Control Systems And Their Components (EE391) Lec. 7: Discrete SS model, Controllability and Observability

Wed. April $13^{\text {th }}, 2016$

Dr. Mohamed Hamdy Osman

Lecture Outline

- Discrete SS model
- Solution of discrete SS model (Time evolution)
- Controllability and observability concepts
- Mathematical conditions of controllability and observability

Discrete SS model

- Importance is because most analog systems are controlled via digital controller
- We will find discrete SS model from the already derived continuous time SS model (Differential Eqs \rightarrow Difference Eqs)

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} \mathbf{u}(t) \\
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+e^{\mathbf{A} t} * \mathbf{B u}(t) \\
\mathbf{x}(t)=e^{\mathbf{A} t} \mathbf{x}(0)+\int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B u}(\tau) d \tau \\
\mathbf{x}(t)=\mathbf{\Phi}(t) \mathbf{x}(0)+\int_{0}^{t} \boldsymbol{\Phi}(t-\tau) \mathbf{B u}(\tau) d \tau \\
\text { State Transition Matrix } \\
\mathbf{\Phi}(t)=e^{\mathbf{A} t}
\end{gathered}
$$

Discrete SS model

$$
\mathbf{x}(t)=\mathbf{\Phi}(t) \mathbf{x}(0)+\int_{\Omega}^{\mathbf{\Phi}}(t-\tau) \mathbf{B} \mathbf{u}(\tau) d \tau
$$

$$
\text { put } t=t_{0}
$$

$$
\mathbf{x}\left(t_{0}\right)=\mathbf{\Phi}\left(t_{0}\right) \mathbf{x}(0)+\int_{0}^{t_{0}} \mathbf{\Phi}\left(t_{0}-\tau\right) \mathbf{B} \mathbf{u}(\tau) d \tau
$$

$$
\text { Multiply by } \boldsymbol{\Phi}^{-1}\left(t_{0}\right)=\boldsymbol{\Phi}\left(-t_{0}\right) \text { and solve for } \mathbf{x}(0)
$$

$$
\mathbf{x}(0)=\mathbf{\Phi}\left(-t_{0}\right) \mathbf{x}\left(t_{0}\right)-\mathbf{\Phi}\left(-t_{0}\right) \int_{0}^{t_{0}} \mathbf{\Phi}\left(t_{0}-\tau\right) \mathbf{B} \mathbf{u}(\tau) d \tau
$$

$$
\mathbf{x}(0)=\mathbf{\Phi}\left(-t_{0}\right) \mathbf{x}\left(t_{0}\right)-\int_{0}^{t_{0}} \boldsymbol{\Phi}(-\tau) \mathbf{B} \mathbf{u}(\tau) d \tau
$$

Discrete SS model

$$
\begin{aligned}
\mathbf{x}(t) & =\boldsymbol{\Phi}\left(t-t_{0}\right) \mathbf{x}\left(t_{0}\right)-\int_{0}^{t_{0}} \boldsymbol{\Phi}(t-\tau) \mathbf{B u}(\tau) d \tau+\int_{0}^{t} \boldsymbol{\Phi}(t-\tau) \mathbf{B u}(\tau) d \tau \\
& =\boldsymbol{\Phi}\left(t-t_{0}\right) \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \boldsymbol{\Phi}(t-\tau) \mathbf{B} \mathbf{u}(\tau) d \tau
\end{aligned}
$$

Now set $t_{0}=k T$ and $t=t_{0}+T$ where T is the sample duration (discrete) to see transition of state variables from one sample to the next

$$
\mathbf{x}(k T+T)=\mathbf{\Phi}(T) \mathbf{x}(k T)+\int_{k T}^{k T} \boldsymbol{\Phi}(k T+T-\tau) \mathbf{B u}(\tau) d \tau
$$

Now assume input \mathbf{u} is held constant from $k T$ to $k T+T$ which is called zero order hold $(\mathrm{ZOH}) \rightarrow \mathbf{u}(k T+T)=\mathbf{u}(k T)=\mathbf{u}(k)$ and use discrete time index by omitting T

