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Lecture Outline

 Linearization of Nonlinear Systems
 Laplace Transform and Solution of Linear Differential 

Equations
 Transfer Functions of LTI Systems
 Block Diagram Representations
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Linearization of nonlinear system

 Example: Pendulum oscillator

But for small θ

What is the formal way that we can use to linearize any model around the 
equilibrium point ??? Taylor series

θ

M

Mg
Mgsinθ

L

�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐽𝐽𝜃̈𝜃

𝑀𝑀𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝜃𝜃 = 𝐽𝐽𝜃̈𝜃
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝜃𝜃 = 𝑀𝑀𝐿𝐿2𝜃̈𝜃

𝑀𝑀𝐿𝐿𝜃̈𝜃 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝜃𝜃 = 0

𝜃̈𝜃 −
𝑔𝑔
𝐿𝐿
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 0

𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 ≈ 𝜃𝜃

Nonlinear

𝜃̈𝜃 −
𝑔𝑔
𝐿𝐿
𝜃𝜃 = 0 After 

linearization
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Linearization of nonlinear system

Example of typical nonlinear characteristics in
control system.

input

output

0

Saturation (Amplifier)
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Linearization of nonlinear system

 Method of linearization
 Assume the system is operating around an equilibrium / operating 

point
 Represent the input and output by their values at the operating point 

plus a small perturbation or error
 Expand the nonlinear i/o relationship using Taylor series around this 

equilibrium point and neglect all terms after the linear (first derivative 
term)

 This is a very reasonable / practical way to use for linearization as 
long as the perturbation stays small enough around the equilibrium 
point
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Linearization of nonlinear system

 Assume y=f(x) where f is a nonlinear function
 Assume (x0,y0) is the equilibrium point. Expanding the nonlinear function y=f(x) 

into a Taylor series about x = x0 yields

0 0

0

2
2

0 0 02

0 0

1( ) ( ) ( )
2!

( ) ( )

x x

x

dy d yy f x y x x x x
dx dx

dyf x x x
dx

= = + − + − +

≈ + −


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Linearization of nonlinear system

 If the output is a nonlinear function of multiple variables 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑛𝑛
 Assume 𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30, … 𝑥𝑥𝑛𝑛0 is the equilibrium point. Expanding the nonlinear 

function 𝑦𝑦 = 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑛𝑛 into a Taylor series about (𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30, … 𝑥𝑥𝑛𝑛0)
yields

𝑦𝑦 = 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑛𝑛

≈ 𝑓𝑓 𝑥𝑥10, 𝑥𝑥20, 𝑥𝑥30, … 𝑥𝑥𝑛𝑛0 + �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1 𝑥𝑥10,𝑥𝑥20,𝑥𝑥30,…𝑥𝑥𝑛𝑛0

𝑥𝑥1 − 𝑥𝑥10

+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2 𝑥𝑥10,𝑥𝑥20,𝑥𝑥30,…𝑥𝑥𝑛𝑛0

𝑥𝑥2 − 𝑥𝑥20 + �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥3 𝑥𝑥10,𝑥𝑥20,𝑥𝑥30,…𝑥𝑥𝑛𝑛0

𝑥𝑥3 − 𝑥𝑥30

+⋯+ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑛𝑛 𝑥𝑥10,𝑥𝑥20,𝑥𝑥30,…𝑥𝑥𝑛𝑛0

𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛0
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Linearization of NL Systems

 Example: Linearize the NL equation Z = XY in the regions  
5 ≤ X ≤ 7, 10 ≤ Y ≤ 12. Find the error if the linearized 
equation is used to calculate Z when X = 5, Y = 10

Solution:
Choose equilibrium point as X0 = 6 and Y0 = 11   (mean of both ranges…why??)

