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Abstract

We introduce a novel framework for nonrigid feature

matching among multiple sets in a way that takes into con-

sideration both the feature descriptor and the features spa-

tial arrangement. We learn an embedded representation

that combines both the descriptor similarity and the spa-

tial arrangement in a unified Euclidean embedding space.

This unified embedding is reached by minimizing an objec-

tive function that has two sources of weights; the feature

spatial arrangement and the feature descriptor similarity

scores across the different sets. The solution can be ob-

tained directly by solving one Eigen-value problem that is

linear in the number of features. Therefore, the framework

is very efficient and can scale up to handle a large number

of features. Experimental evaluation is done using different

sets showing outstanding results compared to the state of

the art; up to 100% accuracy is achieved in the case of the

well known ‘Hotel’ sequence.

1. Introduction

Finding correspondences between features in different

images plays an important role in many computer vision

tasks. Several robust and optimal approaches have been de-

veloped for finding consistent matches for rigid objects by

exploiting a prior geometric constraint [23]. The problem

becomes more challenging in a general setting, e.g., match-

ing features on an articulated object, deformable object,

or matching between two instances (or a model to an in-

stance) of the same object class for recognition and localiza-

tion. For such problems, many researchers recently tend to

use high-dimensional descriptors encoding the local appear-

ance, (e.g. SIFT features [13]). Using such highly discrim-

inative features makes it possible to solve for correspon-

dences without much structure information or avoid solv-

ing for correspondences all together, which is quite popular

trend in object categorization [19]. This is also motivated by

avoiding the high complexity of solving for spatially consis-

tent matches.

The problem we address in this paper is how to find

matches between multiple sets of features where both the

feature descriptor similarity and the spatial arrangement of

the features need to be enforced. However, the spatial ar-

rangement of the features needs to be encoded and enforced

in a relaxed manner to be able to deal with non-rigidity, ar-

ticulation, deformation, and within class variation.

The problem of matching appearance features between

two images in a spatially consistent way has been addressed

recently (e.g. [11, 5, 3, 22]). Typically this problem is for-

mulated as an attributed graph matching problem where

graph nodes represent the feature descriptors and edges rep-

resent the spatial relations between features. Enforcing con-

sistency between the matches led researchers to formulate

this problem as a quadratic assignment problem where a

linear term is used for node compatibility and a quadratic

term is used for edge compatibility. This yields an NP-hard

problem [3]. Even though some efficient solutions (e.g. lin-

ear complexity in the problem description length) have been

proposed for such a problem [5] the problem description it-

self remains quadratic, since consistency has to be modeled

between every pair of edges in the two graphs. This puts a

huge limitation on the applicability of such approaches to

handle large number of features1.

Besides this scalability limitation, most of the state of

the art algorithms for matching can only match two sets of

points. They do not generalize to match multiple sets of

features.

In this paper, we introduce a framework for feature

matching among multiple sets of features in one shot, where

both the feature similarity in the descriptor space, as well as

the local spatial geometry are enforced. This formulation

brings three contributions to the problem:

1) Graph Matching through Embedding: We formulate the

problem of consistent matching as an embedding problem

where the goal is to embed all the features in a Euclidean

1For example, for matching n features in two images, an edge com-

patibility matrix of size n2
× n2, i.e., O(n4), needs to be computed and

manipulated to encode the edge compatibility constraints. Obviously this

is prohibitively complex and does not scale to handle a large number of

features.
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embedding space where the locations of the features in that

space reflect both the descriptor similarity and the spatial

arrangement. This is achieved through minimizing an ob-

jective function enforcing both the feature similarity and the

spatial arrangement. Such embedding space acts as a new

unified feature space (encoding both the descriptor and spa-

tial constraints) where the matching can be easily solved.

The framework is illustrated in Fig 1.

2) Matching Multiple sets in one shot: The proposed frame-

work directly generalizes to matching multiple sets of fea-

tures in one shot through solving one Eigen-value problem.

Consistent matching of multiple sets of features is a fun-

damental problem, for which very few solutions have been

proposed.