Discrete SS model

$$
\begin{aligned}
\mathbf{x}(k+1) & =\boldsymbol{\Phi}(T) \mathbf{x}(k)+\left[\int_{k T}^{k T} \boldsymbol{\Phi}(k T+T-\tau) d \tau\right] \mathbf{B} \mathbf{u}(k) \\
& =\boldsymbol{\Phi}(T) \mathbf{x}(k)+\left[\int_{0}^{T} \boldsymbol{\Phi}(v) d v\right] \mathbf{B u}(k) \\
& =\mathbf{A}_{d} \mathbf{x}(k)+\mathbf{B}_{d} \mathbf{u}(k)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{A}_{d}=\boldsymbol{\Phi}(T)=e^{\mathbf{A} T} \\
& \mathbf{B}_{d}=\left[\int_{0}^{T} \boldsymbol{\Phi}(v) d v\right] \mathbf{B}
\end{aligned}
$$

For small T

$$
\begin{aligned}
& \mathbf{A}_{d} \simeq \mathbf{I}+\mathbf{A} T \\
& \mathbf{B}_{d} \simeq T \mathbf{B}
\end{aligned}
$$

Discrete SS model

Continuous

MATLAB

$\left[\mathrm{A}_{\mathrm{d}} \mathrm{B}_{\mathrm{d}} \mathrm{C}_{\mathrm{d}} \mathrm{D}_{\mathrm{d}}\right]=$ c2dm(A,B,C,D, T,'zoh')

$$
\begin{aligned}
& n \times 1 \quad n \times 1 \quad p \times 1 \\
& \mathbf{x}(k+1)=\underset{n \times n}{\mathbf{A}_{d} \mathbf{x}(k)}+\underset{n \times p}{\mathbf{B}_{d} \mathbf{u}(k)} \\
& m \times 1 \quad{ }^{n \times 1} \quad{ }^{n \times 1} \\
& \mathbf{y}(k)=\mathbf{C}_{d} \mathbf{x}(k)+\mathbf{D}_{d} \mathbf{u}(k) \\
& m \times n \quad m \times p
\end{aligned}
$$

Discrete

$$
\begin{aligned}
\mathbf{A}_{d} & =e^{\mathbf{A} T} \simeq \mathbf{I}+\mathbf{A} T \\
\mathbf{B}_{d} & =\left[\int_{0}^{T} e^{\mathbf{A} v} d v\right] \mathbf{B} \simeq T \mathbf{B} \\
\mathbf{C}_{d} & =\mathbf{C} \\
\mathbf{D}_{d} & =\mathbf{D}
\end{aligned}
$$

Discrete SS model

MATLAB problem

- Find the continuous time SS model of the following TF on MATLAB

$$
G(s)=\frac{2 s^{2}+8 s+6}{s^{3}+8 s^{2}+16 s+6}
$$

- Find discrete time equivalent SS model of the above system

$$
\begin{aligned}
& {[A B C D]=\text { tf2ss([2 } 8 \text { 6],[11 } 8 \text { 16 6]) }} \\
& {\left[A_{d} B_{d} C_{d} D_{d}\right]=c 2 d m(A, B, C, D, 1, ' z o h ')}
\end{aligned}
$$

Solution of discrete SS model

- We are going to call them A, B, C, D for simplicity but it is implicitly known that they are the discrete equivalent of the cont. time A, B, C, D
- We need to solve this difference equation to obtain $x(k)$ in terms of $\mathbf{x}(0)$ and \mathbf{u}
- We can use Z transform similar to what we did with Laplace transform in the continuous case, or

Solution of discrete SS model

$$
\begin{aligned}
& \mathbf{x}(k+1)=\mathbf{A} \mathbf{x}(k)+\mathbf{B u}(k) \\
& \mathbf{x}(1)=\mathbf{A x}(0)+\mathbf{B u}(0) \\
& \mathbf{x}(2)=\mathbf{A} \mathbf{x}(1)+\mathbf{B u}(1)=\mathbf{A}[\mathbf{A x}(0)+\mathbf{B u}(0)]+\mathbf{B u}(1)=\mathbf{A}^{2} \mathbf{x}(0)+\mathbf{A B u}(0)+\mathbf{B u}(1) \\
& \mathbf{x}(3)=\mathbf{A} \mathbf{x}(2)+\mathbf{B u}(2)=\mathbf{A}\left[\mathbf{A}^{2} \mathbf{x}(0)+\mathbf{A B u}(0)+\mathbf{B u}(1)\right]+\mathbf{B u}(2) \\
&=\mathbf{A}^{3} \mathbf{x}(0)+\mathbf{A}^{2} \mathbf{B u}(0)+\mathbf{A B u}(1)+\mathbf{B u}(2) \\
& \mathbf{x}(k)=\mathbf{A}^{k} \mathbf{x}(0)+\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{B u}(j)
\end{aligned}
$$

