Control Systems And Their Components (EE391)

Lec. 2: Transfer Functions \& Block Diagrams

Sat. Feb. 20 ${ }^{\text {th }}, 2016$

Dr. Mohamed Hamdy Osman

Lecture Outline

- Linearization of Nonlinear Systems
- Laplace Transform and Solution of Linear Differential Equations
- Transfer Functions of LTI Systems
- Block Diagram Representations

Linearization of nonlinear system

- Example: Pendulum oscillator

$$
\sum \text { Torques }=J \ddot{\theta}
$$

$$
M g L \sin \theta=J \ddot{\theta}
$$

$$
M g L \sin \theta=M L^{2} \ddot{\theta}
$$

$$
M L \ddot{\theta}-M g \sin \theta=0
$$

$$
\ddot{\theta}-\frac{g}{L} \sin \theta=0
$$

Nonlinear

But for small $\theta \quad \sin \theta \approx \theta$

$$
\ddot{\theta}-\frac{g}{L} \theta=0 \quad \triangleleft \quad \begin{gathered}
\text { After } \\
\text { linearization }
\end{gathered}
$$

What is the formal way that we can use to linearize any model around the equilibrium point ??? Taylor series

Linearization of nonlinear system

Example of typical nonlinear characteristics in control system.

Saturation (Amplifier)

Linearization of nonlinear system

- Method of linearization
- Assume the system is operating around an equilibrium / operating point
- Represent the input and output by their values at the operating point plus a small perturbation or error
- Expand the nonlinear i/o relationship using Taylor series around this equilibrium point and neglect all terms after the linear (first derivative term)
- This is a very reasonable / practical way to use for linearization as long as the perturbation stays small enough around the equilibrium point

Linearization of nonlinear system

- Assume $y=f(x)$ where f is a nonlinear function
- Assume $\left(x_{0}, y_{0}\right)$ is the equilibrium point. Expanding the nonlinear function $y=f(x)$ into a Taylor series about $x=x_{0}$ yields

$$
\begin{aligned}
y & =f(x)=y_{0}+\left.\frac{d y}{d x}\right|_{x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x_{0}}\left(x-x_{0}\right)^{2}+\cdots \cdots \\
& \approx f\left(x_{0}\right)+\left.\frac{d y}{d x}\right|_{x_{0}}\left(x-x_{0}\right)
\end{aligned}
$$

Linearization of nonlinear system

- If the output is a nonlinear function of multiple variables $x_{1}, x_{2}, x_{3}, \ldots x_{n}$
- Assume $\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, \ldots x_{n_{0}}\right)$ is the equilibrium point. Expanding the nonlinear function $y=f\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$ into a Taylor series about $\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, \ldots x_{n_{0}}\right)$ yields

$$
\begin{aligned}
& y=f\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right) \\
& \approx f\left(x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, \ldots x_{n_{0}}\right)+\left.\frac{\partial f}{\partial x_{1}}\right|_{x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, \ldots x_{n_{0}}}\left(x_{1}-x_{1_{0}}\right) \\
& +\left.\frac{\partial f}{\partial x_{2}}\right|_{x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, \ldots x_{n_{0}}}\left(x_{2}-x_{2_{0}}\right)+\left.\frac{\partial f}{\partial x_{3}}\right|_{x_{1_{0}}, x_{2_{0}}, x_{3_{0}, \ldots}, x_{n_{0}}}\left(x_{3}-x_{3_{0}}\right) \\
& +\cdots+\left.\frac{\partial f}{\partial x_{n}}\right|_{x_{1_{0}}, x_{2_{0}}, x_{3_{0}}, \ldots x_{n_{0}}}\left(x_{n}-x_{n_{0}}\right)
\end{aligned}
$$

Linearization of NL Systems

- Example: Linearize the NL equation $\mathrm{Z}=\mathrm{XY}$ in the regions $5 \leq X \leq 7,10 \leq Y \leq 12$. Find the error if the linearized equation is used to calculate Z when $X=5, Y=10$

Solution:

Choose equilibrium point as $X_{0}=6$ and $Y_{0}=11$ (mean of both ranges...why??)

Expand using Taylor series

$$
\begin{aligned}
& Z=X_{0} Y_{0}+\left.\frac{d f}{d X}\right|_{X_{0}, Y_{0}}\left(X-X_{0}\right)+\left.\frac{d f}{d Y}\right|_{X_{0}, Y_{0}}\left(Y-Y_{0}\right) \\
& =66+11(X-6)+6(Y-11)
\end{aligned}
$$

At $X=5$ and $Y=10$,

$$
\begin{gathered}
Z=66+11(5-6)+6(10-11)=49 \\
\text { error }=49-5 \times 10=-1
\end{gathered}
$$

Laplace Transform for Solving Diff. Eq.

