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Abstract

In this paper we propose a framework for learning a re-

gression function form a set of local features in an image.

The regression is learned from an embedded representation

that reflects the local features and their spatial arrangement

as well as enforces supervised manifold constraints on the

data. We applied the approach for viewpoint estimation on

a Multiview car dataset, a head pose dataset and arm pos-

ture dataset. The experimental results show that this ap-

proach has superior results (up to 67% improvement) to the

state-of-the-art approaches in very challenging datasets .

1. Introduction

Many problems in computer vision can be formulated as

regression problems where the goal is to learn a continu-

ous real-valued function from visual inputs. For example

the estimation of the viewpoint of an object, head pose, a

person’s age from face images, illumination direction, joint

angles of an articulated object, limb position, etc. In many

of these problems, a regression function is learned from

a vectorized representation of the input. For example, in

head pose estimation, researchers typically learn regression

from vectorized representation of the raw image intensity,

e.g., [14, 3, 8, 25, 9].

In the last decade, there have been a tremendous inter-

est in recognition from highly discriminative local features

such as SIFT [13], Geometric Blur [5], etc., Most research

on generic object recognition from local features have fo-

cused on recognizing objects from a single viewpoint or

from limited viewpoints, e.g., frontal cars, side view cars,

rear cars, etc. Very recently, there have been some interesest

on object classification from multi-view setting [6, 11, 20,

19, 12, 21]. There have been also some promising results

on pose recovery (3D viewpoint estimation) from local fea-

tures for generic object class [20, 19, 12, 21]. The problem

of object classification from multi-view setting and pose re-

covery are coined together. Pose (viewpoint) recovery is

a fundamental problem that has been long studied for rigid

objects with no within class variability [7]. A very challeng-

ing task is to solve for the pose for a generic object class,

e.g., recovering the pose of a chair instance that was never

seen before in training.

Most of recent work on viewpoint estimation from local

features are based on formulating the problem as a classifi-

cation problem [19, 20, 12, 22, 23, 21] where the viewpoint

is discretized into a few number of bins, 4, 8, or 16, and

a classifier is used to decide the viewpoint. Obviously, the

accuracy of such classifiers is limited by how coarse the

viewpoint is discretized. Such treatment does not facilitate

the continuous estimation of the viewpoint and can not in-

terpolate between the learned views.

Viewpoint estimation is fundamentally a continuous re-

gression problem, where the goal is to learn a regression

function from the input; similarly, other problems such as

posture estimation. The question we address in this paper

is how to learn a regression function from local features:

their descriptors and their spatial arrangement.

Local features are designed to have some geometric in-

variant properties. For example, SIFT [13] is view invariant.

From two close viewpoints, we expect to see the same lo-

cal features. Such local features can be useful in viewpoint

estimation only if we consider apart views. If our goal is

to accurately recover the viewpoint, local features’ descrip-

tors only are not enough. It is obvious that the spatial ar-

rangement of the features will play a more important role in

this case. Recent work have addressed this though encoding

the spatial information through a pyramid spatial subdivi-

sion [16], or through enforcing geometric constraints at test

time [12]. Relative distances between parts have also been

used [19, 20]

In this paper we introduce an approach for learning a

regression function from local features. The approach is

based on the feature embedding approach introduced in [24]

where it was shown that an embedded representation that

encodes both the features’ descriptors and their spatial ar-

rangement can be achieved. In this paper we show how

such an embedding can be used to achieve regression from

local features that takes into consideration the features’
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Figure 1: Regression on a single car: (Left) Absolute Error computed using our approach is plotted with the ground truth, they are very

close to each other. (Right) sample views of the car with features detected on it.

descriptors and their spatial arrangement. The regression

is achieved by defining a proper kernel in the embedding

space. We also show how a supervised manifold constraints

can be enforced in the embedding. For example, for view-

point estimation, we can enforce that the viewpoints lie on

a one dimensional manifold. In the resulting embedding

space, image similarity can be measured in a way that reflect

the smooth changes in the functions to be learned, e.g. the

smooth changes in viewpoint. Therefore, we can learn a re-

gression function from local features that can accurately es-

timate viewpoint from a small number of training example

and a small number of features. The experimental results

show that this approach has superior results to the state-

of-the-art approaches in very challenging datasets (e.g. in

a challenging multiview car data set we have 67% improve-

ment over the state-of-the-art result [16]).

