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10.1 Introduction

Visual recognition is a fundamental yet challenging computer vision task. In
the recent years there have been tremendous interest in investigating the use
of local features and parts in generic object recognition-related problems such
as, object categorization, localization, discovering object categories, recognizing
objects from different views, etc. In this Chapter we present a framework for
visual recognition that emphasizes the role of local features, the role of geometry
and the role of manifold learning. The framework learns an image manifold
embedding from local features and their spatial arrangement. Based on that
embedding several recognition-related problems can be solved, such as object
categorization, category discovery, feature matching, regression, etc. We start
by discussing the role of local features, geometry and manifold learning; and
follow that by discussing the challenges in learning image manifolds from local
features.

1) The Role of Local Features: Object recognition based on local image fea-
tures have shown a lot of success recently for objects with large within-class
variability in shape and appearance [23, 39, 51, 69, 2, 8, 20, 60, 21]. In such
approaches, objects are modeled as a collection of parts or local features and the
recognition is based on inferring the class of the object based on parts’ appear-
ance and (possibly) their spatial arrangement. Typically, such approaches find
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Figure 10.1: Example Painting of Giuseppe Arcimboldo (1527-1593). Faces are
composed of parts of irrelevant objects

interest points using some operator such as corners [27] and then extract local
image descriptors around such interest points. Several local image descriptors
have been suggested and evaluated [41], such as Lowe’s scale invariant features
(SIFT) [39], Geometric Blur [7], and many others (see Sec. 10.7). Such highly
discriminative local appearance features have been successfully used for recog-
nition even without any shape (structure) information, e.g. bag-of-words like
approaches [71, 54, 41].

2) The Role of Geometry: The spatial structure, or the arrangement of the local
features plays an essential role in perception since it encodes the shape. There
are no better example to show the importance of the shape in recognition over
the appearance of local parts than the paintings of the Italian painter Giuseppe
Arcimboldo (1527-1593). Arcimboldo is famous for painting portraits that are
made of parts of different objects such as flowers, vegetables, fruits, fish, etc.
Examples are shown in Figure 10.1. Human perception has no problem recog-
nizing the faces in the paintings mainly from the shape, i.e., the arrangement
of parts, rather than from the appearance of the local parts. There are many
other examples that can show such a point. One argument might be that it is a
matter of scale, at the right scale the local parts can become discriminative. In
contrary, we believe that, at the right scale the arrangement of the local features
would become discriminative and not the local feature appearance.

There is a fundamental trade-off in part-structure approaches in general:
The more discriminative and/or invariant a feature is, the sparser this feature
becomes. Sparse features result in losing the spatial structure. For example,
a corner detector results in dense but indiscriminative features while an affine
invariant feature detector like SIFT will result in sparse features that do not
necessarily capture the spatial arrangement. The above trade-off shapes the
research in object recognition and matching. On one extreme, are approaches
such as bag-of-feature approaches [71, 54] that depend on highly discriminative
features and end up with sparse features that do not represent the shape of
the object. Therefore, such approaches tend to heavily depend on the feature
distribution in recognition. Many researches recently have tried to include the
spatial information of features, e.g. , by spatial partitioning and spatial his-
tograms, e.g. [40, 32, 25, 55]. On the other end of the tradeoff, are approaches
that focus on the spatial arrangement for recognition. They tend to use very ab-
stract and primitive feature detectors like corner detectors, which result in dense
binary or oriented features. In such cases, the correspondence between features
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are established on the spatial arrangement level, typically through formulating
the problem as a graph matching problem, e.g. [5, 61].

3) The Role of Manifold: Learning image manifolds has been shown to be quite
useful in recognition, for example for learning appearance manifolds from dif-
ferent views [44], learning activity and pose manifolds for activity recognition
and tracking [17, 65], etc.. Almost all the prior applications of image manifold
learning, whether linear or nonlinear, have been based on holistic image rep-
resentations where images are represented as vectors, e.g. the seminal work of
Murase and Nayar [44], or by establishing a correspondence framework between
features or landmarks, e.g. [11].

The Manifold of Local Features:

Consider collections of images from any of the following cases or combina-
tions of them:

• Different instances of an object class (within-class variations);

• Different views of an object;

• Articulation and deformation of an object;

• Different objects across-classes or within-class sharing a certain attribute.

Each image is represented as a collection of local features. In all these cases,
both the features appearance and their spatial arrangement will change as a
function of all the above-mentioned factors. Whether a feature appears in a
given frame and where, relative to other features, are functions of the viewpoint
of the object and/or the articulation of the object and/or the object instance
structure and/or a latent attribute.

Consider in particular, the case of different views of the same object. There
is an underlying manifold (or a subspace) where the spatial arrangement of
the features should follow. For example, if the object is viewed from a view
circle, which constitutes a one-dimensional view manifold, there should be a
representation where the features and their spatial arrangement are expected to
be evolving on a manifold of dimensionality at most one (assuming we can factor
out all other nuisance factors). Similarly, if we consider a full view sphere, a
two-dimensional manifold, the features and their spatial arrangement should be
evolving on a manifold of dimensionality at most two. The fundamental question
is what is such representation that reveals the underlying manifold topology.
The same argument holds for the cases of within-class variability, articulation,
and deformation, and across-class attributes; but in such cases, the underlying
manifold dimensionality might not be known.