Expand using Taylor series

At X = 5 and Y = 10, 

0 0 0 0

0 0 0 0
, ,

( ) ( )

66 11( 6) 6( 11)
X Y X Y

df dfZ X Y X X Y Y
dX dY

X Y

= + − + −

= + − + −

66 11(5 6) 6(10 11) 49Z = + − + − =

49 5 10 1error = − × = −
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Laplace Transform for Solving Diff. Eq.

s-domain
algebra problems

Solutions of algebra 
problems

Time-domain
ODE problems

Solutions of time-
domain problems

Laplace

Transform
(LT)

Inverse 

LT

Difficult Easy
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Laplace Transform for Solving Diff. Eq.

[ ]

0

( ) ( )

       ( ) st

F s f t

f t e dt
∞ −

=

= ∫



The Laplace transform of a function  f(t)  is defined as

where  𝑠𝑠 = 𝜎𝜎 + 𝑗𝑗𝜔𝜔 is a complex variable.
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Laplace Transform for Solving Diff. Eq.

Examples

 Step signal:

0
( ) ( ) stF s f t e dt

∞ −= =∫ 0

stAe dt
∞ −∫

0

stA e
s

∞
−= − A

s
=

 Exponential signal ( ) atf t e−=

( )F s =
0

at ste e dt
∞ − −∫

1
s a

=
+

( )

0

1 a s te
s a

∞
− += −

+

( )f t A=
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Laplace Transform for Solving Diff. Eq.

f(t) F(s) f(t) F(s)

δ(t) 1

1(t)

t

ate−

2 2
w

s w+

2 2
s

s w+

wte at sin−

wte at cos−

22)( was
w
++

22)( was
as
++

+1
+s a

1
s

2

1
s

sin wt

cos wt

Laplace Transform Pairs of Common Signals
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Laplace Transform for Solving Diff. Eq.

• Properties of Laplace Transform

(1) Linearity

1 2 1 2[ ( ) ( )] [ ( )] [ ( )]af t bf t a f t b f t+ = +  

(2) Differentiation

( ) ( ) (0)df t sF s f
dt

  = −  


(1)1 2 ( 1)( ) ( ) (0) (0) (0)
n

n n n n
n

d f t s F s s f s f f
dt

− − − 
= − − − − 

 


where f(0) is the initial value of f(t).

Try to prove it !!
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Laplace Transform for Solving Diff. Eq.

• Properties of Laplace Transform

(3) Integration

0

( )( )
t F sf d

s
τ τ  =  ∫

(5) Initial-value Theorem

(4) Final-value Theorem

)(lim)(lim
0

ssFtf
st →∞→

=

)(lim)(lim
0

ssFtf
st ∞→→

=

The final-value theorem 
relates the steady-state 
behavior of f(t) to the 
behavior of sF(s) in the 
neighborhood of s=0
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Laplace Transform for Solving Diff. Eq.

• Properties of Laplace Transform
(6)  Shifting Theorem：

a. shift in time (real domain)

[ ( )]f t τ− =

[ ( )]ate f t =

b. shift in complex domain 

(7) Real convolution (Complex multiplication) 

1 2 1 2
0

[ ( ) ( ) ] ( ) ( )
t

f t f d F s F sτ τ τ− = ⋅∫

( )se F sτ− ⋅

( )F s a−
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Laplace Transform for Solving Diff. Eq.

• Inverse Transform
Inverse Laplace transform, denoted by                            is given by

where C is a real constant。

1[ ( )]F s−

1 1( ) [ ( )] ( ) ( 0)
2

C j
st

C j

f t F s F s e ds t
jπ

+ ∞
−

− ∞

= = >
⋅ ∫

Note: The inverse Laplace transform operation involving rational functions
can be carried out using Laplace transform table and partial-fraction
expansion.
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Laplace Transform for Solving Diff. Eq.

