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Abstract—The problem we address in the paper is how
to learn a joint representation from data lying on multiple
manifolds. We are given multiple data sets and there is an
underlying common manifold among the different data set. We
propose a framework to learn an embedding of all the points
on all the manifolds in a way that preserves the local structre
on each manifold and, in the same time, collapses all the
different manifolds into one manifold in the embedding spae,
while preserving the implicit correspondences between the -
points across different data sets. The proposed solution wks ' E
as extensions to current state of the art spectral-embeddn
approaches to handle multiple manifolds.

I. INTRODUCTION

Dimensionality reduction techniques have proven useful 1.5 -1 -05 0
in many computer vision problems. In particular, nonlinearrigure 1. Embedding of three people’s facial expressions. As can be
dimensionality reduction (NLDR) techniques such as Iso-noticed, the embedding is dominated be the inter-persorifaign
metric feature mapping (Isomap) [1], Local linear embed-distance.
ding (LLE) [2], Laplacian eigenmaps [3], and others [4],

[5] can achieve embedding of data lying on a nonlinear . _ . o
manifold through changing the metric from the original corresponding data points can be stacked as a single pointin

space to the embedding space based on the manifold locgNew space and any NLDR technique can be used. This is

geometric structure. All these nonlinear embedding frame-s'm'Iar to the solution proposed by Ham et. al. in [6] for the

works were shown to be able to embed data lying on Jroblem of learning joint embedding across different space
nonlinear manifold into a low-dimensional Euclidean space N this paper we do not assume that such correspondences
for toy examples, as well as for real images. However, thé'€ given. We solve the problem within the embedding
application of such approaches is limited to embedding of §ramework where, from the data geometry, we can achieve

single manifold and they fail to embed data lying on multiple th€ joint embedding. The results we achieve are superior
manifolds. to existing state of the art embedding approaches when

Our contribution: we propose a framework to learn an @Pplied to such a setting. The proposed solution works as
embedded manifold representation from multiple data set£xtensions for the current state of the art spectral-enmibgdd
We are given multiple data sets and there is an underlyingPProaches, such as Isomap [7], LLE [2], and Laplacian
common manifold among the different data sets. An em£i9enmaps [3], to handle multiple manifolds.

bedding can be achieved for each data set using any NLDR
technique. However, if we put all the data sets together,
tno useful embedding can be achieved. This is because th® |nter- and Intra- Manifold Sructure

inter-manifold distance between different data sets wall b . . . . . .

much larger than the intra-manifold distance within each The input is K d',tfere”t kdata %et,s in &-dimensional
data set. This can be seen in the example in Fig. 1 wherdPace: denoted b)X™ = {@7 € R¥,i =1,--- Ni},k =
GPLVM [5] is used to achieve the embeddings. The problem> , K. The points on each data set are assumed to lie

becomes trivial if we are given correspondences between tht n z:lj.frpamf?ld ar_1fd lfjherltze aLe datcomtmo_n r?tt rrl: cture S%aneen
different data sets, i.e., the data sets are aligned, in cash € direrent manitolds. Each data Set might have a ditferen

number of points. We denote by, the number of points in
This research is partially funded by NSF CAREER award 1186872 the data set. Let N be the total number of points in all data
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sets, i.e.,N = Zszl Ni. I The correspondences between correspondence between pairftand pointrj. In section Ill
the data sets are not known and, since the data sets are wé will show how can such soft correspondence matrices can
different sizes, there is no one-to-one correspondeneds thbe obtained.

can be assumed. Formally, we seek an embedding for the data, i.e., we
In such data, there are two different geometric structuresseek the coordinates a¥ points Y = {y* € R%i =
The intra-manifold structure and the inter-manifold stawe.  1,--- | Ny, k = 1,--- K} in a d-dimensional embedding

The intra-manifold structure is the local geometric stuuet space where a poing® is the embedding of the data point
within a given manifold. This is the geometric structure z¥. Given the above stated goals, we reach the following
that is captured in any NLDR approach by constructingobjective function on the embedded poirfs which need
an affinity matrix W between data points using a datato be minimized

dependent kernék 5 (-, -) depending on the technique used X A )
Given thek-th data set, we can construct & x N sym- ~ 2(Y) = Z Z(yi — ;) Wi + Z Z(yf - y;)°Cij.
ki

metric weight matrixWX representing its local geometric oy 7
structure as typically done in LLE, Isomap, etc. Therefore, (1)
we haveK weight matrices wherwfj = Kp(xF, w’;), The first term of the objective function preserves the intra-