A central challenging question is how can we learn image manifolds from a
bunch of local features in a smooth way such that we can capture the feature
similarity and spatial arrangement variability between images. If we can answer
this question, that will open the door for explicit modeling within-class variability
manifolds, objects’ view manifolds, activity manifolds, attribute manifolds; all
from local features.
Why manifold learning from local features is challenging :

There are different ways researchers have approached the study of image
manifolds, which are not applicable here. This points out the challenges for the
case of learning from local features.
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1. Image vectorization based analysis: Manifold analysis require a representa-
tion of images in a vector space or in a metric space. Therefore, almost all
the prior applications for image manifold learning, whether linear or non-
linear, have been based on wholistic image representations where images
are represented as vectors [44, 57, 66, 17]. Such wholisitic image represen-
tation provides a vector space representation and a correspondence frame
between pixels in images.

2. Histogram based analysis: On the other hand, vectorized representations of
local features based on histograms, e.g. bag-of-words alike representations,
cannot be used for learning image manifolds since theatrically histograms
are not vector spaces. Histograms do not provide smooth transition be-
tween different images with the change in the feature-spatial structure.
Extensions to the bag-of-words approach, where the spatial information is
encoded in a histogram structure, e.g. [40, 32, 55] cannot be used for the
same reasons.

3. Land-mark based analysis: Alternatively, manifold learning can be done
on local features if we can establish full correspondences between these
features in all image, which explicitly establish a vector representation
of all the features. For example, Active Shape Models (ASM) [11] and
alike algorithms use specific landmarks that can be matched in all images.
Obviously it is not possible to establish such full correspondences between
all features, since the same local features are not expected to be visible in
all images. This is a challenge in the context of generic object recognition,
given the large within-class variability. Establishing a full correspondence
frame between features is also not feasible between different views of an
object or different frames of an articulated motion because of self occlusion
or between different objects sharing a common attribute.

4. Kernel-based analysis: Another alternative for learning image manifolds
is to learn the manifold in a metric space, where we can learn a similarity
metric between images (from local features). Once such a similarity metric
is defined, any manifold learning technique can be used. Since we are
interested in problems such as learning within-class variability manifolds,
view manifolds, activity manifolds, the similarity kernel should reflect both
the appearance affinity of local features and the spatial structure similarity
in a smooth way to be able to capture the topology of the underlying
image manifold without distorting it. Such similarity kernel should be also
robust to clutter. There have been a variety of similarity kernels based on
local features, e.g. pyramid matching kernel [25], string kernels [14], etc..
However, to the best of our knowledge, none of these existing similarity
measures were shown to be able to learn a smooth manifold representation.

Framework Overview: In the following sections we present a framework for
learning an image manifold representation from collections of local features in
images. Section 10.2 shows how to learn a feature embedding representation
that preserves both the local appearance similarity as well as the spatial struc-
ture of the features. Section 10.3 shows how to embed features from a new
image by introducing a solution for the out-of-sample that is suitable for this
context. By solving these two problems and defining a proper distance measure
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in the feature embedding space, an image manifold embedding space can be ob-
tained. Section 10.5 illustrates several applications of the framework for object
categorization, localization, category discovery, and feature matching.

10.2 Joint Feature-Spatial Embedding

We are given K images, each is represented with a set of feature points. Let
us denote such sets by, X1, X2, · · ·XK where Xk =

{
(xk1 , f

k
1 ), · · · , (xkNk , f

k
Nk

)
}

.

Each feature point (xki , f
k
i ) is defined by its spatial location, xki ∈ R2, in its image

plane and its appearance descriptor fki ∈ RD, where D is the dimensionality of
the feature descriptor space. Throughout this chapter, we will use superscripts
to indicate an image and subscripts to indicate point index within that image,
i.e., xki denotes the location of feature i in the k-th image. For example, the
feature descriptor can be a SIFT [38], GB [7], etc. Notice that the number of
features in each image might be different. We use Nk to denote the number of
feature points in the k-th image. Let N be the total number of points in all
sets, i.e., N =

∑K
k=1Nk.

We are looking for an embedding for all the feature points into a common
embedding space. Let yki ∈ Rd denotes the embedding coordinate of point
(xki , f

k
i ), where d is the dimensionality of the embedding space, i.e., we are

seeking a set of embedded point coordinates Y k =
{
yk1 , · · · , ykNk

}
for each input

feature set Xk. The embedding should satisfy the following two constraints

• The feature points from different point sets with high feature similarity
should become close to each other in the resulting embedding as long as
they do not violate the spatial structure.

• The spatial structure of each point set should be preserved in the embed-
ding space.

