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Lecture Outline
TR
o Diagonalization of the system dynamics matrix A
o Going from SS model to TF
o Relationship between poles of TF and eigenvalues of A
o Equivalent SS equations
o SSrealizations



State Space Equations (Reminder)
BN

For an ndimensional system with pinputs and /m outputs

nx1 nx1 ox1  t € R denotes time
. n
— A B « x € R" denotes the state vector
X(t) X(t) +BU (t) * u € RP denotes the input vector
mn mp « y € R™ denotes the output vector
mx1 <1 p*x1 A € R™" denotes the system dynamic matrix
y(t) — CX(t) + DU(t « B € R™*? denotes the input matrix
° mxn i
X mxp Ce ]Rmx denotes the output or sensor matrlx
« D e R™ P denotes the feedthrough matrix

o For LTI systems, the matrices A,B,C and D are all constant, i.e.
not (2

a For time variant systems — A(8, B(, C(8, D()



Solution of SS Equations (Time response)
I

Interpretation of solution using diagonalization

Back to Homog. Sol. X(t) = eAtX(O)
-t _
X(t) = Q Q™'x(0)
o/nt
i 1| e/t I w{ |
=lvy -+ Vj ; x(0)
R At [ wl
i 1| et | _WIX(O)_
=|vq Vi :
: 1l e’lnt_ _W;]rx(O)_




Solution of SS Equations (Time response)
BN

Interpretation of solution using diagonalization

Back to Homog. Sol. X(t) = eAtX(O)

i 2 [ et | _W]TX(O)_
X(t)=| vy - Vp . :

B D g/hnt _W;I]_X(O)_

| eﬂitwir x(0) |

|- D _eﬂntw;'{x(O)_

n
= Zvieﬂit (W;rX(O))



Solution of SS Equations (Time response)
N

Interpretation of solution using diagonalization

Back to Homog. Sol. X(t) = eAtX(O)

n
X(t)=>" vie’it (W;rx(O))

=1
« Solution is a linear combination of all individual modes (eﬂit)
 Eigenvalues 4; determine the time behavior of each mode

 Eigenvectors v; determine how much each mode impacts each of
the state variables

« Rows of Q1 , denoted by w!, determine how much each initial

i

state variable contribute to each mode

 Benefit of diagonalization or eigen decomposition is to decouple
the modes and write the full time solution as a linear combination
of them

 You can also expect that eigenvalues are related to poles



From SS model to Transfer Function
A

=<1 =<1 px1
X(t) = Ax(t) + Bu(t)
SS model " "r
mx1 =<1 px1
y(t) = Cx(t) + Du(t)
mxn mxp
N Y (s)

Transfer Function

U (s)



From SS model to Transfer Function
N

X(t) = Ax(t) + Bu(t)
Take LT sX(s)—x(0) = AX(s)+BU(s)
(sI—A)X(s) =x(0)+BU(s)

X(s) = (sl - A) " x(0) + (sl —A) T BU(s) ——

since y(t) = Cx(t) + Du(t)
= Y(s) =CX(s) +DU(s)
Y (s)=CX(s)+DU(s) <

Y(s) :\C(sl —A)‘?x(O) +[C(sl ~A) "B+ D} U(s)
Y | ' J

Initial state response  Transfer Function Matrix 77xp




From SS model to Transfer Function
KN

Y(s) =C(sl - A) T x(0) J{C(sl ~A) B+ D} U(s)
To obtain TF, set x(0) =0

Y(s) = [C(sl ~A) B+ D} U(s)

For a SISO system, Y(s) and U(s) are scalars

®=C(sl ~A)'B+D
U (s)

MATLAB
tf2ss

ss2tf



From SS model to Transfer Function

I ————

Find the transfer function of the following state space model

[4 5] [-2
X= X+ u
2 -3 1

y=[-05 1]x
Y6 _csi-aytB4D
U(s)
From a previous example with the same matrix A
- s+3 -5
(s —A)_l _ (s=2)(s+1) (s—-2)(s+1)
2 s—4
(s—2)(s+1) (s—-2)(s+1)