3) Scalability: An interesting point in this formulation is

that the spatial arrangement for each set is only encoded

within that set itself, i.e., in a graph matching context no

compatibility needs to be computed between the edges (no

quadratic terms or higher order terms), yet we can enforce

spatial consistency. Therefore the proposed approach is

scalable and can deal with hundreds and thousands of fea-

tures. Minimizing the objective function in the proposed

framework can be done by solving an Eigen-value problem

which size is linear in the number of features in all images.

Extensive evaluation on several standard datasets shows

that the proposed approach gives better or comparable re-

sults to the state of the art algorithms [11, 5, 3, 22] that

uses quadratic assignment. In fact, we achieve 100% cor-

rect matching on a standard benchmark with our multiset

setting. The experiment results also show that the proposed

approach can find consistent matching under wide range of

variability including: 3D-motion, viewpoint change, rota-

tion, zooming, blurring, articulation and nonrigid deforma-

tion.

2. Related Work

There is a huge volume of literature on matching features

given a class of geometric transformation between two im-

ages or a model to an image. However, more related to

our work, are recent papers on matching highly discrimina-

tive local appearance features under relaxed geometric con-

straints [11, 5, 3, 22, 10] which are more geared towards

dealing with nonrigidity and within-class variability.

There is a huge literature on formulating correspondence

finding as a graph-matching problem. We refer the reader

to [3] for an excellent survey on this subject. Matching

two sets of features can be formulated as a bipartite graph

matching in the descriptor space, e.g. [1], and the matches

can be computed using combinatorial optimization, e.g. the

Hungarian algorithm [17]. Alternatively, spectral decom-

position of the cost matrix can yield an approximate re-

laxed solution, e.g. [18, 6]. Alternatively, matching can

be formulated as a graph isomorphism problem between

Figure 1. Motivative Example on two faces

two weighted or unweighted graphs to enforce edge com-

patibility, e.g. [24, 21, 25]. The intuition behind such ap-

proaches is that the spectrum of a graph is invariant un-

der node permutation and, hence, two isomorphic graphs

should have the same spectrum, the converse does not hold.

Several approaches formulated matching as a quadratic as-

signment problem and introduced efficient ways to solve it,

e.g. [9, 2, 5, 11, 22]. Such formulation enforces edgewise

consistency on the matching. We discussed the limitations

of such approaches in Section 1. Even, higher order consis-

tency terms have been introduces [7]. In [3] an approach

was introduced to learn the compatibility functions from

examples and was found that linear assignment with such

a learning scheme outperforms quadratic assignment solu-

tions such as [5]. Our experiments show that we can reach

similar or better results without resorting to higher order

compatibility terms.

Matching multiple sets in image sequences can be ad-

dressed by forward tracking a set of features [20]. There

are very few papers that addressed solving for multiset cor-

respondences in a fundamental way, e.g. [16, 4]. In [4] a

simulated annealing-like approach was introduced to find

correspondences between multiple point sets and was used

to obtain shape average. However, the solution deals only

with point features (no appearance). Multiset correspon-

dences can also be found through clustering in the descrip-

tor space. Such solution is popular in object recognition to

obtain a visual codebook [19]. However such solution ig-

nores the spatial consistency.



3. Feature Embedding Framework

3.1. Problem Statement

We are given K sets of feature points, X1,X2, · · ·XK

in K images where Xk =
{

(xk
1
, fk

1
), · · · , (xk

Nk
, fk

Nk
)
}

Each feature point (xk
i , f

k
i ) is defined by its spatial loca-

tion in its image plane xk
i ∈ R

2 and its feature descriptor

fk
i ∈ R

D, where D is the dimensionality of the feature de-

scriptor space2. For example, the feature descriptor can be a

SIFT, HOG, etc. Notice that the number of features in each

set might be different. We use Nk to denote the number

of feature points in the k-th point set. Let N be the total

number of points in all data sets, i.e., N =
∑K

k=1
Nk.

There are two kinds of information that need to be pre-

served:

1) Feature similarity: feature descriptors in general repre-

sents the appearance in a way that is assumed to be invariant

to viewing conditions.

2) spatial structure of each data set represents the shape or

the arrangement of the features.