To achieve a model that preserves these two constraints we use two data
kernels based on the affinities in the spatial and descriptor domains separately.
The spatial affinity (structure) is computed within each image and is represented
by a weight matrix Sk where Skij = Ks(x

k
i , x

k
j ) and Ks(·, ·) is a spatial kernel

local to the k-th image that measures the spatial proximity. Notice that we
only measure intra-image spatial affinity, no geometric similarity is measured
across images. The feature affinity between image p and q is represented by
the weight matrix Upq where Upq

ij = Kf (fpi , f
q
j ) and Kf (·, ·) is a feature kernel

that measures the similarity in the descriptor domain between the i-th feature
in image p and the j-th feature in image q. Here we describe the framework
given any spatial and feature weights in general and later in this section we will
give specific details on which kernels we use.

Let us jump ahead and assume an embedding can be achieved satisfying the
aforementioned spatial structure and the feature similarity constraints. Such an
embedding space represents a new Euclidean “Feature” space that encodes both
the features’ appearance and the spatial structure information. Given such an
embedding, the similarity between two sets of features from two images can be
computed within that Euclidean space with any suitable set similarity kernel.
Moreover, unsupervised clustering can also be achieved in this space.
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10.2.1 Objective Function

Given the above stated goals, we reach the following objective function on the
embedded points Y , which need to be minimized

Φ(Y ) =
∑
k

∑
i,j

‖yki − ykj ‖2Skij +
∑
p,q

∑
i,j

‖ypi − y
q
j‖

2Upq
ij , (10.1)

where k, p and q = 1, · · · ,K, p 6= q, and ‖ · ‖ is the L2 Norm. The objective
function is intuitive; the first term preserves the spatial arrangement within
each set, since it tries to keep the embedding coordinates yki and ykj of any two

points xki and xkj in a given point set close to each other based on their spatial

kernel weight Skij . The second term of the objective function tries to bring close
the embedded points ypi and yqj if their feature similarity kernel Upq

ij is high.
This objective function can be rewritten using one set of weights defined on

the whole set of input points as:

Φ(Y ) =
∑
p,q

∑
i,j

‖ypi − y
q
j‖

2Apq
ij , (10.2)

where the matrix A is defined as

Apq
ij =

{
Skij p = q = k
Upq
ij p 6= q

(10.3)

where Apq is the pq block of A.
The matrix A is an N × N weight matrix with K × K blocks where the

pq block is of size Np × Nq. The k-th diagonal block is the spatial structure
kernel Sk for the k-th set. The off-diagonal pq block is the descriptor similarity
kernels Upq. The matrix A is symmetric by definition since diagonal blocks

are symmetric and since Upq = UqpT . The matrix A can be interpreted as a
weight matrix between points on a large point set where all the input points
are involved in this point set. Points from a given image are linked be weights
representing their spatial structure Sk; while nodes across different data sets
are linked by suitable weights representing their feature similarity kernel Upq.
Notice that the size of the matrix A is linear in the number of input points.

We can see that the objective function Eq. 10.2 reduces to the problem
of Laplacian embedding [45] of the point set defined by the weight matrix A.
Therefore the objective function reduces to

Y∗ = arg min
YTDY=I

tr(YTLY), (10.4)

where L is the Laplacian of the matrix A, i.e., L = D − A, where D is the
diagonal matrix defined as Dii =

∑
jAij . The N × d matrix Y is the stacking

of the desired embedding coordinates such that,

Y =
[
y11 , . . . , y

1
N1
, y21 , . . . , y

2
N2
, . . . yK1 , . . . , y

K
NK

]T
The constraint YTDY = I removes the arbitrary scaling and avoids degen-

erate solutions [45]. Minimizing this objective function is a straight forward
generalized eigenvector problem: Ly = λDy. The optimal solution can be ob-
tained by the bottom d nonzero eigenvectors. The required N embedding points
Y are stacked in the d vectors in such a way that the embedding of the points
of the first point set will be the first N1 rows followed by the N2 points of the
second point set, and so on.
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10.2.2 Intra-Image Spatial Structure

The spatial structure weight matrix Sk should reflect the spatial arrangement
of the features in each image k. In general, it is desired that the spatial weight
kernel be invariant to geometric transformations. However, this is not always
achievable.

One obvious choice is a kernel based on the Euclidean distances between
features in the image space, which would be invariant to translation and rota-
tion. Instead we use an affine invariant kernel based on subspace invariance [68].
Given a set of feature points from an image at locations {xi ∈ R2, i = 1, · · · , N},
we can construct a configuration matrix

X = [x1x2 · · ·xN ] ∈ RN×3

where xi is the homogeneous coordinate of point xi. The range space of such
configuration matrix is invariant under affine transformation. It was shown
in [68] that an affine representation can be achieved by QR decomposition of
the projection matrix of X, i.e.