Similar to state Transition Matrix in discrete case

Solution of discrete SS model

Problem

- Try to obtain the same formula using Z transform

$$
\begin{gathered}
\mathbf{x}(k+1)=\mathbf{A x}(k)+\mathbf{B u}(k) \\
\mathbf{x}(k)=\mathbf{A}^{k} \mathbf{x}(0)+\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{B u}(j)
\end{gathered}
$$

Problem

- Prove that the TF in discrete case is (similar to continuous)

$$
\mathbf{Y}(z)=\left[\mathbf{C}(z \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right] \mathbf{U}(z)
$$

Controllability concept

Illustrative Example

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
3 \\
0
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
2 & 3
\end{array}\right] \mathbf{x}(t)
\end{gathered}
$$

- Eigenvalues of \mathbf{A} are -1, -2 (poles of the system)
- Let's find the TF

$$
\begin{aligned}
T F & =\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D} \\
& =\left[\begin{array}{ll}
2 & 3
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
0 & \frac{1}{s+2}
\end{array}\right]\left[\begin{array}{l}
3 \\
0
\end{array}\right] \\
& =\frac{6}{s+1} \quad \text { Where is the other pole at }-2 \text { ? }
\end{aligned}
$$

Controllability concept

Illustrative Example

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
3 \\
0
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
2 & 3
\end{array}\right] \mathbf{x}(t)
\end{gathered}
$$

- Mathematically, the other pole at -2 got canceled because of the 0 in the vector \mathbf{B} together with \mathbf{A} being diagonal which basically means that the dynamics of the second state cannot be controlled by the input (the input has not control over x_{2}) or we say x_{2} is not controllable
- If you dig deep, you can discover what happened to the eigenvalue at -2 and why it disappeared in TF
- It is because the system has a zero also at -2 that got canceled with the pole at -2 (How can you check zeros??)

$$
\left|\begin{array}{cc}
z_{0} \mathbf{I}-\mathbf{A} & -\mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right|=0
$$

Controllability definition

$$
\begin{gathered}
\mathbf{x}(k+1)=\mathbf{A} \mathbf{x}(k)+\mathbf{B u}(k) \\
\mathbf{x}(k)=\mathbf{A}^{k} \mathbf{x}(0)+\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{B} \mathbf{u}(j)
\end{gathered}
$$

Assume zero initial state vector, $\mathbf{x}(0)=0$ (will get back to remove this assumption later)

$$
\begin{aligned}
\underset{n \times 1}{\mathbf{x}(k)} & =\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{B u}(j) \\
& =\underbrace{}_{\substack{n \times k p \\
\mathbf{B} \\
\\
\mathbf{A B} \\
\mathbf{A B} \\
\mathbf{A}^{2} \mathbf{B} \\
\cdots \\
\mathbf{C o n}^{2} \\
\mathbf{A}^{k-1} \mathbf{B}}} \quad\left[\begin{array}{c}
{\left[\begin{array}{c}
\mathbf{u}(k-1) \\
\mathbf{u}(k-2) \\
\mathbf{u}(k-3) \\
\vdots \\
\mathbf{u}(0)
\end{array}\right]}
\end{array}\right\} \begin{array}{c}
k p \times 1 \\
\begin{array}{c}
\text { Input vector } \mathbf{U} \text { is a } \\
\text { concatenation of } k \text { input } \\
\text { vectors each is } p \times 1
\end{array}
\end{array}
\end{aligned}
$$

Controllability definition

$$
\begin{aligned}
\begin{array}{l}
\mathbf{x}(k) \\
n \times 1
\end{array} & =\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{B u}(j) \\
& =\underbrace{\left[\begin{array}{llll}
\mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \cdots & \mathbf{A}^{k-1} \mathbf{B}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}(k-1) \\
\mathbf{u}(k-2) \\
\mathbf{u}(k-3) \\
\vdots \\
\mathbf{u}(0)
\end{array}\right]}_{\begin{array}{c}
n \times k p \\
\mathbf{B} \\
\text { Controllability matrix } \mathbf{C}_{k}
\end{array}}\} \begin{array}{c}
k p \times 1 \\
\begin{array}{c}
\text { Input vector is a } \\
\text { concatenation of } k \text { input } \\
\text { vectors each is } p \times 1
\end{array}
\end{array}
\end{aligned}
$$