Partial-Fraction Expansion method for finding Inverse Laplace 
Transform

1
0 1 1

1
1 1

( )( ) ( )
( )

−
−

−
−

+ + + +
= = <

+ + + +




m m
m m

n n
n n

b s b s b s bN sF s m n
D s s a s a s a

If F(s) is broken up into components

1 2( ) ( ) ( ) ( )nF s F s F s F s= + + +

If the inverse Laplace transforms of components are readily available, 
then

[ ] [ ] [ ] [ ]1 1 1 1
1 2( ) ( ) ( ) ( )nF s F s F s F s− − − −= + + +   

1 2               ( ) ( ) ... ( )nf t f t f t= + + +
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Laplace Transform for Solving Diff. Eq.

Poles
A complex number s0 is said to be a pole of a complex variable 
function F(s) if F(s0)=∞

Examples:
( 1)( 2)
( 3)( 4)
s s
s s
− +
+ +

zeros: 1, -2 poles: -3, -4;

2

1
2 2

s
s s

+
+ + poles: -1+j, -1-j; zeros: -1

Zeros
A complex number s0 is said to be a zero of a complex variable 
function F(s) if F(s0)=0
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Laplace Transform for Solving Diff. Eq.

1
0 1 1

1
1 1

( )( )
( )

−
−

−
−

+ + + +
= =

+ + + +




m m
m m

n n
n n

b s b s b s bN sF s
D s s a s a s a

where ( 1,2, , ) are  roots of ( ) 0, and

( ) ( )
( )

i

i

i i
s p

p i n D s

N sc s p
D s

=

= =

 
= − 
 



( )f t = 1 2
1 2 ... np tp t p t

nc e c e c e−− −+ + +
Solution is a sum of exponentials with different magnitudes and exponents

1 2

1 2

= + + +
− − −



n

n

cc c
s p s p s p

Partial-Fraction Expansion 

Inverse LT

Case 1: F(s)  has simple real poles
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Laplace Transform for Solving Diff. Eq.

2 31 1 1( )
6 15 10

− −∴ = − + +t t tf t e e e

1 1 1 1 1 1( )
6 1 15 2 10 3

∴ = − ⋅ + ⋅ + ⋅
+ − +

F s
s s s

1( )
( 1)( 2)( 3)

F s
s s s

=
+ − +

31 2

1 2 3
cc c

s s s
= + +

+ − +

2
2 ( 21 1

( 1)( 2)( 3) 5
)

1
=

 
= ⋅ = − + 

−
+

s

c
s s s

s

3
3

1 1
( 1)( 2) 0

3)
( )

(
3 1

=−

 
= ⋅ = + − 

+
+

s

c
s s

s
s

1
1

1 1
( 1)( 2)

1)
( 3) 6

(
=−

 
= ⋅ = − + − + 

+
 s

c
s s

s
s

Example:
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Laplace Transform for Solving Diff. Eq.

Case 2: F(s)  has complex conjugate poles

( ) 5)(542 +=++ ssYss

)12()12(54
5)( 2 js

B
js

A
ss

ssY
−−−

+
+−−

=
++

+
=

5.15.0    and    5.15.0 jBjA +=−=

Try MATLAB functions: 
roots(D) 
[r,p,k]=residue(N,D)

( ) ( ) ( ) ( )

tete
ejejty

tt

tjtj

sin3cos
5.15.05.15.0)(

22

22

−−

−−+−

+=

++−=

Example:
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1
1

11 1

( ) ( )−
−

− −= + + + + + +
− − − − −

 

n l l l

n l i i
l l

i

c b bc b
s p s p s p s p s p

Laplace Transform for Solving Diff. Eq.

Case 3: F(s)  has multiple order poles

1 2

( ) ( )( )
( ) ( )( ) ) )( (−

=
− − − −

=


l
in r

N s N sF s
D s s s sp pp p s

1
1 ( ) ( ,) ( ) ( ), ,−=

=

    = ⋅ = ⋅    −
 

− 

l l
i is p

s pi
l l

ds p s p
d

F s
s

b F s b

1

1

1( ) ( ),
( ) (

1 1( ) ( )
! ( 1)! )

−

−

= =

      
= =−      

      
−

−
i

m l
l l

i i

s p s

l m

p

N s N sb b
D s D

d ds p s p
m d ds ss l

The coefficients corresponding to the multi-order poles are determined as follows

Simple poles Multi-order poles
The coefficients corresponding to simple poles are determined as before
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Laplace Transform for Solving Diff. Eq.