To achieve a model that preserves these two constraints

we introduce two data kernels based on the affinities in

the spatial and descriptor domains separately. The spatial

affinity (structure) in each image can be represented by a

weight matrix S
k where S

k
ij = Ks(x

k
i , x

k
j ) and Ks(·, ·)

is a spatial kernel local to the k-th image that measures

the spatial proximity. The feature affinity between image

p and q can be represented by the weight matrix U
pq where

U
pq
ij = Kf (fp

i , f
q
j ) and Kf (·, ·) is a feature kernel that

measures the similarity in the descriptor domain between

the i-th feature in image p and the j-th feature in image q.

Here we describe the framework given any spatial and fea-

ture weights in general and in Section 5 we will give specific

details on the kernels we use.

We are looking for an embedding for the all feature

points into a common embedding space. Let yk
i ∈ R

d de-

notes the embedding coordinate of point xk
i , where d is the

dimensionality of the embedding space, i.e., we are seeking

a set of embedded point coordinates Y k =
{

yk
1
, · · · , yk

Nk

}

for each input feature set Xk. The embedding should sat-

isfy the following two constraints

• The feature points from different point sets with high

feature similarity should become close to each other in

the resulting embedding as long as they do not violate

the spatial structure.

• The spatial structure of each point set should be pre-

served in the embedding space and should not be af-

fected by false feature matches (i.e., should not be

pulled away by false matches).

2Throughout this paper, we will use superscripts to indicate a dateset

(image) index and subscripts to indicate point index within the set, i.e., x
k
i

denotes point i in the k-th set.

Let us jump ahead and assume an embedding can be

achieved satisfying the aforementioned spatial structure and

the feature similarity constraints. Such an embedding space

represents a new “Feature” space that encodes both the

features’ descriptor and the spatial structure information.

Given such an embedding, the matching problem between

two sets reduces to solving a Bipartite graph matching be-

tween the two sets of embedded coordinates Y p and Y q

where the weights between the two sets are mainly based

on the Euclidean distances in the embedding space. Match-

ing multiple sets reduces to a clustering problem in the Eu-

clidean embedding space.

Embedding all the input points in such a way will result

in a consistent set of matches, which means the pairs of

matches will obey some common transformation between

the two point sets. Therefore, there is no need to explicitly

add pairwise consistency constraints as done in quadratic

matching approaches [2, 5, 11, 22].

3.2. Objective Function

Given the above stated goals, we reach the following ob-

jective function on the embedded points Y , which need to

be minimized

Φ(Y ) =
∑

k

∑

i,j

‖yk
i − yk

j ‖
2
S

k
ij +

∑

p,q

∑

i,j

‖yp
i − y

q
j‖

2
U

pq
ij ,

(1)

where k, p and q = 1, · · · ,K and p 6= q. The objective

function is intuitive; the first term preserves the spatial ar-

rangement within each set, since it tries to keep the embed-

ding coordinates yk
i and yk

j of any two points xk
i and xk

j in

a given point set close to each other based on their spatial

kernel weight S
k
ij . The second term of the objective func-

tion tries to bring close the embedded points y
p
i and y

q
j if

their feature similarity kernel U
pq
ij is high.

This objective function can be rewritten using one set of

weights defined on the whole set of input points as:

Φ(Y ) =
∑

p,q

∑

i,j

‖yp
i − y

q
j‖

2
A

pq
ij , (2)

where the matrix A is defined as

A
pq
ij =

{

S
k
ij p = q = k

U
pq
ij p 6= q

(3)

where A
pq is the p-q block of A.

The matrix A is an N × N weight matrix with K ×K

blocks where the p− q block is of size Np ×Nq. The k-th

diagonal block is the spatial structure kernel Sk for the k-th

set. The off-diagonal p− q block is the descriptor similarity

kernels U
pq. The matrix A is symmetric by definition since

diagonal blocks are symmetric and since U
pq = U

qpT

.

The matrix A can be interpreted as a weight matrix be-

tween points on a large point set where all the input points



are involved in this point set. Points from a given data set

are linked be weights representing their spatial structure S
k;

while nodes across different data sets are linked by suitable

weights representing their feature similarity kernel Upq.