From SS model to Transfer Function
N

543 -5
w:[—O.S 1] (s—2)(s+1) (s—2)(s+1) {—2}
U(s) 2 s—4 1

(s—=2)(s+1) (s—2)(s+1) |
- —25s-1 |
_[-05 1 (s—2)(s+1)
s—8
(5—2)(s+1) |
_25-1.5
(s—=2)(s+1)

We notice that the poles at s= 2,-1 are exactly the eigenvalues of A we found
before




From SS model to Transfer Function

N

Find the transfer function matrix of the following SS model
having 3 inputs and 2 outputs

.14 -5 -2 3 1
X= X+ u
2 -3 1 50

(0.5 1}
y= X

-1 2

You should still find [C(sI —A)™*B+ D] which is a 2x3 matrix

that relates the input and output vectors as follows

Y(s)=|C(sl-A) "B+ D} U(s)

Yi(s)" Uy(s) |
{Yl(s) :[C(SI—A)_lB+D} Uy(s)
- | Us(s) |




From SS model to Transfer Function
N

Back to SISO case and general TF

Y6 _csi-aytB4D

U (s)

ﬂzcadj(sl -A) 84D

U (s) sI—A
~ Cadj(sl-A)B+D|sI - A
B sl - A

e Clearly the poles of the TF are the values of s that makes IsSI—A| =0
which are the also the eigenvalues of A

 We can easily predict that what was said on poles can be exactly said
on eigenvalues (e.g. the condition of BIBO stability is
Re{eigenvalues} < 0



Equivalent SS Equations

Find two SS representations for the this circuit. Use the underneath two

assignments of state variables

1H
+ — +
10 1F
ut)o O O = y(t)
State variables (15%) State variables (2n9)
e X :inductor current /, e X :current of left loop
* X, ! capacitor voltage v, « X, . current of right loop

Find the relation (transformation P) between the two state vectors in the 15t

and 2" realizations _
X =PX



Equivalent SS Equations
T

1H
State variables (15 M
X :inductor current /, + +
X, : capacitor voltage v, 10 1F
u(t)@ T VY({)
U=X1+X2:>X1=—X2+U — -

X1=X2 +X2:>X2 =X1—X2

b

y =[0 1]{)(1}0“

X2



Equivalent SS Equations

1H

State variables (29) [
e X, : current of left loop

+
* %, : current of right loop 10 F
U(t)@ o d ™ y(t)

U=X~1+(X~1—X~2):> 1=—X~1+X~2+U
Xy :1-:—t{1-(><”1—>(2)} = X1 -X9=X9 =Xy =-X1+U
P 1 1] M1 The two State vectors are equivalent and
o 1 u can be related by the transformation P
Xo| |1 0]|Xy] |1

N )(1 B 1 O X1
- o s e

X =PXx




Equivalent SS Equations
S

» Consider an n-dimensional state space equations:

x(t) = Ax(t) + Bu(t)

y(t) =Cx(t)+Du(t)
* Let P be an nnx nreal nonsingular matrix, and let X =PX. Then, the SS equations

X(t) = AX(t) + Bu(t)

y(t) =CX(t) + Du(t)

where

~ ~

A=PAP! B=PB, C=cPl D=D
is said to be algebraically equivalent with the original state space equations

- X=PX iscalled an equivalence (or similarity) transformation



Equivalent SS Equations
I
start from Xx(t) = Ax(t)+ Bu(t)

%=Px = substitute with x =P 7%
P1x(t) = APTIx(t) + Buf(t)
2 1~
X(t)=PAP “X(t)+ PBu(t)

e
A B
start from  y(t) =Cx(t)+ Du(t)
_1~

X =Px = substitute with x=P

y(t) = CP%(t) + Du(t)
— R

~ ~S

C D



Equivalent SS Equations
T

Prove that the similarity transformation X = PX does not change the
Problem : . . A
eigenvalues of A, i.e. prove that eigenvalues of A are the same as A

Prove that the similarity transformation X =PX does not change the
Transfer function matrix

T=C(s1-A) " B+D

1 1\t
—cP(sI—pAP ) PB +D

-1
_cpi(sppl_ PAP‘l) PB+D

~cPp(si-A) P‘l}_l PB+D

=CPIP(sI-A) " PIPB+D
-C(sI-A)'B+D=T



SS Realizations

L ————

The problem concerning how to describe a system in state space
equations, provided that the transfer function of a system, G(s),
IS available, is called Realization Problem.