The Laplace transform of a function $f(t)$ is defined as

$$
\begin{aligned}
F(s) & =\mathcal{L}[f(t)] \\
& =\int_{0}^{\infty} f(t) e^{-s t} d t
\end{aligned}
$$

where $s=\sigma+j \omega$ is a complex variable.

Laplace Transform for Solving Diff. Eq.

Examples

$>$ Step signal: $f(t)=A$

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t=\int_{0}^{\infty} A e^{-s t} d t=-\left.\frac{A}{s} e^{-s t}\right|_{0} ^{\infty}=\frac{A}{s}
$$

> Exponential signal $f(t)=e^{-a t}$

$$
F(s)=\int_{0}^{\infty} e^{-a t} e^{-s t} d t=-\left.\frac{1}{s+a} e^{-(a+s) t}\right|_{0} ^{\infty}=\frac{1}{s+a}
$$

Laplace Transform for Solving Diff. Eq.

Laplace Transform Pairs of Common Signals

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$	$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$\delta(\mathrm{t})$	1	$\sin w t$	$\frac{w}{s^{2}+w^{2}}$
$1(\mathrm{t})$	$\frac{1}{s}$	$\cos w t$	$\frac{s}{s^{2}+w^{2}}$
t	$\frac{1}{s^{2}}$	$e^{-a t} \sin w t$	$\frac{w}{(s+a)^{2}+w^{2}}$
$e^{-a t}$	$\frac{1}{s+a}$	$e^{-a t} \cos w t$	$\frac{s+a}{(s+a)^{2}+w^{2}}$

Laplace Transform for Solving Diff. Eq.

- Properties of Laplace Transform
(1) Linearity

$$
\mathcal{L}\left[a f_{1}(t)+b f_{2}(t)\right]=a \mathcal{L}\left[f_{1}(t)\right]+b \mathcal{L}\left[f_{2}(t)\right]
$$

(2) Differentiation

$$
\mathcal{L}\left[\frac{d f(t)}{d t}\right]=s F(s)-f(0) \quad \text { Try to prove it !! }
$$

where $f(0)$ is the initial value of $f(t)$.

$$
\mathcal{L}\left[\frac{d^{n} f(t)}{d t^{n}}\right]=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{(1)}(0)-\cdots-f^{(n-1)}(0)
$$

Laplace Transform for Solving Diff. Eq.

- Properties of Laplace Transform
(3) Integration

$$
\mathcal{L}\left[\int_{0}^{t} f(\tau) d \tau\right]=\frac{F(s)}{s}
$$

(4) Final-value Theorem

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)
$$

 relates the steady-state behavior of $f(t)$ to the behavior of $\mathrm{sF}(\mathrm{s})$ in the neighborhood of $\mathrm{s}=0$
(5) Initial-value Theorem

$$
\lim _{t \rightarrow 0} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

Laplace Transform for Solving Diff. Eq.

- Properties of Laplace Transform
(6) Shifting Theorem:
a. shift in time (real domain)

$$
\mathcal{L}[f(t-\tau)]=e^{-\tau \cdot s} F(s)
$$

b. shift in complex domain

$$
\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a)
$$

(7) Real convolution (Complex multiplication)

$$
\mathcal{L}\left[\int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d \tau\right]=F_{1}(s) \cdot F_{2}(s)
$$

Laplace Transform for Solving Diff. Eq.

- Inverse Transform

Inverse Laplace transform, denoted by $\quad \mathcal{L}^{-1}[F(S)]$ is given by

$$
f(t)=\mathcal{L}^{-1}[F(s)]=\frac{1}{2 \pi \cdot j} \int_{C-j \infty}^{C+j \infty} F(s) e^{s t} d s(t>0)
$$

where C is a real constant.

Note: The inverse Laplace transform operation involving rational functions can be carried out using Laplace transform table and partial-fraction expansion.

Laplace Transform for Solving Diff. Eq.

Partial-Fraction Expansion method for finding Inverse Laplace Transform

$$
F(s)=\frac{N(s)}{D(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}(m<n)
$$

If $\mathrm{F}(\mathrm{s})$ is broken up into components

$$
F(s)=F_{1}(s)+F_{2}(s)+\ldots+F_{n}(s)
$$

If the inverse Laplace transforms of components are readily available, then

$$
\begin{aligned}
\mathcal{L}^{-1}[F(s)] & =\mathcal{L}^{-1}\left[F_{1}(s)\right]+\mathcal{L}^{-1}\left[F_{2}(s)\right]+\ldots+\mathcal{L}^{-1}\left[F_{n}(s)\right] \\
& =f_{1}(t)+f_{2}(t)+\ldots+f_{n}(t)
\end{aligned}
$$

Laplace Transform for Solving Diff. Eq.