We can see that the objective function Eq. 2 reduces to

the problem of Laplacian embedding [15] of the point set

defined by the weight matrix A. Therefore, the objective

function reduces to

Y
∗ = arg min

YT DY=I

tr(YT
LY), (4)

where L is the Laplacian of the matrix A, i.e., L = D−A,

where D is the diagonal matrix defined as Dii =
∑

j Aij .

The N × d matrix Y is the stacking of the desired embed-

ding coordinates such that,

Y =
[

y1

1
, . . . , y1

N1
, y2

1
, . . . , y2

N2
, . . . yK

1
, . . . , yK

NK

]T

The constraint Y
T
DY = I removes the arbitrary scal-

ing. Minimizing this objective function is a straight forward

generalized eigenvector problem: Ly = λDy. The optimal

solution can be obtained by the bottom d nonzero eigenvec-

tors. The requiredN embedding points Y are stacked in the

d vectors in such a way that the embedding of the points of

the first point set will be the first N1 rows followed by the

N2 points of the second point set, and so on.

The objective function in Eq 2 is general. We can eas-

ily see that matching algorithms that use only spatial con-

straints are a special case by replacing the off-diagonal

blocks in the affinity matrix A by a constant block. On the

other hand, matching algorithms that use the feature simi-

larity constraints only is a special case by replacing the di-

agonal blocks in the affinity matrix A by an identity block.

Notice that the size of the matrix A is linear in the num-

ber of input points, i.e., for the case of matching two sets,

A is an (N1 +N2) × (N1 +N2) matrix. In contrast, other

approaches that enforces pairwise consistency [2, 5, 11, 22]

use a consistency matrix that is quadratic in size N1N2 ×
N1N2. Such quadratic order hinders the scalability of such

matching techniques.

4. Feature Matching

4.1. Matching Settings

The embedding achieved through minimizing the objec-

tive function Eq 2 represents a Euclidean “Feature” space

encoding both the descriptors’ similarity and the local spa-

tial structures. Solving for matching will be a straight for-

ward task in such space. We present three settings in which

our framework can be used depending on the application.

Pairwise Matching (PW): Given two sets of features, the

matching reduces to solving a bipartite graph matching

problems between two sets of embedding coordinates. We

give details about how to obtain the matching in Sec 4.2.

Multiset Pairwise Matching (MP): If we have multiple

sets of features and we would like to find pairwise matching

between each pair of sets, then embedding all the features

in all the sets will give a global unified feature space. Pair-

wise matches between any two sets can also be solved as a

bipartite graph matching where the weights are defined in

the embedding coordinates. In this case, the global solution

is expected to enhance the pairwise solution. This is shown

in the experiment in Sec 6.2. We give details about how to

obtain the matching in Sec 4.2.

Multiset Clustering (MC): If we have multiple sets of fea-

ture points the unified embedding should bring correspon-

dent features from different sets to be close to each other.

In that sense, clustering can be used to in the embedding

space to obtain matching features. In this paper we applied

k-means clustering in the embedding coordinate to find the

feature groups. Other clustering techniques can be used.

The problem can also be formulated as a Multi-partite graph

matching in the embedding space.

In Sec. 6.2 we show the results obtained by applying

these three settings on the well known ‘Hotel’ sequnece.

4.2. Matching Criterion

The embedding coordinates achieved by solving the ob-

jective function 1 guarantees that the Euclidean distances

between the embedded points reflect both the spatial and

descriptor constraints. Therefore, the matching problem re-

duces to solving a bipartite matching problem in the embed-

ding space. This can be solved by many approaches such as

the Hungarian algorithm [17] and others. However, in par-

ticular we used the Scott and Longuet-Higgins (SLH) al-

gorithm [18] as matching criterion in the embedding space.

The conditions required for the Scott and Longuet-Higgins

matching are satisfied by the embedding since all the points

are lying on the same plane and there are no large rotation.

We compute an N1 × N2 Ecuildian distance based weight

matrix W in the embedding space using a Gaussian kernel

and then we compute an orthonormal matrix P
∗ in a way

similar to Eq. 5. We decide a match if the element P
∗

ij is

maximum in its row and its column. In addition we add the

condition that the second largest element in its row and its

column is far by threshold ratio as done in [6].