Figure 1 shows an example of our results in estimating

the viewpoint of a car from local features. In this example

we used 30 instances for learning, ≈ 12◦ apart, with 200

local features, with no correspondences established. The

learned regression function can estimate the viewpoint with

less than two degrees error.

2. Kernel Regression Framework

The training data is a set of input images, each repre-

sented with a set of features. Let us denote the input im-

ages (sets of features) by X1, X2, · · ·XK , where each im-

age is represented by Xk = {(xk
i ∈ R

2, fk
i ∈ R

F )}, i =
1, · · · , Nk. Here xk

i denotes the feature spatial location and

fk
i is the feature descriptor and F denotes the feature de-

scriptor dimension. For example, the feature descriptor can

be a SIFT, HOG, etc. Notice that the number of features

in each image might be different. We use Nk to denote the

number of feature points in the k-th image. Let N be the

total number of points in all sets, i.e., N =
∑K

k=1
Nk.

Each input image is associated with a real-value, vk ∈ R,

for example, vk can be the angle representing the view-

point, or the head pose of the k-th image. Therefore, the

input is pairs in the form (Xk, vk). For simplicity, here we

show how regression can be done to real numbers, exten-

sion to real-valued vectors is straight forward. Extension

to real-valued vectors is necessary for problems like articu-

lated posture estimation where joint angles are estimated.

The goal is to learn a regularized mapping function g :

2R
2
×R

F

→ R. Notice that unlike traditional regression, the

input to such a function here is a set of features from an

image with any number of features. This function should

minimize a regularized risk criteria, which can be defined

as

∑

k

‖g(Xk)− v
k‖+ λΦ [g] (1)

where the first term measures the error in the approxima-

tion, the second term is a smoothness function on g for reg-

ularization, and λ is a regularization parameter. From the

representer theorem [10] we know that such a regularized

regression function admits a representation in the form of

linear combination of kernels around the training datapoints

(or a subset of them). Therefore, we seek a regression in the

form

v = ĝ(X) =
∑

j

bjK(X,X
j) (2)

Therefore, it is suffice to define a suitable positive definite

kernel K(·, ·) that measures the similarity between images

that takes into consideration the local features and their

spatial arrangement. Once such kernel is defined we can

solve the coefficients bj by solving a system of linear equa-

tions [17].

3. Kernel-based Regression from Local Fea-

tures

3.1. Feature­Spatial Embedding

In this section we summarize the local feature embed-

ing framework introduced by Torki et al. [24]. The goal of

the approach is to achieve an embedding of a collection fea-

tures from training images in a way that preserves two con-

straints: Inter-image feature affinity and Intra-image spatial

affinity. Two data kernels based on the affinities in the spa-

tial and descriptor domains separately are assumed. The

spatial affinity (structure) is computed within each image

and is represented by a weight matrix S
k
ij = Ks(x

k
i , x

k
j ).

Here xk
i denotes the image coordinate of the i-th feature

in the k-th image and Ks(·, ·) is a spatial kernel local to



the k-th image that measures the spatial proximity between

features within each image. The feature affinity between

image p and q is represented by a weight matrix U
pq where

U
pq
ij = Kf (f

p
i , f

q
j ) that captures the similarity in the de-

scriptor domain between the i-th feature in image p and

the j-th feature in image q, using a descriptor space kernel

Kf (·, ·) .