QR = X(XTX)−1XT

The first three columns of Q, denoted by Q′, gives an affine invariant represen-
tation of the points. We use a Gaussian kernel based on the Euclidean distance
in this affine invariant space, i.e.,

Ks(xi, xj) = e−‖qi−qj‖
2/2σ2

where qi, qj are the i-th and j-th rows of Q′

10.2.3 Inter-Image Feature Affinity

The feature weight matrix Upq should reflect the feature-to-feature similarity
in the descriptor space between the p-th and q-th sets. An obvious choice is
the widely used affinity based on a Gaussian kernel on the squared Euclidean
distance in the feature space, i.e.,

Gpq
ij = e−‖f

p
i −f

q
j ‖2/2σ2

given a scale σ. Another possible choice is a soft correspondence kernel that
enforces the exclusion principle based on the Scott and Longuet-Higgins algo-
rithm [52], this is particularly useful for feature matching application [58] as
will be discussed in section 10.5.6.

10.3 Solving the out-of-sample problem

Given the feature embedding space learned from a collection of training images
and given a new image represented with a set of features Xν = {(xνi , fνi )}, it
is desired to find the coordinates of these new feature points in the embedding
space. This is an out-of-sample problem, however it is quite challenging. Most
of out-of-sample solutions [6] depends on learning a nonlinear mapping function
between the input space and the embedding space. This is not applicable here
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since the input is not a vector space, rather a collection of points. Moreover,
the embedding coordinate of a given feature depends on all the features in the
new image (because of the spatial kernel). The solution we introduce here is
inspired by the formulation in [72]2. For clarity, we show how to solve for the
coordinates of the new features of a single new image. The solution can be
extended to embed any number of new images in batches in a straightforward
way.

We can measure the feature affinity in the descriptor space between the fea-
tures of the new image and the training data descriptors using the feature affinity
kernel defined in Sec 10.2. The feature affinity between image p and the new
image is represented by the weight matrix Uν,p where Uν,p

ij = Kf (fνi , f
p
j ). Sim-

ilarly, the spatial affinity (structure) within the new image can be encoded with
the spatial affinity kernel. The spatial affinity (structure) of the new image’s
features is represented by a weight matrix Sν where Sνij = Ks(x

ν
i , x

ν
j ). Notice

that, consistently, we do not measure any inter geometric similarity between
images, we only encode intra-geometric constraints within each image.

We have a new embedding problem in hand. Given the setsX1, X2, · · ·XK , Xν

where the first K sets are the training data and Xν is the new set, we need to
find embedding coordinates for all the features in all the sets, i.e., we need find
{yki } ∪ {yνj }, i = 1, · · · , Nk and k = 1, · · · ,K, j = 1, · · · , Nν using the same
objective function in Eq 10.1; in this case the indices k, p, and q = 1, · · ·K + 1,
to include the new set. However, we need to preserve the coordinates of the
already embedded points. Let ŷki be the original embedding coordinates of the
training data. We now have a new constraint that we need to satisfy

yki = ŷki , for i = 1, · · · , Nk, k = 1, · · · ,K

.
Following the same derivation in Sec 10.2, and adding the new constraint,

we reach the following optimization problem in Y

min tr(YTLY)
s.t. yki = ŷki , i = 1, · · · , Nk, k = 1, · · · ,K (10.5)

where
Y =

[
y11 , . . . , y

1
N1
, . . . yK1 , . . . , y

K
NK , y

ν
1 , . . . , y

ν
Nν

]T
where L is the laplacian of the (N +Nν)× (N +Nν) matrix A is defined as

A =

(
Atrain UνT

Uν Sν

)
(10.6)

where Atrain is defined in Eq 10.3 and Uν = [Uν,1 · · ·Uν,K ] Notice that the
constrain YTDY = I, which was used in Eq 10.4 is not needed anymore since
the equality constraints avoid the degenerate solution.

The out of sample solution described earlier used to obtain such a function.
We can achieve a closed form solution for this function given the spatial and
feature affinity matrices Sν , Uν

Yν = (Lν)−1UνYτ (10.7)

2We are not using the approach in [72] for coordinate propagation, we are only using a
similar optimization formulation.
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where Yτ is anN×dmatrix stacking of the embedding coordinate of the training
features and Lν is block of the Laplacian L corresponding to the spatial affinity
blockSν .

10.3.1 Populating the Embedding Space

The out-of-sample framework is essential not only to be able to embed features
from a new image for classification purpose, but also to be able to embed large
number of images with large number of features. The feature embedding frame-
work in Sec 10.2 solves an Eigenvalue problem on a matrix of size N ×N where
N is the total number of features in all training data. Therefore, there is a
computational limitations on the number of training images and the number of
features per image that can be used. Given a large training data, we use a two
a step procedure to establish a comprehensive feature embedding space:

1. Initial Embedding: Given a small subset of training data with a small
number of features per image, solve for an initial embedding using Eq 10.4.