The main reason we chose the SLH algorithm over the

Hungarian algorithm as a matching criterion is its ability

to reject false matches. The Hungarian algorithm finds a

matching for each feature even though that match might not

be good, which is not a desired characteristic.



5. Feature and Spatial Affinities

5.1. Spatial Structure Weights

The spatial structure weight matrix Sk should reflect the

spatial arrangement of the features in each set k. In gen-

eral, it is desired that the spatial weight kernel be invariant

to geometric transformations. However, this is not always

achievable. In this paper we used two different kinds of

spatial weights: 1) Euclidean-based weights: the weights

are based on the Euclidean distances between features de-

fined in each image coordinate system. Such weights are

invariant to translation and rotations. 2) Affine invariant-

based weights: any three non-colinear points in an image

defines basis for an affine invariant coordinate system. We

use three matches between two images to obtain an affine

parameterization of all the other features in each images.

Alternatively, subspace invariance [26] can be used to ob-

tain an affine invariant coordinate system.

Several kernels can be used to obtain the spatial weights

based on either the Euclidean coordinates or the affine co-

ordinates including the Gaussian kernel defined as S
k
ij =

e
−‖xk

i −xk
j ‖

2
/2σ2

, and the Double exponential kernel defined

as S
k
ij = e

−‖xk
i −xk

j ‖/σ Our evaluation shows that both the

Gaussian and double exponential gives comparable results.

5.2. Feature Weights

The feature weight matrix U
pq should reflect the fea-

ture to feature similarity in the descriptor space between

the p-th and q-th sets. A seemingly obvious choice is

the widely used affinity based on a Gaussian kernel on

the squared Euclidean distance in the feature space, i.e.,

G
pq
ij = e−‖fp

i
−fq

j ‖
2

/2σ2

given a scale σ. However, such

choice is not suitable for the purpose of the objective func-

tion in Eq 1. This is mainly because such weights do not

satisfy the exclusion principle. One feature from an image

can be similar to many features in the second image. The

objective function will try to bring all these similar features

close to each other in the embedding space which might vi-

olate the spatial arrangement.

The feature weights should reflect the feature similarity

and, in the same time, should satisfy the exclusion princi-

ple. On the other hand, we should avoid making any hard

decision on the matching from the feature similarity alone,

i.e., a zero-one permutation matrix is not a suitable feature

weight matrix. In other words, the feature weights should

be soft correspondence weights. To achieve this we solve

for the feature weights in a way similar to the Scott and

Longuet-Higgins algorithm [18].

Given the feature affinity G between features in sets p

and q, we need to solve for a permutation matrix C that

permutes the rows of G in order to maximize its trace, i.e.,

ψ(C) = tr(CT
G)

The permutation matrix constraint can be relaxed into an

orthonormal matrix constraint on the matrix C. Therefore,

the goal is to find optimal an orthonormal matrix C
∗ such

that

C
∗ = arg max

s.t.CT C=I

tr(CT
G) (5)

It was shown in [18] that the optimal solution for 5 is

C
∗ = UEV

T

where the SVD decomposition of G = USV
T and E is

obtained by replacing the singular values on the diagonal of

S by ones. The orthonormal matrix C
∗ are used as the fea-

ture weights U
pq = U

qpT

after setting the negative values

to 0.

6. Experiments

In this section we show both quantitative and qualitative

results on different data set. Despite that our focus is on

non-rigid matching, we also show results on rigid matches

for quantitative and comparative evaluation 3.

6.1. Non­Rigid Matching

Fig. 2 shows some matching results on nonrigid motions.

We used sequences from the KTH dataset 4. Fig. 2-top

shows the results of our pairwise matching (PW setting) us-

ing SIFT features on four frames of a walking motion, i.e.,

6 pairs. Our approach boosted the matches obtained to dou-

ble of the original SIFT matches. Fig. 2-bottom shows the

result of the multiset setting (MC) applied on 13 frames of a

half cycle of hand waving. Due to the low resolution in the

sequence, a small number of features are detected (around

25 features per frame). Enforcing the global matching with

the spatial constraints boosted the number of matches to

from 44 to 73 and correct matches can be found on the mov-

ing parts for all the 13 frames.