To achieve a joint feature-spatial embedding space satis-

fying the constraints mentioned above, the following objec-

tive function in the embedding coordinates Y is minimized

Φ(Y ) =
∑

k

∑

i,j

‖yk
i −y

k
j ‖

2
S
k
ij+λ

∑

p,q

∑

i,j

‖yp
i −y

q
j ‖

2
U

pq
ij , (3)

where k, p and q are image indeces and i, j are feature in-

deces within each image. The two terms in the objective

function try to preserve the spatial arrangement and the fea-

ture descriptor similarity respectively. This objective func-

tion can be rewritten using one set of weights defined on the

whole set of input points as:

Φ(Y ) =
∑

p,q

∑

i,j

‖yp
i − y

q
j ‖

2
A

pq
ij , (4)

where A is defined as a block matrix with its diagonal

blocks set to the spatial affinity matrices Sk and its pq block

is the feature affinity matrix U
pq . The weight matrix A is

an N ×N symmetric matrix where N is the number of fea-

tures in all images. It was shown that the objective function

Eq. 4 reduces to the problem of Laplacian embedding [15]

of the point set defined by the weight matrix A. The result is

a feature embedding space that jointly captures the similar-

ity of the feature descriptors and local spatial arrangement.

Each image is represented in the embedding space by a set

of embedding coordinates corresponding to its features.

Embedding the features in a new image amounts to solv-

ing an out-of-sample problem. However, this is not similar

to traditional out-of-sample solutions, which learn a map-

ping function between the input space and the embedding

space [4], since here the input is a set of features with two

different kernels defined. In [24] a solution was proposed

for this special out of sample problem. Given a set of fea-

ture in a new image Xν = {(xν
i , f

ν
i )}, the feature affinity is

computed, denoted by U
ν where Uν

ij = Kf (f
ν
i , f

τ
j ) where

fτ
j are samples from the training features. The spatial affin-

ity local to the new image is also computed, denoted by S
ν

where S
ν
ij = Ks(x

ν
i , x

ν
j ). The embedding can be achieved

by solving an optimization problem that tries to keep the

coordinate of the previously embedding coordinate, ŷτi ’s,

unchanged, i.e.,

min tr(YT
LY)

s.t. yτ
i = ŷτ

i , i = 1, · · · , Nτ , (5)

here Y is the embedding of coordinate of all points properly

stacked and L is the laplacian of the matrix A is defined as

A =

(

A
τ

U
ντT

U
ντ

S
ν

)

. (6)

3.2. Enforcing Manifold Locality Constraint

To achieve a smooth image similarity kernel from lo-

cal features, we learn an embedded representation of the

features and their spatial arrangement, as was described in

Sec 3.1. Let yki ∈ R
d denotes the embedding coordinate of

point (xk
i , f

k
i ), where d is the dimensionality of the embed-

ding space, i.e, we seek a set of embedded point coordinates

Y k =
{

yk1 , · · · , y
k
Nk

}

for each input feature set Xk.

The embedding approach as described in section 3.1 sat-

isfies two constrains: Inter-image feature affinity and Intra-

image spatial structure. Besides these two constraints, we

need to add a third constraint that enforces manifold lo-

caity, we denote that by Supervised Manifold Locality Con-

straint. The idea is to enforce existing manifold structure

in the data, features from images neighboring each other

on the manifold should be embedded close to each other.

For example, if images are labeled with viewpoints, such

label can be used to define a neighborhood for each im-

age. Since we are using the labels to define the neighbor-

hood, this is a supervised enforcement of the data manifold

constraint. Enforcing the manifold constraints have been

shown to highly improve regression results in many appli-

cations [3, 18, 25, 9]. However all these applications used

vectorized representations of the raw intensity.

We can enforce the manifold constraint in a supervised

way from the labels vk. This can be achieved by amending

the objective function in 3 by supervised weights between

images as

Φ(Y ) =
∑

k

∑

i,j

‖yk
i −y

k
j ‖

2
S
k
ij+λ

∑

p,q

∑

i,j

‖yp
i −y

q
j ‖

2
w(p, q)Upq

ij ,

(7)

where w(p, q) denotes a weight function that measure the

supervised affinity between images Xp and Xq as implied

by their labels vp and vq. There are many ways to define

such weights. If we set all the weights to one, we reduce to

an unsupervised embedding as in Eq 3. The weights can be

set to reflect labels distances, i.e., w(p, q) = G(vp−vq). For

example a Gaussian function can be used or alternatively,

the weights can be set to reflect neighborhood structure by

using a uniform window kernel. Therefore the matrix A can

be redefined as

A
pq
ij =

{

S
k
ij p = q = k

G(vp − vq) ·Upq
ij p 6= q

(8)