Example:

( )
( )

s
sYyssY

ysysYsyysyssYs
1)()0()(3

)0()0()(3)0()0()0()( 223

=+−+

−−+−−− 

( )
s

sYsss 1)(133 23 =+++

( ) ( )323 1
1

133
1)(

+
=

+++
=

ssssss
sY

31 2 1
3 2( )

( 1) ( 1) 1
= + + +

+ + +
bc b bY s

s s s s
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Laplace Transform for Solving Diff. Eq.

1 3
0

1 1
( 1) s

c s
s s =

= =
+

3 2
2 13 1

1

1 1[ ( 1) ] [ ( )] ( ) 1
( 1) s s

s

d db s s
ds s s ds s

−
=− =−

=−

 
= + = = − = − + 

3
3 13

1[ ( 1) ] 1
( 1) sb s

s s =−= + = −
+

3
1

1

1 (2 ) 1
2! s

b s−
=−

= = −

Determining coefficients:

3 2

1 1 1 1( )
( 1) ( 1) 1

∴ = − − −
+ + +

Y s
s s s s

Inverse Laplace transform:
21( ) 1

2
− − −= − − −t t ty t t e te e Try MATLAB functions: 

laplace
ilaplace
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Transfer Function

LTI 
system

Input
u(t)

Output
y(t)

Consider a linear system described by differential equation

[ ]
[ ]

  
1

1 1 0
1

1 1 0

( )
( )

( )

...( )
( ) ...

zero initial condition
m m

m m
n n

n

output y t
TF G s

input u t

b s b s b s bY s
U s s a s a s a

−
−

−
−

= =

+ + + +
= =

+ + + +




( ) ( 1) ( ) ( 1) (1)
1 0 1 0( ) ( ) ( )  ( ) ( ) ( ) ( )n n m m

n m my t a y t a y t b u t b u t bu t b u t− −
− −+ + + = + + + + 

Assume all initial conditions are zero, we get the transfer function(TF) of the 
system as 

Try MATLAB functions: 
tf(num,den)
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Transfer Function

System
e ec

𝑒𝑒 𝑡𝑡 = 𝑅𝑅𝑅𝑅 𝑡𝑡 + 𝐿𝐿
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑒𝑒𝑐𝑐 𝑡𝑡 𝑖𝑖 𝑡𝑡 = 𝐶𝐶
𝑑𝑑𝑒𝑒𝑐𝑐 𝑡𝑡
𝑑𝑑𝑑𝑑

𝑒𝑒 𝑡𝑡 = 𝑅𝑅𝑅𝑅
𝑑𝑑𝑒𝑒𝑐𝑐 𝑡𝑡
𝑑𝑑𝑑𝑑

+ 𝐿𝐿𝐿𝐿
𝑑𝑑2𝑒𝑒𝑐𝑐 𝑡𝑡
𝑑𝑑𝑑𝑑2

+ 𝑒𝑒𝑐𝑐 𝑡𝑡

𝐿𝐿𝐿𝐿 ̈𝑒𝑒𝑐𝑐 + 𝑅𝑅𝑅𝑅 ̇𝑒𝑒𝑐𝑐 + 𝑒𝑒𝑐𝑐 = 𝑒𝑒
i/o relationship

2nd order linear ordinary differential 
equation with constant coefficients

2

( ) 1( )
( ) 1

cE sG s
E s LCs RCs

= =
+ +

2 ( ) ( ) ( ) ( )c c cLCs E s RCsE s E s E s+ + =
2nd order 

polynomial in 
denominator of TF

Example:
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Transfer Function

Remarks:
 The transfer function is defined only for a LTI system
 All initial conditions of the system are set to zero
 The transfer function is independent of the input of the system
 The transfer function  H(s) is the Laplace transform of the unit 

impulse response h(t)

 What about Step Response (Output of the system when input is the 
unit step function)? How is it related to TF?