Fig. 3 shows sample matches on motorbike and airplane

images from Caltech101 [12]. In each case we used eight

images and used the Multiset Pairwaise (MP) to match all

pairs. In these experiments we used affine kernels and Geo-

metric Blur [2] features.

6.2. Comparative Evaluation: 3D Motion (Wide
Baseline Matching)

Goal: This experiment aims at evaluating our proposed

framework compared to the state of the art reported re-

sults including linear and quadratic assignment based ap-

proaches [5, 3, 22, 25, 10, 8] .

Data: We use the CMU ‘Hotel’ sequence with the same

manual labeling of 30 landmark points employed in [3].

3To the best of our knowledge there is no available non-rigid dataset

with ground-truth matches.
4http://www.nada.kth.se/cvap/actions/
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Figure 2. Top: Results on non rigid walking sequence (matched pairwise). Bottom: Sample results on hand waving sequence matched on

a 13 frames in one shot (multiset). Shown is the first image matches with the consequtive odd frames in the 13 frames
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Figure 3. Sample results on Caltech 101 images. Best seen in color. Sample pairs are shown here, all pairs are shown in the supplementary

materials )

This dataset has been used in [3, 22] to compare the perfor-

mance of graph matching methods. The sequence contains

101 frames that shows a 3D motion of the ‘Hotel’ object.

The experiment is done using the same setting as [3, 22]: 15

frames are sampled (every 7 frames), that gives 105 pairs of

images to match.

Competitive Approaches: In all cases we used the Shape

context [1] as the feature descriptor (except for KPCA). We

compared the following: 1)The KPCA matching [25] is an

example of an algorithm that only uses the spatial structure.

2) Descriptor-only linear assignment: we used the Hungar-

ian algorithm applied to the shape context descriptor. In this

case only feature similarity is used. We used the histogram

distances as our metric as it was introduced in [1]. 3) Our

approaches: The three settings described in Sec 4.1: Pair-

wise (PW), Multiset pairwise (MPW) and Multiset with

clustering (MC). We used a Euclidean double exponential

kernel to encode the spatial structure, and Gaussian kernel

on the same shape context descriptor for descriptor similar-

ity. 4) Dual Decomposition approach proposed in [22]. This

is a quadratic assignment approach that uses an iterative so-

lution. 5) Results reported in [22], which are state of the

art algorithms using quadratic optimizations. That includes

[5] a spectral relaxation of the graduated assignment, [10, 8]

and max-product belief propagation on a quadratic pseudo-

boolean optimization [22]. 6) Results reported in [3] after

learning on another sequence (CMU ‘House’ sequence) us-

ing both quadratic and linear assignment with learning.

Evaluation: Evaluation is based on the mismatch ratio and

the complexity of the problem. Table 1 shows that our basic



Algorithm Error Rate Problem complexity

KPCA [25] 35.5% Linear

Linear Assign. W/SC [17] 11.81% Linear

Our Approach PW 9.24% Linear

Our Approach MPW 4.44% Linear

Our Approach MC 0.0% Linear

SMAC [5] 15.97% Quadratic

Fusion [10] 13.05% Quadratic

COMPOSE [8] 4.51% Quadratic

Belief Propagation [22] 0.06% Quadratic

Dual Decomposition [22] 0.19% Quadratic

Learning(LA) [3] 12-17% Linear

Learning(GA) [3] 10-14% Quadratic

Table 1. State of the art results on the ‘Hotel’ Sequence
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Figure 4. Matches obtained in 15 frames of the ‘Hotel’ sequence

using one-shot multiset matching

PW outperforms all approaches that use linear complexity

and outperforms some of the state of the art quadratic al-

gorithms, e.g., [5, 10]. Using our multiset MPW and MC

we reach 95.56% and 100% accuracy, which is not reached

by any of the competing algorithms. It is very important

to notice that the size of our affinity matrix A in the case

of the multiset of 15 frames is just 450 × 450 and for the

case of the pairwise matching is 60 × 60, where the size

for one edge compatibility matrix for any of the quadratic

assignment approaches is 900 × 900. Table 1 shows the

complexity of the problem and the mismatch ratio. Fig 4

shows the matches obtained from all the 15 frames using

our multiset approach.