3.3. Feature Embedding based Regression

Since each image is represented in the embedding space

by a set of Euclidean coordinates in that space, the similar-

ity in the embedding space can be measured by a suitable



set kernel that measures the distance between any two sets

of embedded features representing two images. There are a

variety of similarity measures that can be used. For robust-

ness, we use a percentile-based Hausdorff distance, defined

as

Hl(X
p
, X

q) = max{
l%
max

j
min

i
‖yp

i − y
q
j ‖,

l%
max

i
min

j
‖yp

i − y
q
j ‖}

(9)

where l is the percentile used. Since this distance is mea-

sured in the feature embedding space, it reflects both feature

similarity and shape similarity. However this distance is not

a metric and, therefore, does not guarantee a positive semi-

definite kernel. Therefore we use this measure to compute

a positive definite matrix H
+ by computing the eigen vec-

tors corresponding to the positive eigenvalues of the original

Hpq = Hl(X
p, Xq). The regression problem now can be

solved by using kernels based on matrix H
+ in the embed-

ding space, e.g., Radial Basis Function (RBF) kernels are

used. Therefore, we can solve for the regression parameter

in Eq. 2.

Given the learned regression function, it can be applied

to any new image. However, the features in that new image

has to be mapped first to the embedding space. Therefore,

the regressor for a new test image X will be in the form

v = ĝ(X) =
∑

j

bjK(O(X), Y j) (10)

where O(X) is a function that maps the features in a test

image X into a set of coordinates in the embedding space,

i.e.,
O(X) : {(xi, fi)} −→ {yi}

The out of sample solution described earlier can be used to

obtain such a function in a closed form.

3.4. Image Manifold based regression:

The regression can be also learned from an image mani-

fold embedding space, which can be obtained using the sim-

ilarity kernel defined on the feature embedding space. This

is a second embedding where each image is represented by

a single point in a Euclidean space. However the problem

with this approach is that for any test image two out of sam-

ple problems have to be solved: Frist, out of sample on the

features should be used to map them to the feature embed-

ding space. Second, the embedded set of features has to be

used to achieve the image coordinate in the image embed-

ding space using a second out of sample. The advantage

of learning a regressor from the image embedding space is

that enforcing manifold constraints on the images can be

easier in that space. However, a two stage embedding and

two out of sample problems disencourages this approach.

Our experiments showed that learning the regression from

the feature embedding space with the manifold locality con-

straint enforced produces similar results to the image mani-

fold based regression.

Table 1: Regression on a single car

Train Supervised Dim MAE◦ std(AE)

30 Yes/30◦ 20 2.34 1.99

30 Yes/30◦ 40 2.06 1.65

30 Yes/30◦ 80 2.04 1.64

30 Yes/30◦ 100 1.94 1.63

30 Yes/30◦ 160 1.93 1.63

30 Yes/30◦ 200 1.95 1.59

15 Yes/30◦ 100 5.47 4.21

30 Yes/30◦ 100 1.94 1.63

40 Yes/30◦ 100 1.84 1.66

30 Yes/45◦ 100 1.94 1.5

30 Yes/60◦ 100 2.09 1.66

30 No/∞ 100 2.16 1.83

4. Experiments

4.1. Regression on a single car example

We use a single car sequence (first car) from the dataset

introduced by [16] to demonstrate the different setups for

our approach and to show the effect of the different param-

eters. The sequence contains 118 views of a rotating car.