2. Populate Embedding: Embed the whole training data with a larger num-
ber of features per image, one image at a time by solving the out-of-sample
problem in Eq 10.5

10.4 From Feature Embedding to Image Em-
bedding

The embedding achieved in Sec 10.2 is an embedding of the features where each
image is represented by a set of coordinates in that space. This Euclidean space
can be the basis to study image manifolds. All we need is a measure of similarity
between two images in that space. There are a variety of similarity measures
that can be used. For robustness, we chose to use a percentile-based Hausdorff
based distance to measure the distance between two sets of features from two
images, define as

Hl(X
p, Xq) = max{ l%

max
j

min
i
‖ypi − y

q
j‖,

l%
max
i

min
j
‖ypi − y

q
j‖} (10.8)

where l is the percentile used. In all the experiments we set the percentile to
50%, i.e., the median. Since this distance is measured in the feature embedding
space, it reflects both feature similarity and shape similarity. However one
problem with this distance is that it is not a metric and does not guarantee
a positive semi-definite kernel. Therefore, we use this measure to compute a
positive definite matrix H+ by computing the eigen vectors corresponding to
the positive eigenvalues of the original Hpq = Hl(X

p, Xq).
Once a distance measure between images is defined, any manifold embedding

techniques, such as MDS [13], LLE [48], Laplacian Eigen maps [45], etc, can
be used to achieve an embedding of the image manifold where each image is
represented as a point in that space. We call this space “Image-Embedding”
space and denote its dimensionality by dI to disambiguate it from the “Feature-
Embedding” space with dimensionality d.
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10.5 Applications

10.5.1 Visualizing Objects View Manifold

The COIL data set [44] has been widely used in holistic recognition approaches
where images are represented by vectors [44]. This is a relatively easy data set
where the view manifold of an object can be embedded using PCA using the
whole image as a vector representation [44]. It has also been used extensively in
Manifold learning literature, also using whole image as a vector representation.
We use this data to validate that our approach can really achieve an embedding
that is topologically correct using local features and the proposed framework.
Fig 10.2 shows two examples of the resulting view manifold embedding. In this
example we used 36 images with 60 GB features [7] per image. The figure clearly
shows an embedding of a closed one-dimensional manifold in a two-dimensional
embedding space.

Figure 10.2: Examples of view manifolds learned from local features
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10.5.2 What the Image Embedding Captures

Figure 10.3: Manifold Embedding for 60 samples from Shape dataset using 60
GB local features per image

Fig. 10.3 shows the resulting image embedding space (the first two dimen-
sions are shown) of images from the “Shape” dataset [55]. The Shape dataset
contains 10 classes (cup, fork, hammer, knife, mug, pan, pliers, pot, sauce pan
and scissors), with a total of 724 images. The dataset exhibits large within-class
variation and moreover there are similarity between classes, e.g. mugs and cups;
saucepans and pots. We used 60 local features per image. 60 images were used
to learn the initial feature embedding of dimensionality 60 (6 samples per class
chosen randomly). Each image is represented using 60 randomly chosen geo-
metric blur local feature descriptor [7]. The initial feature embedding is then
expanded using the out-of-sample solution to include all the training images with
120 features per images. We can notice how different objects are clustered in the
space. It is clear that the embedding captures the object global shape from the
local feature arrangement, i.e., the spatial the global spatial arrangement is cap-
tured. There many interesting semantics that we can notice in the embedding.
There are many interesting structures we can notice. We can notice that objects
with similar semantic attributes are grouped together. For example, elongated
objects (e.g. forks and knifes) are to the left, cylindrical objects (e.g. mugs) are
to the top right, circular objects (e.g. pans) are to the bottom right, i.e., the
embedding captures shape attributes. Beyond shape, we can also notice that
other semantic attributes are captured, e.g. metal forks, knives and other metal
objects with black handles, mugs with texture, metal pots and pans etc.Notice
that this is a two-dimensional projection of the embedding, the dimensionality
of the embedding space itself is much higher. This points out that this embed-
ding space captures different global semantic similarities between images only
based on local appearance and arrangement information.

Fig. 10.4-top shows an example embedding of sample images from four
classes of the Caltech101 dataset [37] where the manifold was learned from
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Figure 10.4: Example Embedding result of samples from four classes of Caltech-
101. Top: Embedding using our framework using 60 Geometric Blur local fea-
tures per image. The embedding reflects the perceptual similarity between the
images. Bottom: Embedding based on Euclidean image distance (no local fea-
tures, image as a vector representation). Notice that Euclidean image distance
based embedding is dominated by image intensity, i.e., darker images are clus-
tered together and brighter images are clustered.

local features detected on each image. As can be noticed, the images contain
significant amount of clutter, yet the embedding clearly reflects the percep-
tual similarity between images as we might expect. This obviously cannot be
achieved using holistic image vectorization, as can be seen in Fig. 10.4-bottom,
where the embedding is dominated by similarity in image intensity.

Fig 10.5 shows an embedding of four classes in Caltech-4 [37] (2880 images of
faces, airplanes, motorbikes, cars-rear). We can notice that the classes are well
clustered in the space, even though only the first two dimensions embedding are
shown.

10.5.3 Object Categorization

We describe the object categorization problem as an application of learning the
image manifold form local features with their spatial arrangement. The goal is
to achieve an embedding of a collection of images to facilitate the categorization
task. The resulting embedding captures both appearance and shape similarities.
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Figure 10.5: Manifold Embedding for all images in Caltech-4-II. Only first two
dimensions are shown.