G(s) —————> A.B,C,D

There are infinite realizations for the same TF

We are only interested in minimal realizations (least number of
state variables n)

There are standard realizations that we will study

» Controller Canonical Form (CCF)
» Observer Canonical Form (OCF)
» Modal (Diagonal) Canonical Form (DCF)



SS Realizations
N

Controller Canonical Form (CCF) Assume order of

numerator is less
than that of

1 2
Y(s)_ by 18" " +bp_58" " +...+bys +Dg denominator by 1

G(s)=

UG) s"+a, s" Fva, os" 2 +..+as +ag

2+...+bls +bg) x 1

= (b 95" L by 8"

s" +ay 18" Pray os" 2+ +ags +ag
Y (s) y Z(s)
Z (s) U(s)
For the first part Z(s) 1

UG) s"+a, gs" tra, os" 2 +..+as +ag

2 (t) a1z "D () 4.+ a7 (t)+agz (t)=u(t)



SS Realizations

I

Controller Canonical Form (CCF)

Z(s) 1

For the first part

UG) s"+a, 45" Tray ps" 2 4. +as +ag
2 (MW (t)+a,_4z "D (t)+..+a7 (t)+agz (t)=u(t)
let xy=2z, Xxp=7Z, Xx3=17, ...,Xn:z(n_l)

X1=X2, XZ =X3, X3=X4,...,

Xp=2M=—a, 7"V _ _a7-ag +u
=—adn_1Xpn —--— X2 —adpXq +U
_Xl(t)_ 0 1 0 0 0 __Xl(t)_ 0
Xz(t) 0 0 1 0 0 Xz(t) 0
X3(t) |=| O 0 O 1 0 X3(t) [+]|0u(t)
Xn)] -8 —& -+ 813 —@h_2 —ah_1|[Xxp(t)] [1




SS Realizations
Il
| Controller Canonical Form (CCF)

Controller Canonical Form (CCF)

For the second part

Y (s) n-1 n—
——~ =(b,_1S +bn_ oS
Z(S) (|1 1 n-2

y () =by_z "D (t)+by_pz "D (t)+....+0y7 (t)+boz (t)
an_]_Xn -I—bn_zXn_l—I—....-I—lez —I—boXl

2+...+bls +bg)

X1 (t) |

Xo(t)

yt)=[bo by by - by_p by_q] +0-u(t)

X ()



SS Realizations
e
| Controller Canonical Form (CCF)

Controller Canonical Form (CCF)

Y (s) _ by gs"t+bp_ps" %+ +ys +hyg

G(s)=
UG) s"+ap s" tay os" % +..+as +ag
_Xl(t)_ 0 1 0 0 0 __Xl(t)_ (0
Xz(t) 0 0 1 0 0 Xz(t) 0
X3() =] O 0 1 0 X3(t) [+|0|u(t)
Xn()] |8 —@& -+ 813 —@h_2 —ah_1|[Xxp(t)] [1
xq(t) |
X2(t)
y()=[bg by by -+ byp bng]| % |+0-u()
| X (£)




SS Realizations
S
| Diagonal Canonical Form (DCF)

Diagonal Canonical Form (DCF)

Y (s) oy Use Partial
G(s)=—-+== Z —+1, U (S) Fraction Expansion
U(s) |iEs-4 for TF

* Incase all poles are distinct, we define:
1
Xl(S) — qu (9) ——— X1(t) — ]1x1(t) +uf(t)

Xz(s):

_ U (S) = X, (1) = 4, %, (1) +u(t)

2

xn(s); U (S) me X, (1) = A4, X, (1) +U(E)

n

Y(s) =X, (s)+1,X,(s)+ y YO =1x(0)+5x()+
o0 X (S)+1,U(s) -1 (1) + Ru(t)



SS Realizations

-
Diagonal Canonical Form (DCF)

@] [4 0 - 0] x@)] [1]
M| |0 4 0 || x,(t) AE i0
) [0 0 2 lxm| |1
X (t)
Y(t):[rl - rn] XZ;(t) +rou(t)
| X, (1)