We changed the following parameters: 1) The number of

training images to learn the feature embedding, which are

also used as RBF centers: 15, 30, and 40. 2) The dimen-

sionality of the embedding space: 20, 40, 80, 100, 160, and

200. 3) Manifold supervision neighborhood size: 30◦, 45◦,

60◦, and ∞, where ∞ means unsupervised embedding. We

change one parameter at a time while we fix all other pa-

rameters with a default value (shown in bold above) . In

all experiments we fix the RBF scale to 0.05 of the median

Haussdorff distance in the data. We measure the mean and

standard deviation of the absolute error (MAE, std(AE)),

between the estimated and the ground truth viewpoints. Ta-

ble 1 shows the obtained results for various settings. Fig 1

shows the estimated and ground truth angles for the default

base case: 30 training samples, 100 dimensions, 30◦ neigh-

borhood. The MAE in this case is 1.94◦. From the table we

can see that, in general, the accuracy in the regression does

not change much with the change in the parameters. We

can see that when the number of training images increased

from 15 to 30 the mean absolute error dropped to half of its

value, increasing the training size after that does not change

the accuracy much. Also we can see that the dimensional-

ity of the embedding space is insignificantly affecting the

MAE. Notice that the there is an error in the ground truth

itself of the same order as the error in the estimation. So,

this experiment basically shows that we can achieve accu-

rate regression on a single object from local features from a

small number of sparse training samples. Additional plots

and sequences can be seen in supplemental material. In the

next experiment we show results on the whole dataset.



4.2. Multi­View Car Dataset

In this experiment we used the ‘Multi-View Car Dataset’

that was introduced recently in [16], which captures 20 ro-

tating cares in an auto show. The dataset is very challeng-

ing since the cars are accompanied with much clutter even

within the detected bounding boxes. It has large class vari-

ation in appearance, shape, and texture of the cars in this

dataset. We use this data set since it provides finely dis-

cretized viewpoint ground truth, the discretization varies in

each car sequence. However, there are some drawbacks and

challenges in this dataset: 1) The high within-class varia-

tion makes it hard for a regressor or classifier to general-

ize. 2) Ground truth accuracy problems: The viewpoint is

calculated using the time of capturing assuming a constant

velocity, which affects the ground truth. There are some

frames of the same car that have the same time stamp but

there is a slight change in the pose. Also, in few frames, the

cars are partially occluded by passing people. 3) Some cars

are highly symmetric from a side view, that makes classi-

fiers subject to 180◦ reflection error in some views. Such

reflection error exist in other datasets as well and reported

in the results of [16, 19, 22]. 4) Some cars are very odd, and

it is very hard , even for humans, to discriminate between

whether the car front or rear is facing the camera.

The dataset has been used for viewpoint classification

in [16] where the viewpoint was discretized into 16 bins.

In [16] their goal was to classify the car pose using a bag-

of-words technique that is based on a spatial pyramid of

histograms. They build 16 SVM classifiers for the 16 bins

to cover the 360 range of rotation (i.e., bin size is 22.5 ◦).

We use the results of [16] as a baseline since it incorporates

both the features and their spatial arrangement through the

spatial pyramid structure. The approach proposed in [16]

resulted in 41.69% viewpoint classification accuracy from

bounding box input. In contrast, given a similar 16 bin set-

ting, our approach results in 70% accuracy using the same

bounding box as inputs, that is over 67% improvement over

the state of the art result.

In our regression experiment, we use the same split of

training and test sets as [16]. The dataset contains 20 se-

quences for 20 rotating cars. The total number of images is

2137, the first ten cars are used for training (1103 images)

and the last ten cars for testing (1034 images). We used only

135 images (sampled randomly from 4 sequences of train

data) to learn an initial feature embedding. Each image is

represented using 50 geometric blur features [5]. The initial

feature embedding is then expanded using out-of-sampling

to include all the training images with maximum of 350 fea-

tures per images (the number of features extracted per im-

age varies).

We learn our regression model using Radial Basis Func-

tions (RBF) as described in section 2. We examine the ef-

fect of “supervision”, i.e., enforcing the view manifold con-

straint on the initial embedding by defining a neighborhood

for each image not to exceed 45◦ difference. For quanti-

tative evaluation, we use the Mean Absolute Error (MAE)

between the estimated and ground truth viewpoint. In addi-

tion we also used the MAE of 90% percentile of the ab-

soulte errors and the 95% percentile of the absoulte er-

rors. These are used because, typically, a very small per-

centage of the test data produces very large error (180◦)