Using such an embedding gives more accurate results when contrasted with other
state-of-the art methods.

In [59] the “Shape” dataset [55] was used to evaluate the application of
the framework for object categorization based on both the feature embedding
and image embedding. Different training/testing random splits were used for
training with 1/5, 1/3, 1/2, 2/3 splits and 10 times cross validation and average
accuracies were reported. Four different classifiers were evaluated based on the
proposed representation: 1) Feature-embedding with SVM, 2) Image embedding
with SVM, 3) Feature embedding with 1-NN classifier, 4) Image-embedding
with 1-NN classifier. Table 10.1 shows the results for the four different classifier
settings. We can clearly notice that image manifold-based classifiers enhance the
results over feature embedding-based classifiers. In [59] several other data sets
were used to evaluate the performance with similar conclusion. The evaluation
also showed very good recognition rates (above 90%) even with as low as 5
training images.

In [55] the Shape dataset was used to compare the effect of modeling feature
geometry by dividing the object’s bounding box to 9 grid cells (localized bag
of words) in comparison to geometry-free bag of words. Results were reported
using SIFT [38], GB [7], and KAS [22] features. Table 10.2 shows the reported
accuracy in [55] for comparison. All reported results are based on 2:1 ratio
for training/testing split. Unlike [55] where bounding boxes are used both in
training and testing, we do not use any bounding box information since our
approach does not assume a bounding box for the object to encode the geometry
and yet get better result.

10.5.4 Object Localization

Many approaches that encode feature geometry are based on a bounding box,
e.g. [55, 25]. Our approach does not require such a constraint and it is robust
to the existence of heavy visual clutter. Therefore, it can be use in localization
as well as recognition. We used Caltech-4 data {Airplane, Leopards, Faces,
Motorbikes} for evaluation. In this case we learned the feature embedding
from all the four classes, using only 12 images per class. For evaluation we
used 120 features in each query image and embed them by out-of-sample. The
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Table 10.1: Shape dataset: Average accuracy for different classifier setting based
on the proposed representation

traning/test splits
Classifier 1/5 1/3 1/2 2/3
Feature embedding - SVM 74.25 80.29 82.85 87.02
Image Manifold - SVM 80.85 84.96 88.37 91.27
Feature embedding - 1-NN 70.90 74.13 77.49 79.63
Image Manifold - 1-NN 71.93 75.29 78.26 79.34

Table 10.2: Shape dataset: Comparison with reported results

Accuracy %
Feature used SIFT GB KAS
Our approach - 91.27 -
bag of words (reported by [55]) 75 69 65
Localized bag of words ([55]) 88 86 85

object is localized by finding the top 20% features closer to the training data
(by computing feature distances in the feature embedding space.) Table 10.3
shows the results in terms of the True Positive Ratio (TPR): the percentage
of localized features inside the bounding box, and False Positive Ratio (FPR),
Bounding Box Hit Ratio (BBHR), the percentage of images with more than
5 features localized (a metric defined in [30]), and Bounding Box Miss Ratio
(BBMR).

10.5.5 Unsupervised Category Discovery

Another intersting application for framework is unsupervised categroy discovery.
We tested the approach for unsupervised category dicovery by following the
setup by [26, 30, 34] on the same benchmark subsets of Caltech-101 dataset.
Namely we use the {Airplane, Cars-rear, Faces, Motorbikes} for Caltech-4. We
add the class {Watches} for Caltech-5 and the class {Ketches} for Caltech-6.
The output is the classification of images according to object category. We use
the clustering accuracy as our measure to evaluate the categorization process.
We report the average accuracy over 40 runs.

We use NCUT spectral clustering algorithm to compute the desired clus-
tering. Using the H+ matrix, we compute a weight matrix W as an input to
the clustering algorithm. We further use the K-nearest neighbor graph on the
weight matrix W, where K is O(log(M)) and M is number of images in the

Table 10.3: Object localization results - Caltech101-4

Class TPR FPR BBHR BBMR
Airplanes 98.08% 1.92% 100% 0/800
Faces 68.43% 31.57% 96.32% 16/435
Leopards 76.81% 23.19% 98% 4/200
Motorbikes 99.63% 0.37% 100% 0/798
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Table 10.4: Caltech-4,5 and 6: Average clustering accuracy, best results are
shown in bold.

Categories FE Clustering Baseline [30] [34] [26] Baseline [34]

Caltech-4 99.54±0.31 96.43 98.55 98.03 86 87.37
Caltech-5 98.59±0.47 96.28 97.30 96.92 NA 83.78
Caltech-6 97.48±0.57 94.03 95.42 96.15 NA 83.53

dataset.
We randomly select 12 × C random samples to form an initial embedding

that is used to generate initially the common feature embedding of all features.
We select 120 features per image for initial embedding and we out-of-sample 420
features (at the most) per image. This results in a common feature embedding
that has 100C × 420 features. We chose dimensionality of the common feature
embedding = 120. Table 10.4 shows comparative evaluation, the state of the
art results in [30, 34]. We also show the results by using the baseline that
uses feature descriptor similarity to compute Hdescriptor, in other words there
is no spatial arrangement proximity in this Hdescriptor. The results show that
our method is doing extremely excellent job for all the subsets Caltech-4,5 and
6. We infer from these results that the approaches that use explicit spatially
consistent matching step like [30, 34] can be outperformed by using a common
feature embedding space that encodes the spatial proximity and appearance
similarity at the same time, which is done without an explicit matching step.