{ }{ }
{ }

1
( ) ( )

1

( ) ( ) ( ) ( )

( )

x t th t y t H s t

H s

δ δ−
=

−

= = ⋅

=

 



{ }{ }1
( ) ( )

1

( ) ( ) ( ) ( )

( )

step x t u t
h t y t H s u t

H s
s

−
=

−

= = ⋅

 =  
 

 


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Transfer Function

How poles and zeros relate to system response??

• Why we strive to obtain TF models?
• Why control engineers prefer to use TF model?
• How to use TF model to analyze and design control 

systems?

• we start from the relationship between the locations of 
zeros and poles of TF and the output responses of a 
system

Try MATLAB function:
tf2zp,tf
impulse
step
lsim
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Position of poles 
and zeros

-a

j

i0

( ) AX s
s a

=
+

Transfer function

( ) atx t Ae−=

Time-domain impulse 
response

0
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1 1
2 2( )

( )
A s BX s

s a b
+

=
+ +

Transfer function

( ) sin( )atx t Ae bt φ−= +

Time-domain 
impulse response

Position of poles and 
zeros

-a

j

i

b

0
0
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1 1
2 2( ) A s BX s

s b
+

=
+

Transfer function

( ) sin( )x t A bt φ= +

Time-domain 
impulse response

Position of poles and 
zeros

j

i

b

0
0
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Position of poles 
and zeros

-a

j

i0

( ) AX s
s a

=
−

Transfer function

( ) atx t Ae=

Time-domain impulse 
response
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1 1
2 2( )

( )
A s BX s

s a b
+

=
− +

Transfer function：

( ) sin( )atx t Ae bt φ= +

Time-domain 
dynamic response

Position of poles and 
zeros

-a

j

i

b

0

0
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Transfer Function

Note: stability of linear single-input, single-output 
systems is completely governed by the roots of the 
characteristics equation.

Characteristic equation

1
1 1 0 0n n

ns a s a s a−
−+ + + + =

obtained by setting the denominator polynomial of the 
transfer function to zero 
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Block Diagram Representations

 The transfer function relationship

can be graphically denoted through a block diagram. 

( ) ( ) ( )Y s G s U s=

G(s)U(s) Y(s)
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Block Diagram Representations

 Equivalent block diagram of two blocks in series (cascade)

G(s)U(s) Y(s)

X(s)G1(s) G2(s)U(s) Y(s)

1 2
( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

Y s X s Y sG s G s G s
U s U s X s

= = ⋅ = ⋅
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Block Diagram Representations

 Equivalent block diagram of two blocks in parallel

G(s)U(s) Y(s)

1 2
1 2

( ) ( )( )( ) ( ) ( )
( ) ( )

Y s Y sY sG s G s G s
U s U s

+
= = = +

U(s)

G2(s)

G1(s) Y1(s)

Y2(s)
+

Y(S)
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Block Diagram Representations

 Equivalent block diagram of a feedback system

T(s)
R(s) Y(s)

( ) ( ) ( )
( ) ( ) ( ) ( )

Y s U s G s
U s R s Y s H s

=
 = −

( ) gain of forward path( )
1 ( ) ( ) 1-loop gain

G sT s
G s H s

= =
±

[ ]( ) ( ) ( ) ( ) ( )Y s R s Y s H s G s= −

Y(s)
G(s)

H(s)

U(s)R(s)

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Block Diagram Representations

 Summary
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Block Diagram Representations

 Example
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Block Diagram Representations

 Example (cont.)
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