« Matrix A for DCF is diagonal, i.e. all state variables are decoupled

 DCF can be obtained by finding the eigenvalues A’s and eigenvector matrix Q

* Having distinct eigenvalues is exactly the same as having distinct poles
(non-repeated poles) in which case A is diagonalizable



SS Realizations
I S,
Y (s) b,,s""+b, 5" +--+bs +b,
U (s) s"+a, s""+---+as +a,

G(s)=

s"Y(s)+a _S"Y(S)+---+asY(s)+aY(s) =
b _s"U(s)+b _,s"U(s)+---+bsU(s)+bU(s)

() +a,, 10 Ys,(s) Ys(f’)=
S S S

Y(S)%{(bn U (s)-a,,Y(s)+ %{ (b, ZU(S)—an_ZY(s))+%(---)+
s bU(s) aY(S)} }

X, (s)



SS Realizations
E

Observer Canonical Form (OCF)

Xy(s) = %{bou (s)—a,Y (S)} > X, (1) = DoU (1) — &, Y (1)

X(6) == {(BU (9)-aY (5)) + X,(5)} ——> %, () =bu() -ay(O-+x 0

X n (S) = %{(bnlu (S) o an—1Y (S)) + X n-1 (S)} — Xn (t) — bn—1u (t) o a'n—l y(t) + Xn—l (t)

Y (5) = X, (5) = y () = X, (t)



SS Realizations
N

Observer Canonical Form (OCF)

%)) [0 0 - —ay ][ x(t)]
] |1 0 - —a |[ %)

o 2

I
i

u(t)

_Xn (t)_ O O 1 _an_1_ _Xn (t)_ bn—l

yt)=[0 -~ 0 1] +0u(t)




SS Realizations
-
Find the SS realization of the following TF in CCF, DCF, OCF

4s® + 255° + 455 + 34
G(s) = 3 2
28° +12s°+20s+16

And prove that all 3 realizations are equivalent

_453+2532+453+34_2 5% +55+2 » 1s?+21s+1

G(S)— 3 2 =c+ 3 2 = 3 2
2S° +12s° +20s+16 25" +12s° +20s+16 $°+6s°+10s+8




SS Realizations
T

4s° + 25s° + 455 + 34 5% +55+2 1s*+21s+1
G(s)= 3 2 =2+ 3 2 =2+ 3 2
25" +12s° +20s+16 25" +12s° +20s+16 s°+6s°+10s+8

CCF (X¢t)] [0 1 0]/ xq@)] [O
Xot)[=| 0 0 1 |[xoft)|+|0uf(t)
_X3(t)_ _—8 -10 -6 _X3(t)_ 1

xq(t)
y()=[1 25 0.5] xo(t)|+2-u(t)

| x3(t) |




SS Realizations
I

4s° + 25s° + 455 + 34 5% +55+2 1s*+21s+1
G(s)= 3 2 =2+ 3 2 =2+ 3 2
25" +12s° +20s+16 25" +12s° +20s+16 s°+6s°+10s+8

OCF
[ X1@t)] [0 O -8 ][xq)| [ 1
Xot)[=|1 0 10| xo(t)|+]|2.5|u(t)
| X3(t)] |0 1 —6|[x3()] |05

[ xq(t)
y()=[0 0 1] xo(t)|+2-u(t)
| x3(t) |




SS Realizations
Il

Solution

4s° + 25s° + 455 + 34 5% +55+2 1s*+21s+1
G(s)= 3 > =2+— 2 =2+ 2
25° +12s° +20s+16 25° +12s° +20s+16 s°+6s°+10s+8
DCF 3 o _ - o
)(1('[) -1+ ] 0 0 Xl(t)
O =) 00 —1-f 0 |Ixo) |+ 1lue)
X3t)| | O 0 4] x3t)] [1
[ Xq1(t)
y()=[0.3+j0.15 03-j0.15 —0.1]|x,(t) |[+2-u(t)
| X3(t)

Use MATLAB to find partial fraction expansion

[r,p,K] = residue([4 25 45 34],[2 12 20 16])
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