10.5.6 Multiple Set Feature Matching

Finding correspondences between features in different images plays an impor-
tant role in many computer vision tasks, including stereoscopic vision, object
recognition, image registration, mosaicing, structure from motion, motion seg-
mentation, tracking, etc. [43]. Several robust and optimal approaches have been
developed for finding consistent matches for rigid objects by exploiting a prior
geometric constraint [63]. The problem becomes more challenging in a general
setting, e.g. , matching features on an articulated object, deformable object, or
matching between two instances (or a model to an instance) of the same object
class for recognition and localization. For such problems, many researchers re-
cently tend to use high-dimensional descriptors encoding the local appearance,
(e.g. SIFT features [38]). Using such highly discriminative features makes it pos-
sible to solve for correspondences without much structure information or avoid
solving for correspondences all together, which is quite popular trend in object
categorization [49]. This is also motivated by avoiding the high complexity of
solving for spatially consistent matches.

The framework for the joint feature-spatial embedding presented in this
chapter provides a way to find consistent matches between multiple sets of fea-
tures where both the feature descriptor similarity and the spatial arrangement
of the features need to be enforced. However, the spatial arrangement of the
features needs to be encoded and enforced in a relaxed manner to be able to
deal with non-rigidity, articulation, deformation, and within class variation.

The problem of matching appearance features between two images in a spa-
tially consistent way has been addressed recently (e.g. [36, 12, 10, 61]). Typi-
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cally this problem is formulated as an attributed graph matching problem where
graph nodes represent the feature descriptors and edges represent the spatial
relations between features. Enforcing consistency between the matches led re-
searchers to formulate this problem as a quadratic assignment problem where
a linear term is used for node compatibility and a quadratic term is used for
edge compatibility. This yields an NP-hard problem [10]. Even though some
efficient solutions (e.g. linear complexity in the problem description length)
have been proposed for such a problem [12] the problem description itself re-
mains quadratic, since consistency has to be modeled between every pair of
edges in the two graphs. This puts a huge limitation on the applicability of
such approaches to handle large number of features; for example, for matching
n features in two images, an edge compatibility matrix of size n2 × n2, i.e.,
O(n4), needs to be computed and manipulated to encode the edge compatibil-
ity constraints. Obviously this is prohibitively complex and does not scale to
handle a large number of features.

The problem of consistent matching can be formulated as an embedding
problem [58] where the goal is to embed all the features in a Euclidean em-
bedding space where the locations of the features in that space reflect both the
descriptor similarity and the spatial arrangement. This is achieved through min-
imizing the same objective function in Eq 10.1 enforcing both the feature simi-
larity and the spatial arrangement. A soft correspondence kernel that enforces
the exclusion principle based on the Scott and Longuet-Higgins algorithm [52]
is advantageous for such application. The embedding space acts as a new uni-
fied feature space (encoding both the descriptor and spatial constraints) where
the matching can be easily solved. This embeding-based matching framework
directly generalizes to matching multiple sets of features in one shot through
solving one Eigen-value problem. An interesting point about this formulation is
that the spatial arrangement for each set is only encoded within that set itself,
i.e., in a graph matching context no compatibility needs to be computed between
the edges (no quadratic terms or higher order terms), yet we can enforce spatial
consistency. Therefore, this approach is scalable and can deal with hundreds
and thousands of features. Minimizing the objective function in the proposed
framework can be done by solving an Eigen-value problem which size is linear
in the number of features in all images.

Fig. 10.6 shows sample matches on motorbike images from Caltech101 [37].
Eight images were used to achieve a unified feature embedding and then pairwise
matching were performed in the embedding space using the Scott and Longuet-
Higgins (SLH) algorithm [52]. Extensive evaluation of the feature matching
application of the framework can be found in [58]

10.6 Summary

In this chapter we presented a framework that enables the study of image man-
ifolds from local features. We introduced an approach to embed local features
based on their inter-image similarity and their intra-image structure. We also
introduced a relevant solution for the out-of-sample problem, which is essential
to be able to embed large data sets. Given these two components we showed
that we can embed image manifolds from local features in a way that reflects the
perceptual similarity and preserves the topology of the manifold. Experimental
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Figure 10.6: Sample Matching results on Caltech 101 Motorbike images.

results showed that the framework can achieve superior results in recognition
and localization. Computationally, the approach is very efficient. The initial
embedding is achieved by solving an eigenvalue problem which is done offline.
Incremental addition of images, as well as solving out-of-sample for a query im-
age is done in a time that is negligible to the time needed by the feature detector
per image.