Controllability Definition

- The system is said to be controllable if there exists a succession of inputs that can steer the system from an initial state vector to any desired state vector at time k (Important as will be related to controller design)
- In other words, if there is a solution for U to get any $\mathbf{x}(k)$ in the above equation (U exists for any left hand side target $\mathbf{x}(k)$)

Controllability mathematical condition

$$
\mathbf{x}(k)=\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \cdots & \mathbf{A}^{k-1} \mathbf{B}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}(k-1) \\
\mathbf{u}(k-2) \\
\mathbf{u}(k-3) \\
\vdots \\
\mathbf{u}(0)
\end{array}\right] \quad \longrightarrow \quad \mathbf{x}(k)=\mathbf{C}_{k} \mathbf{U}
$$

Controllability condition

- For the system to be controllable, \mathbf{C}_{k} must be full rank, i.e. $\operatorname{rank}\left(\mathbf{C}_{k}\right)=n$ (why?)
- When \mathbf{C}_{k} is full rank, the range of \mathbf{C}_{k} or its column space is the whole space \mathbb{R}^{n} and not just a subspace in it
- Usually \mathbf{C}_{k} is a fat matrix (columns > rows)
- Need to check if there are n columns of \mathbf{C}_{k} that are independent or not (pivot columns)
- If they are independent, this means that a linear combination of the columns of \mathbf{C}_{k} spans the entire \mathbb{R}^{n} and the system is controllable

Controllability mathematical condition

illustrative example \cdot Check controllability of system whose \mathbf{C}_{k} is

$$
\mathbf{C}_{k}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]
$$

$\operatorname{rank}\left\{\mathbf{C}_{k}\right\}=1$ (why?) \rightarrow col. 2 is 2^{*} col. 1 and col. 3 is 3^{*} col. 1
Formal way is to do Gaussian elimination and find the number of pivot columns (to get reduced row echelon form)

$$
\begin{aligned}
\mathbf{C}_{k} \mathbf{U} & =\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right]\left[\begin{array}{l}
u(1) \\
u(2) \\
u(3)
\end{array}\right] \\
& =u(1)\left[\begin{array}{l}
1 \\
2
\end{array}\right]+u(2)\left[\begin{array}{l}
2 \\
4
\end{array}\right]+u(3)\left[\begin{array}{l}
3 \\
6
\end{array}\right] \\
& =(u(1)+2 u(2)+3 u(3))\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

In this case the column
space of this rank deficient matrix is a subspace (line) in \mathbf{R}^{2}

Controllability mathematical condition

Note

- When \mathbf{C}_{k} is fat, i.e. when $k>n$, you do not need to check the rank of C_{k} but you can only check the rank of C_{n} (why?)

$$
\mathbf{C}_{k}=\left[\begin{array}{llllllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \cdots & \mathbf{A}^{n-1} \mathbf{B} & \mathbf{A}^{n} \mathbf{B} & \cdots & \mathbf{A}^{k-1} \mathbf{B}
\end{array}\right]
$$

Check only these columns because the rest of the columns will be dependent on them (why?)

- Because from Cayley-Hamilton theorem, every square matrix satisfies its own characteristic equation and hence $\mathbf{A}^{n} \mathbf{B}$ will depend on previous columns $|\mathbf{A}-\lambda \mathbf{I}|=0$

$$
\begin{aligned}
& \lambda^{n}+a_{n-1} \lambda^{n-1}+a_{n-2} \lambda^{n-2}+\ldots+a_{1} \lambda+a_{0}=0 \\
& \mathbf{A}^{n}+a_{n-1} \mathbf{A}^{n-1}+a_{n-2} \mathbf{A}^{n-2}+\ldots+a_{1} \mathbf{A}+a_{0} \mathbf{I}=0 \\
& \therefore \mathbf{A}^{n}=-a_{n-1} \mathbf{A}^{n-1}-a_{n-2} \mathbf{A}^{n-2}-\ldots-a_{1} \mathbf{A}+a_{0} \mathbf{I}
\end{aligned}
$$