On the other hand, the inter-manifold structure is themanifolds’ local geometry since it tries to keep the embed-
geometric structure between the different data sets in thding (yfy?) of any two points stf:nf) on a given manifold
space. Given any two manifolgsandg, their pairwise inter-  close to each other based on their intra-manfild WeT@Ff;
manifold structure is be represented byVg x N, kernel . The second term of the objective function tries to bring
matrix U4, such thatU}! = G(zf,z]), whereG(-,-) is  close the embedded pointg;(y]) on manifoldsp andg if
a global kernel between point] andz] on manifoldsp  their soft correspondence weigBt is high. This objective
and g respectively. This collection of matrices captures thefunction can be rewritten using one set of weights defined
pairwise manifold relations. Notice that the matridgg? on the whole set of input points as:
are not symmetric. However, there exist a hyper-symmetr
structure iincdqu =u®’ e ’ oY) = Z Z(yzi) - y})? Al 2)

P,q i,

B. Objective Function . . '
JECHve FUnct where the weight matri is defined as:

Given the intra-manifold and the inter-manifold structjre
the goal is to achieve an embedding of all the points on all N ij p=q=k 3)
the manifolds in a way that preserves the local structure K ij‘ pF#q

on each manifold and, in the same time, collapses all the This construction defines ai x N weight matrixA. with

different _manlfolds _|nto one ma_mlfold in the embedding K x K blocks where the — ¢ block is of sizeN,, x N,. The
space while preserving the implicit correspondences bstwe th diagonal block is the intra-manifold weight matix’™

the points across different data sets. Since we want to find %

common embedding among all the data sets, we do not nee r the p-th manifold. The off-diagonab = ¢ block is the
ding 9 " .. s0ft correspondence matr@??. The matrixA is symmetric
to preserve the inter-manifold structure. The inter-madif

X by definition since diagonal blocks are symmetric and since
structure is needed to solve for soft correspondences batwe y g y

cra — car”
the data sets, Given this construction, the objective function in Eq. 1
If the correspondences between the different data sets : J g

are given, the problem become ftrivial. In our case, thereduces {0 the problem of Laplacian embedding of a graph

) . c{efined by the weight matribA. Therefore the objective

correspondences are not given. Moreover, since the data sef\ )
) . . unction reduces to

are of different sizes, no optimal one-to-one correspooéegn

is possible. Therefore, given the inter-manifold geongetri Y* =arg min tr(YTLy), 4)

structure, we aim to obtaiimter-manifold soft correspon- YTDY=0

dence structure by solving for soft correspondences betweenwhereL is the Laplacian of the matriA, i.e.,L=D - A,

the different dataset. A soft correspondence matrix batweewhereD is the diagonal matrix defined d3;; = Zj Ajj.

manifold p and manifoldy is denoted by aV,, x N, matrix ~ The N xd matrixY is the stacking of the desired embedding

CP4. Generally speaking, a highy/ value indicates a strong  coordinates such that,

1Throughout this paper, we will use superscripts to indiqanifold Y = [yi, T 7911\71 ) y%a T 7912\72, T ayfa T ’yﬁk]T
index (equivalently, data set index) and subscripts tocatgi point index, o ] o ) ) ]
i.e., ¥ denotes poin on manifold k. Minimizing this objective function is a straight forward

For example, Isomap [7] finds shortest geodesic paths on #éford. generalized eigenvector problemy = \Dy . The desired

LLE [2] finds local linear weights to construct each pointrfrats local . . . .
neighbors. Laplacian eigenmaps [3] uses a heat kernel gnearest embeddlng is obtained by the bottainnonzero eigenvec-

manifold neighbors. tors.