6.3. Robustness: INRIA datasets

Data: In this experiment we use the INRIA datasets, which

has been used by [14] for comparing descriptors. This

dataset contains seven subsets that covers several effects

such as viewpoint change, zooming, rotation, blurring and

lighting change. Each of the seven datasets has a ground

truth Homography matrix computed between the first image

in each set and the other images in same dataset. Overall

there are 36 matching problems given their ground truth.

Dataset(Effect) SIFT SVD on SIFT Our Our Affine 1
stImage

Matching [13] Matching [6] Approach Approach Feature Count

Graf (ViewPoint) 47 54 66 67 464

Boat (Zoom&Rotation) 99 87 108 108 467

Bark (Zoom&Rotation) 49 47 55 55 392

Bricks (ViewPoint) 46 44 58 59 310

Trees (Blurring) 146 153 186 191 642

Cars (Lighting) 60 17 65 70 134

Bikes (Blurring) 227 229 239 237 400

Table 2. Average number of correct matches for each dataset from

INRIA datasets

Goal: We use the INRIA data set to evaluate the robust-

ness of the pairwise matching version of our framework

to the various imaging effect in a dataset with ground

truth. We also evaluate the behavior of the matching un-

der strong affine transformation using both the Euclidean

and the affine invariant kernels. This set demonstrates the

scalability of our approach to handle a very large number

of feature points ( from 130 to 1250 SIFT features per im-

age). That shows the value of our approach compared to the

quadratic assignment approaches, which typically can only

handle a number of features limited to around 100. We use

the ground truth Homography matrices just for evaluating

the resulting matches, since our approach does not assum-

ing any geometric transformation prior.

Competitive Approaches: in this experiment we compare

1) The basic SIFT matches [13] as a baseline. 2) SVD-

SIFT [6]: This approach uses SVD decomposition on a

Gaussian proximity matrix in the SIFT descriptor space.

3) Our Pairwise matching approach with both a Euclidean

Gaussian spatial kernel and an affine invariant kernel. In all

cases we are using the same set of SIFT descriptors.

Results: Table 2 shows that for all the datasets, our ap-

proach with either kernels gives the highest number of cor-

rect matches. The last column gives the number of features

in the first image for each dataset. This result shows that

enforcing the spatial consistency improves the descriptor

matches. Fig. 5 shows the number of matches as a func-

tion of the viewpoint change or the blurring5. The results

show that the Euclidean kernel gives comparable results to

the affine invariant kernel even under a very large viewpoint

change. We selected the scale for the spatial kernel as a

constant-multiple of the maximum distance between feature

points in each image. In general, we found that selecting

a scale large enough for the Euclidean kernels would give

results comparable to affine invariant kernels, this is consis-

tent with what was stated in [18]. Matching results between

images can be seen in the supplemental materials.

7. Conclusion and Future Work

This paper shows that we can enforce spatial consistency

for matching high-dimensional local appearance features in

an efficient and scalable way. The embedding formulation

introduced encodes both the inter sets feature similarity and

5 more plots can be seen in the supplementary materials
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Figure 5. Number of matches affected by Different effects. a,b) Increasing view point Change(Bricks and Graf), c) Increasing Blurring

(Trees)

the intra sets spacial structure in a unified space. This com-

bination of constraints is shown to be enough to achieve

consistent matching. Since spacial structure is only mea-

sured within each set, there is no need to for quadratic

edge consistency constraints. Therefore, the approach is

linear and can scale to deal with large numbers of fea-

tures. Pairwise matching based on the proposed framework

was shown to give comparable and even better results than

quadratic assignment approaches. The framework can be

directly applied to match multiple sets, which was shown

to outperform all the reported state of the art results. The

approach can match multiple sets by solving a single eigen-

value problem on matrix which size is linear in the number

of features. The experiments also shows that the approach

always has a very low false matching rates, i.e., it is biased

towards getting high certainty matches. Further theoretical

and empirical studies are needed to understand how to con-

trol the matching to be biased towards enforcing rigidity vs.

enforcing descriptor similarity.
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