10.7 Bibliographical and Historical remarks

The use of local features and parts for visual recognition is rooted in the com-
puter vision literature for long time, e.g. [23], however such paradigm received
extensive interest in the last decade, e.g. [39, 51, 69, 2, 8, 20, 60, 21], and others.
Several local feature descriptors have been proposed and widely used such as
Lowe’s scale invariant features (SIFT) [39], entropy-based scale invariant fea-
tures [29, 20], Geometric Blur [7], contour based features (kAS) [22], and other
local features that exhibit affine invariance, such as [3, 62, 50].

Modeling the spatial structure of an object varies dramatically in the litera-
ture of object classification. On the extreme, are approaches that totally ignore
the structure and classify the object only based on the statistics of the features
(parts) as an unordered set, e.g. bag-of-features approaches [71, 54]. Generalized
Hough transform like approaches provide a way to encode spatial structure in a
loose mannar [35, 46]. Similar idea was used earlier in the constellation model of
Weber et al. [69] where part locations were modeled statistically given a central
coordinate system, also in [20]. Pairwise distances and directions between parts
have also been used to encode the spatial structure, e.g. [1]. Felzenszwalb and
Huttenlocher’s Pictorial structure [19] uses spring like constraints between pairs
of parts as well to encode global structure. The constellation model of Weber
et al. [69] constrains the part locations given a central coordinate system.

The seminal work of Murase and Nayar [44] showed how linear dimension-
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ality reduction using PCA [28] can be used to establish a representation of an
object’s view and illumination manifolds. Using such representation, recogni-
tion of a query instance can be achieved by searching for the closest manifold.
Such subspace analysis has been extended to decompose multiple orthogonal
factors using bilinear models [57] and multi-linear tensor analysis [66].

The introduction of nonlinear dimensionality reduction techniques such as
Local Linear Embedding (LLE) [48], Isometric Feature Mapping (Isomap) [56],
and others [56, 48, 4, 9, 31, 70, 42], made it possible to represent complex man-
ifolds in low-dimensional embedding spaces in ways that preserve the manifold
topology. Such manifold learning approaches have been used successfully in
human body pose estimation and tracking [17, 18, 65, 33].

There is a huge literature on formulating correspondence finding as a graph-
matching problem. We refer the reader to [10] for an excellent survey on this
subject. Matching two sets of features can be formulated as a bipartite graph
matching in the descriptor space, e.g. [5], and the matches can be computed
using combinatorial optimization, e.g. the Hungarian algorithm [47]. Alter-
natively, spectral decomposition of the cost matrix can yield an approximate
relaxed solution, e.g. [52, 15], which solves for an orthonormal matrix approxi-
mation for the permutation matrix. Alternatively, matching can be formulated
as a graph isomorphism problem between two weighted or unweighted graphs
to enforce edge compatibility, e.g. [64, 53, 67]. The intuition behind such ap-
proaches is that the spectrum of a graph is invariant under node permutation
and, hence, two isomorphic graphs should have the same spectrum, the converse
does not hold. Several approaches formulated matching as a quadratic assign-
ment problem and introduced efficient ways to solve it, e.g. [24, 7, 12, 36, 61].
Such formulation enforces edgewise consistency on the matching, however that
limits the scalability of such approaches to a large number of features. Even,
higher order consistency terms have been introduces [16]. In [10] an approach
was introduced to learn the compatibility functions from examples and was
found that linear assignment with such a learning scheme outperforms quadratic
assignment solutions such as [12]. In [58] the approach described in this chapter
was also shown to outperform quadratic assignment and without the need to
resort to edge compatibilities.

Acknowledgments: This research is partially funded by NSF CAREER award
IIS-0546372.



Bibliography

[1] S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images
via a sparse, part-based representation. TPAMI, 26(11):1475–1490, 2004.

[2] S. Agarwal and D. Roth. Learning a sparse representation for object de-
tection. In ECCV, pages 113–130, 2002.

[3] A. Baumberg. Reliable feature matching across widely separated views. In
CVPR, pages 774–781, 2004.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Comput., 15(6):1373–1396, 2003.

[5] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recogni-
tion using shape contexts. TPAMI, 2002.

[6] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L. Roux, and
M. Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and
spectral clustering. In NIPS 16, 2004.

[7] A. C. Berg. Shape Matching and Object Recognition. PhD thesis, University
of California, Berkeley, 2005.

[8] E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In
ECCV, pages 109–124, 2002.

[9] M. Brand and K. Huang. A unifying theorem for spectral embedding and
clustering. In Proc. of the Ninth International Workshop on AI and Statis-
tics, 2003.

[10] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola. Learn-
ing graph matching. TPAMI, 2009.

[11] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active shape
models: Their training and application. CVIU, 61(1):38–59, 1995.

[12] T. Cour, P. Srinivasan, and J. Shi. Balanced graph matching. NIPS, 2006.

[13] T. Cox and M. Cox. Multidimentional scaling. Chapman & Hall, 1994.

[14] M. Daliri, E. Delponte, A. Verri, and V. Torre. Shape categorization using
string kernels. In SSPR06, pages 297–305, 2006.
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