[1l. I NTER-MANIFOLD CORRESPONDENCES (a) Sample Input Images

Given two data set&” and X9 with their inter-manifold Rk it |
geometric structure weight matr&??, a maximum weight
matching can be achieved by solving for a permutation m
trix P that permutes the rows df?? in order to maximize
its trace, i.e.,

Y(P) = tr(PTUPY)

. . . . i i Proposed Jlnt Embeddin
The permutation matrix constraint can be relaxed into arf)ce) d';j?r?éac'an Eigen Map Emkd) Prop g

orthonormal matrix constraint on the matd# Therefore,
the goal is to find optimal an orthonormal matdx* such
that

P* =arg max tr(PTUPY) (5)
5.t PTP=I

It was shown in [8] that the optimal solution for 5 B* =
UEVT where the SVD decomposition dfr¢ = USV7T

and E is obtained by replacing the singular values on theFigure 2. Coil Dataset Example: Learning a joint view manifold
diagonal ofS by ones. from multiple objects: (a) Input object appearance withwie
variations. (b,c) LLE and Laplacian Eigen map embeddingafor

I_n our Case we havell « (K — 1)/2, inter-manifold the data. (d) The joint embedding of the view manifold obtdin
weight matricesU?? and we need to obtaift « (K —1)/2  ysing the proposed algoithm.

correspondence matric€®? that simultaneously maximizes

T
v(C) = Z tr(CP U) 6) Example 1l: The goal is to learn an embedding of the gait
p=LK.q=pt+1:K manifold from shape observations (silhouettes) from diffe

Solving for simultaneous hard correspondences is a walghteent people. The data are from CMU-Mobo gait data set [10].
multipartite graph matching problem, which is a muchFor this experiment, we used 7 people data, six walking
harder combinatorial problem. In our case the objectivecycles each, side view. The number of frames in each data
function in 6 can be directly maximized by finding each set vary from 189 to 234 (depending on the person’s walking
of the pairwise correspondenc€%? by solving 5. speed) i.e., frames are not in correspondences. Putting all

We use a Gaussian kernel to encode the inter-manifolthe data together, LLE and other embedding techniques fail
geometry, i.e. UP! = exp(—||2} — 2¥||)/20° whereo is a  to obtain a useful embedded representation for the propose
global scale that is estimated as a percentile of the overatif visualization or analysis. The proposed approach can
data scale. One obvious question that arises: can the intesuccessfully learn a joint embedding of the gait manifold
manifold kernelsUP? directly (or after scaling) be used in across the different subjects, invariant to the differexagde
the objective function 1 instead &f?¢ since it also provides shape variability as shown in Figure 3. The embedding
a measure of affinity between the points from the differentshows a figure “8” embedding of the gait manifold.

data sets. The answer is no. The soft correspondenc&ample Ill: The goal is to learn an embedding of a
obtained by solving 5 incorporates the principle of exausi joint facial expression manifold across different sulgect
because of the orthogonality constraints. We used four facial expression sets from CMU AMP facial

expression database, each containing a person performing
three expressions (smile, angry, surprise). Fig. 4-a shows
We run experiments on different data sets. Here we showexamples of the input images for two of the subjects. The
experiments on three of them. number of images in each set varies from 45 to 59 images.
Example I: We used 5 objects with similar geometry from Each input instance is a 64x64 grayscale images.
the COIL-20 data set [9] with different views for each object Fig. 4-b shows the embedding obtained using Laplacian
taken along a view circle, Fig. 2-a. We used 72 views forEigenmaps with all data sets together. As can be noticed
each objects. Each instance is 32828 grayscale image. in this figure, the embedding is dominated by the inter-
Putting all data together, traditional manifold embeddingmanifold structure and shows 4 separate clusters, one for
approaches fail to discover the structure of the data as cagach subject. LLE, regardless of the settings, also rebsulte
be seen in Fig. 2-b,c. The proposed approach succeeds iim embeddings with 4 different clusters. Using the proposed
learning a joint view manifold of all the five objects, Fig. 2- approach, we can achieved a common facial expression
d. This clearly shows that all the objects are arranged & thimanifold embedding, invariant of the subject, Fig. 4-c show
representation according to the view point and invariant othe embedding obtained. We can clearly see that the three
the object. different expressions are located at three different pairts

IV. EXPERIMENTAL RESULTS
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Figure 3. CMU Gait Example: Embedding the gait manifold from sevenjettls. Different views of the obtained 3D embedding. We can
see similar body postures across different people alongnéafold.

(b) Laplacian Eigenmap for all data: (c) Joint Expression Embedding:

Figure 4. Embedding of a joint facial expression across differentpbeoa) sample input data for two subjects. b) Embeding ofhal
data with laplacian eigenmaps. Notice the separation leetwlee different people’s manifolds c) The joint expressambedding obtained
by the proposed approach. Notice how expressions are emthédehriant of people.
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