Controllability mathematical condition

Summary

- A system with matrices \mathbf{A}, \mathbf{B} is said to be controllable if its controllability matrix is full rank (same for continuous and discrete)

$$
\begin{aligned}
& \operatorname{rank}\left\{\mathbf{C}_{n}\right\}=n \\
& \mathbf{C}_{n}=\left[\begin{array}{llllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \cdots & \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
\end{aligned}
$$

Final Note

-What if initial state vector is not zero?

$$
\mathbf{x}(k)=\mathbf{A}^{k} \mathbf{x}(0)+\mathbf{C}_{k} \mathbf{U} \Rightarrow \mathbf{x}(k)-\mathbf{A}^{k} \mathbf{x}(0)=\mathbf{C}_{k} \mathbf{U}
$$

- Condition of controllability stays the same since going from non-zero $\mathbf{x}(0)$ to $\mathbf{x}(\mathbf{k})$ is just equivalent to going from zero initial state vector to $\mathbf{x}(k)-\mathbf{A}^{k} \mathbf{x}(0)$

Observability concept

Illustrative Example

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
3 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \mathbf{x}(t)
\end{gathered}
$$

- Eigenvalues of \mathbf{A} are -1, -2 (poles of the system)
- Let's find the TF

$$
\begin{aligned}
T F & =\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D} \\
& =\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{s+1} & 0 \\
0 & \frac{1}{s+2}
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\frac{6}{s+1} \quad \begin{array}{l}
\text { Same TF as example in slide 12 } \\
\text { Where is the other pole at -2 ? }
\end{array}
\end{aligned}
$$

Observability concept

Illustrative Example

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
3 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
2 & 0
\end{array}\right] \mathbf{x}(t)
\end{gathered}
$$

- Mathematically, the other pole at -2 got canceled because of the 0 in \mathbf{C} together with \mathbf{A} being diagonal which basically means that the dynamics of the second state cannot be observed at the output or we say x_{2} is not observable
- If you dig deep, you can discover what happened to the eigenvalue at -2 and why it disappeared in TF
- It is because the system has a zero also at -2 that got canceled with the pole at -2 (How can you check zeros??)

$$
\left|\begin{array}{cc}
z_{0} \mathbf{I}-\mathbf{A} & -\mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right|=0
$$

Observability definition

Output Equation

$$
\begin{gathered}
\mathbf{x}(k+1)=\mathbf{A} \mathbf{x}(k)+\mathbf{B u}(k) \\
\mathbf{x}(k)=\mathbf{A}^{k} \mathbf{x}(0)+\sum_{j=0}^{k-1} \mathbf{A}^{k-1-j} \mathbf{B u}(j)
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{y}(k) & =\mathbf{C x}(k)+\mathbf{D u}(k) \\
& =\mathbf{C A}^{k} \mathbf{x}(0)+\sum_{j=0}^{k-1} \mathbf{C A}^{k-1-j} \mathbf{B u}(j)+\mathbf{D u}(k)
\end{aligned}
$$

Observability Definition

- The system is said to be observable if I can uniquely know the initial state variables with the knowledge of the succession of inputs and outputs over finite period of time
- Very important concept as it will be related to State observers that will estimate the state variables from the knowledge of input and output

Observability mathematical condition

$$
\begin{aligned}
\mathbf{y}(k) & =\mathbf{C} \mathbf{x}(k)+\mathbf{D u}(k) \\
& =\mathbf{C A}^{k} \mathbf{x}(0)+\sum_{j=0}^{k-1} \mathbf{C A}^{k-1-j} \mathbf{B u}(j)+\mathbf{D u}(k) \\
\mathbf{y}(0) & =\mathbf{C} \mathbf{x}(0)+\mathbf{D u}(0) \\
\mathbf{y}(1) & =\mathbf{C A} \mathbf{x}(0)+\mathbf{C B u}(0)+\mathbf{D u}(1) \\
\mathbf{y}(2) & =\mathbf{C A}^{2} \mathbf{x}(0)+\mathbf{C A B u}(0)+\mathbf{C B u}(1)+\mathbf{D u}(2) \\
\vdots & \vdots
\end{aligned}
$$

