal is to find optimal an orthonormal matrixP∗ such
that

P
∗ = arg max

s.t.PT P=I

tr(PT
U

pq) (5)

It was shown in [8] that the optimal solution for 5 isP∗ =
UEV T where the SVD decomposition ofUpq = USV T

andE is obtained by replacing the singular values on the
diagonal ofS by ones.

In our case we haveK ∗ (K − 1)/2 inter-manifold
weight matricesUpq and we need to obtainK ∗ (K − 1)/2
correspondence matricesC

pq that simultaneously maximizes

ψ(C) =
∑

p=1:K,q=p+1:K

tr(CpqT

U
pq) (6)

Solving for simultaneous hard correspondences is a weighted
multipartite graph matching problem, which is a much
harder combinatorial problem. In our case the objective
function in 6 can be directly maximized by finding each
of the pairwise correspondencesC

pq by solving 5.
We use a Gaussian kernel to encode the inter-manifold

geometry, i.e.,Upq
ij = exp(−‖xp

i − xq
j‖)/2σ

2 whereσ is a
global scale that is estimated as a percentile of the overall
data scale. One obvious question that arises: can the inter-
manifold kernelsUpq directly (or after scaling) be used in
the objective function 1 instead ofUpq since it also provides
a measure of affinity between the points from the different
data sets. The answer is no. The soft correspondences
obtained by solving 5 incorporates the principle of exclusion
because of the orthogonality constraints.

IV. EXPERIMENTAL RESULTS

We run experiments on different data sets. Here we show
experiments on three of them.
Example I: We used 5 objects with similar geometry from
the COIL-20 data set [9] with different views for each object
taken along a view circle, Fig. 2-a. We used 72 views for
each objects. Each instance is 128× 128 grayscale image.
Putting all data together, traditional manifold embedding
approaches fail to discover the structure of the data as can
be seen in Fig. 2-b,c. The proposed approach succeeds in
learning a joint view manifold of all the five objects, Fig. 2-
d. This clearly shows that all the objects are arranged in this
representation according to the view point and invariant of
the object.

(a) Sample Input Images
(b) LLE Embedding

(c) Laplacian Eigen Map Em-
bedding

(d) Proposed Joint Embedding

Figure 2. Coil Dataset Example: Learning a joint view manifold
from multiple objects: (a) Input object appearance with view
variations. (b,c) LLE and Laplacian Eigen map embedding forall
the data. (d) The joint embedding of the view manifold obtained
using the proposed algoithm.

Example II: The goal is to learn an embedding of the gait
manifold from shape observations (silhouettes) from differ-
ent people. The data are from CMU-Mobo gait data set [10].
For this experiment, we used 7 people data, six walking
cycles each, side view. The number of frames in each data
set vary from 189 to 234 (depending on the person’s walking
speed) i.e., frames are not in correspondences. Putting all
the data together, LLE and other embedding techniques fail
to obtain a useful embedded representation for the propose
of visualization or analysis. The proposed approach can
successfully learn a joint embedding of the gait manifold
across the different subjects, invariant to the different people
shape variability as shown in Figure 3. The embedding
shows a figure “8” embedding of the gait manifold.
Example III: The goal is to learn an embedding of a
joint facial expression manifold across different subjects.
We used four facial expression sets from CMU AMP facial
expression database, each containing a person performing
three expressions (smile, angry, surprise). Fig. 4-a shows
examples of the input images for two of the subjects. The
number of images in each set varies from 45 to 59 images.
Each input instance is a 64x64 grayscale images.

Fig. 4-b shows the embedding obtained using Laplacian
Eigenmaps with all data sets together. As can be noticed
in this figure, the embedding is dominated by the inter-
manifold structure and shows 4 separate clusters, one for
each subject. LLE, regardless of the settings, also resulted
in embeddings with 4 different clusters. Using the proposed
approach, we can achieved a common facial expression
manifold embedding, invariant of the subject, Fig. 4-c shows
the embedding obtained. We can clearly see that the three
different expressions are located at three different partsof
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Figure 3. CMU Gait Example: Embedding the gait manifold from seven subjects. Different views of the obtained 3D embedding. We can
see similar body postures across different people along themanifold.

(a)
(b) Laplacian Eigenmap for all data: (c) Joint Expression Embedding:

Figure 4. Embedding of a joint facial expression across different people: a) sample input data for two subjects. b) Embeding of allthe
data with laplacian eigenmaps. Notice the separation between the different people’s manifolds c) The joint expressionembedding obtained
by the proposed approach. Notice how expressions are embedded invariant of people.

the embedding space where the corresponding frames across
the different subjects are close to each other.

V. CONCLUSION

We introduced an approach for learning joint embedded
representations from multiple manifold. This is an important
problem in data analysis where the goal is to learn an
embedded representation of data from multiple sources (e.g.,
different people, objects, different spaces) regardless of
the variability of the source. We successfully applied the
approach to several real data sets including, visual gait data,
facial expression data, and kinematic locomotion data. In
all cases we can reach a meaningful embedding of the
underlying manifold across different input data sets. The
approach we introduce provide an important extension to
the state-of-the-art spectral embedding techniques, suchas
LLE, Isomap, and Laplacian eigenmaps, to handle the case
of multiple manifolds.
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