due to reflection, which biases the MAE. While MAE is

a good measure for validating regression accuracy, it is

not suitable for comparison with classification-based view-

point estimation approaches which uses discrete bins, such

as [16, 19, 22]. Therefore, we also used the estimated view-

point to compute the error in discretized viewpoint clas-

sifier. For example, to achieve an equivalent of a 16 bin

viewpoint classifier, we compute the percentage of test sam-

ples that satisfies AE ≤ 22.5, where the absolute error

AE = |Est.Angle − GroundTruth|. With this measure

we can compare to the 16 bin classifier used in [16]. To

achieve an equivalent of an 8 bin viewpoint classifier, we

also compute the percentage of test samples that satisfies

AE ≤ 45

For comparative evaluation we evaluate different super-

vised and unsupervised setting within our framework as

described in section 3.1, in addition we used the results

from [16] as a baseline. We also evaluated a support vector

regressor (SVR) based on our framework. For each setting

we evaluated the 10/10 split as described above and also a

leave one out split (learn on 19 cars and test on 1).

We show our results in table 2, we observe the following:

– The MAE is ranging from 33.9◦ to 40.60◦, which seems

to be a large error. However, this might be misleading be-

cause if we compare reported results in [22] in which they

learn classifiers for 8 bins, the reported average accuracy

on the diagonal of the confusion matrix is 66%. In this

case this means only 66% of the testing set is recovered

within the bins and any error adds at least 45 ◦. The last

two columns of table 2 show that around 65% of testing

samples are giving AE < 22.5 ◦ and around 80% or more

are giving AE < 45 ◦. The source of the higher MAE

is then coming from few instances with large reflection er-

rors (around 180 degrees), this also clear in the percentiles

MAEs. Comparing our results to the reported confusion

matrices in [16, 22]1 we can find that our approach has a

lower reflection effect in the estimated angles. This can be

noted in Fig. 3, only few test samples lies in the last bin of

the histogram.

– As we can see the supervised setting is giving the best

results for this dataset. This confirms that enforcing the

neighborhood constraint on the manifold is in fact boost-

ing the regression results.

1The confusion matrix in [16] was shown without the actual numbers

in it, we obtained the actual values from the authors of [16].



Table 2: Regression on Multi-View car dataset, baseline and different variants of our approach

Method MAE 90% MAE 95% MAE AE<22.5 AE<45

percentile percentile

Results [16] (Baseline) – – 46.48 41.69% 71.2%

Unsupervised(RBF) - 50% split 27.17 32.65 39.2 50.09% 73.6%

Unsupervised(RBF) - Leave One Out 22.57 27.12 35.87 63.73% 76.84%

Supervised (RBF) - 50% split 19.4 26.7 33.98 70.31% 80.75%

supervised (RBF) - Leave One Out 23.13 26.85 34.9 55.83% 76.65%

Unsupervised(SVR) - 50% split 29.52 34.44 40.60 41.19% 70.12%

Supervised (SVR) - 50% split 25.23 30.63 36.07 57.9% 78.6%
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Figure 2: Regression on a Multi-view car dataset: Top left corner shows how the arrows reflect the estimated angle. The ground truth is

shown along with the estimated angle. Yellow arrows for ground truth and Magenta for our results, features are shown as blue dots(Best

viewed in color)

– Also we can observe that using the leave one out settings

for regression is not improving beyond few degrees over the

split settings. This means that our approach is generalizing

well since it does not gain much by including as many train-

ing samples.

4.3. Face Pose Estimation in Uncontrolled Environ­
ment

In this experiment we used ‘Face Pose’ dataset that was

introduced recently in [1, 2]. It has been used in inferring

the face pose of freely downloaded faces from the web. The

pose ranges from -90◦ to 90 ◦, the ground truth is manu-

ally labeled for 11900 images, 10900 of them were used for

training and 1000 for the testing. The images that were used

in [1] experiments are 60x60 bounding boxes that were nor-

malized using a Euclidean warp. The dataset is a real world

challenging set that exhibits much variation in controlling

factors like illumination, scale, expression and pose as well

as partial occlusion and background clutter. However, we

want to mention the drawbacks of the dataset. First the dis-

tribution of the pose degrees is very biased and only few

examples are beyond the range [-50◦,50◦] which affects the

regression we learn. Second as mentioned in [1] the manual

labeling is not so accurate since four subjects were asked

to label every image and the pose is then averaged. The

correlation of the manually labeled poses between different

subjects was ≈ .75 [1].