Observability mathematical condition

$$
\begin{aligned}
& \mathbf{y}(0)=\mathbf{C x}(0)+\mathbf{D u}(0) \\
& \mathbf{y}(1)=\mathbf{C A x}(0)+\mathbf{C B u}(0)+\mathrm{Du}(1) \\
& \mathbf{y}(2)=\mathbf{C A}^{2} \mathbf{x}(0)+\mathbf{C A B u}(0)+\mathbf{C B u}(1)+\operatorname{Du}(2)
\end{aligned}
$$

$\left[\begin{array}{c}\mathbf{y}(0) \\ \mathbf{y}(1) \\ \mathbf{y}(2) \\ \vdots \\ \mathbf{y}(k-1)\end{array}\right]=\left[\begin{array}{c}\mathbf{C} \\ \mathbf{C A} \\ \mathbf{C A}^{2} \\ \vdots \\ \mathbf{C A}^{k-1}\end{array}\right] \mathbf{x}(0)+\left[\begin{array}{cccccc}\mathbf{D} & 0 & 0 & 0 & \cdots & 0 \\ \mathbf{C B} & \mathbf{D} & 0 & 0 & \cdots & 0 \\ \mathbf{C A B} & \mathbf{C B} & \mathbf{D} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{C A}^{k-2} \mathbf{B} & \mathbf{C A}^{k-3} \mathbf{B} & \cdots & \mathbf{C A B} & \mathbf{C B} & \mathbf{D}\end{array}\right]\left[\begin{array}{c}\mathbf{u}(0) \\ \mathbf{u}(1) \\ \mathbf{u}(2) \\ \vdots \\ \mathbf{u}(k-1)\end{array}\right]$
$m k \times 1$ $m k \times n$ $m k \times p k$ $p k \times 1$

$$
\mathbf{Y}=\mathbf{O}_{k} \mathbf{x}(0)+\mathbf{V}_{k} \mathbf{U}
$$

Observability mathematical condition

$$
\begin{aligned}
& \mathbf{Y}=\mathbf{O}_{k} \mathbf{x}(0)+\mathbf{V}_{k} \mathbf{U} \\
& \mathbf{O}_{k} \mathbf{x}(0)=\mathbf{Y}-\mathbf{V}_{k} \mathbf{U}
\end{aligned}
$$

- If I know the inputs and outputs, I know the right hand side of the above equation
- $\mathbf{x}(0)$ is uniquely defined only if $\operatorname{rank}\left\{\mathbf{O}_{k}\right\}=n$ (Why?)
- If \mathbf{O}_{k} is rank deficient then its nullspace is not empty \rightarrow say $\mathbf{v} \in N\left(\mathbf{O}_{k}\right)$

$$
\mathbf{O}_{k} \mathbf{x}(0)=\mathbf{O}_{k}[\mathbf{x}(0)+\mathbf{v}]=\mathbf{Y}-\mathbf{V}_{k} \mathbf{U}
$$

- If \mathbf{O}_{k} is a full rank matrix, its nullspace is empty other than zero vector hence if LHS is known, $\mathbf{x}(0)$ is uniquely determined
- Usually \mathbf{O}_{k} is a tall matrix

Observability mathematical condition

Summary

- A system with matrices \mathbf{A}, \mathbf{C} is said to be observable if its observability matrix is full rank (check only rank of \mathbf{O}_{n} if $k>n$)

$$
\begin{aligned}
& \operatorname{rank}\left\{\mathbf{O}_{n}\right\}=n \\
& \mathbf{O}_{n}=\left[\begin{array}{c}
\mathbf{C} \\
\mathbf{C A} \\
\mathbf{C A}^{2} \\
\vdots \\
\mathbf{C A}^{n-1}
\end{array}\right]
\end{aligned}
$$

Minimal realization

Illustrative Example

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=-2 \mathbf{x}(t)+3 u(t) \\
& \qquad \begin{aligned}
& y(t)=2 \mathbf{x}(t) \\
= & \mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D} \\
= & 2 \cdot \frac{1}{s+2} \cdot 3 \\
= & \frac{6}{s+1} \quad \begin{array}{r}
\text { Same TF as example in } \\
\text { slides } 12 \text { and } 20
\end{array}
\end{aligned}
\end{aligned}
$$

- Both previous examples led to the same TF but one was uncontrollable and the second was unobservable
- This realization of the same TF is both controllable and observable because it is the minimal realization (only 1 state variable not 2)

A minimal realization is both controllable and observable (without proof)