In our regression experiment, we use the same training

set and same test set as [1], and we compare our results

in terms of the MAE and Pearson Correlation Coefficient

(PCC) as they were provided in [1]. We used 250 images

(sampled randomly from train data) to learn the initial fea-

ture embedding of dimensionality 50 for each feature. Each

image is represented using 24 geometric blur features. The

initial feature embedding is then expanded using out of sam-

ple to include all the features from training images with

maximum of 72 features per images (the number of fea-

tures extracted per image is not equal). The dimensions of

the images is the reason for the small number of extracted

features per image when compared to the cars dataset.

We learn our regression model as we did in the cars

dataset. We examine the effect of supervision on the initial

embedding by defining a neighborhood for each image not

to exceed 15 ◦ difference. The histogram of absolute error

in Fig. 3 show that in around 86% of the case the estimated

error is less than 20 ◦.
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Figure 3: Histogram of absolute error: Left: for Multi view car

datset. Right: for face dataset.

We achieved an MAE error of 10.92◦ and 11.15◦ for the

unsupervised and supervised cases respectively and PCC

of .81 and .79 respectively. In [1] the reported results are

MAE=13.21 and PCC=.76. We have better MAE for both

the supervised and unsupervised settings. This shows that

from sparse local features we can achieve better results in

regression in this example. The most noticeable point is that

the unsupervised is behaving better than the supervised set-

ting. Although this might seem strange, but the distribution

of poses of the training samples and the testing samples is

very biased towards the region [-50◦,50◦] and actually in the

10900 training samples there is not a single image with pose

in the interval [-80◦,-90◦], Under this condition enforcing

the neighborhood in the region that have few samples in the

training will result in a poor generalization. Fig. 4 shows

example of the estimated head pose.

4.4. Regression with Sparse Training Samples

Many datasets for viewpoint estimation use sparse train-

ing samples on the view circle, e.g. [19, 22]. In partic-

ular we used the car subset from the dataset 3DObjects

that have been is used in [19, 22] to compare our regres-

sion approach to the methods that use binary classification

namely [19, 22]. This data set contains only eight sparse

views. We follow the same setup by using five sequences

for training and testing on the other five sequences, which

yields 160 images for training and 160 for testing. Accord-

ing to [22] the accuracy reported is 66.625%, where the

accuracy for [19] is 52.5%. The accuracy is measured as

the sum over the diagonal of the confusion matrix. In our

case , in order to make the numbers comparable we report

our regression results in terms of AE ≤ 45. Using our re-

gression approach with the supervised setting we achieve

77.5% for AE ≤ 45 , where for unsupervised setting we

achieve 75%. This shows the ability of our approach to be

used even with sparse view point classes.

4.5. Arm Posture Estimation

As we mentioned earlier, our approach is general and can

be used in different regression problems, not only viewpoint

estimation. We show here articulated body posture estima-

tion for a subject who moves his arms freely. We used the

sequence from [18]. The local features are affected very

much by the clutter. The ratio of features on the hands to

the extracted features is about 10%, all the features in each

frame are used in the regression. The sequence contains 200

frames, 25 equally spaced are chosen for training (12.5% of

the sequence). Initial Embedding: 150 features from 20

training frames, dimensionality 250. We then compute out

of sample embedding for all 25 training frames, with 450

features each. Then we learn the regressor parameters for

the hands and elbows joints positions from the 25 training

frames. The regressor was used to estimate the position

of the hands and elbows joints in the rest of the frames.

We evaluated the estimation using 75 frames marked with

ground truth and the error is 18 pixel in average per esti-

mated parameter (image size is 640x480). Sample results

are shown in the figure. See the supplementary materials

for more results and videos.

5. Conclusions

We presented a novel and promising direction for re-

gression from local features. The approach integrates the

strengths from manifold learning as a global constraint on

the data and the discriminative power of the local features

and their arrangement. Through embedding we learn a rep-

resentation for features and their spatial arrangement where

regression is possible. Experiments showed that our frame-

work gives superior results in very challenging datasets for

viewpoint and face pose estimation. The approach is gen-

eral and can be used within any regression problem that can

benefit from local features such as age estimation or articu-

lated body pose estimation.
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