Poles

A complex number s_{0} is said to be a pole of a complex variable function $F(s)$ if $F\left(s_{0}\right)=\infty$

Zeros
A complex number s_{0} is said to be a zero of a complex variable function $F(s)$ if $F\left(s_{0}\right)=0$

Examples:

$$
\begin{array}{lll}
\frac{(s-1)(s+2)}{(s+3)(s+4)} & \text { poles: }-3,-4 ; & \text { zeros: } 1,-2 \\
\frac{s+1}{s^{2}+2 s+2} & \text { poles: }-1+j,-1-j ; & \text { zeros: }-1
\end{array}
$$

Laplace Transform for Solving Diff. Eq.

Case 1: F(s) has simple real poles

$$
F(s)=\frac{N(s)}{D(s)}=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}
$$

$$
=\frac{c_{1}}{s-p_{1}}+\frac{C_{2}}{s-p_{2}}+\cdots+\frac{C_{n}}{s-p_{n}}
$$

where $p_{i}(i=1,2, \cdots, n)$ are roots of $D(s)=0$, and

$$
\begin{gather*}
c_{i}=\left.\left[\frac{N(s)}{D(s)}\left(s-p_{i}\right)\right]\right|_{s=p_{i}} \\
f(t)=C_{1} e^{-p_{1} t}+c_{2} e^{-p_{2} t}+\ldots+c_{n} e^{-p_{n} t}
\end{gather*}
$$

Solution is a sum of exponentials with different magnitudes and exponents

Laplace Transform for Solving Diff. Eq.

Example:

$$
\begin{aligned}
& F(s)= \frac{1}{(s+1)(s-2)(s+3)}=\frac{c_{1}}{s+1}+\frac{c_{2}}{s-2}+\frac{c_{3}}{s+3} \\
& c_{1}=\left.\left[\frac{1}{(s+1)(s-2)(s+3)} \cdot(s+1)\right]\right|_{s=-1}=-\frac{1}{6} \\
& c_{2}=\left.\left[\frac{1}{(s+1)(s-2)(s+3)} \cdot(s-2)\right]\right|_{s=2}=\frac{1}{15} \\
& c_{3}=\left.\left[\frac{1}{(s+1)(s-2)(s+3)} \cdot(s+3)\right]\right|_{s=-3}=\frac{1}{10} \\
& \therefore F(s)=-\frac{1}{6} \cdot \frac{1}{s+1}+\frac{1}{15} \cdot \frac{1}{s-2}+\frac{1}{10} \cdot \frac{1}{s+3} \\
& \therefore f(t)=-\frac{1}{6} e^{-t}+\frac{1}{15} e^{2 t}+\frac{1}{10} e^{-3 t}
\end{aligned}
$$

Laplace Transform for Solving Diff. Eq.

Case 2: F(s) has complex conjugate poles

Example: $\quad \ddot{y}(t)+4 \dot{y}(t)+5 y(t)=0, y(0)=\dot{y}(0)=1$

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-\dot{y}(0)+4 s Y(s)-4 y(0)+5 Y(s)=0 \\
& \quad\left(s^{2}+4 s+5\right) Y(s)=s+5 \\
& Y(s)=\frac{s+5}{s^{2}+4 s+5}=\frac{A}{s-(-2+j 1)}+\frac{B}{s-(-2-j 1)} \\
& A=0.5-j 1.5 \text { and } B=0.5+j 1.5 \\
& y(t)=(0.5-j 1.5) e^{(-2+j) t}+(0.5+j 1.5) e^{(-2-j) t} \\
& =e^{-2 t} \cos t+3 e^{-2 t} \sin t \quad \begin{array}{l}
\text { Try MATLAB functions: } \\
\text { roots(D) } \\
\text { [r,p,k]=residue(N,D) }
\end{array}
\end{aligned}
$$

Laplace Transform for Solving Diff. Eq.

Case 3: F(s) has multiple order poles

$$
\begin{aligned}
& F(s)=\frac{N(s)}{D(s)}=\frac{N(s)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n-r}\right)\left(s-p_{i}\right)^{l}} \\
& =\frac{c_{1}}{s-p_{1}}+\cdots+\frac{c_{n-1}}{s-p_{n-1}}+\frac{b_{1}}{\left(s-p_{i}\right)^{l}}+\frac{b_{l-1}}{\left(s-p_{i}\right)^{l-1}}+\cdots+\frac{b_{1}}{s-p_{i}} \\
& \text { Mumple poles }
\end{aligned}
$$

The coefficients corresponding to simple poles are determined as before The coefficients corresponding to the multi-order poles are determined as follows

$$
\begin{aligned}
& b_{l}=\left.\left[F(s) \cdot\left(s-p_{i}\right)^{l}\right]\right|_{s=p_{1}}, b_{l-1}=\left.\left\{\frac{d}{d s}\left[F(s) \cdot\left(s-p_{i}\right)^{l}\right]\right\}\right|_{s=p i}, \cdots, \\
& b_{l-m}=\left.\frac{1}{m!}\left\{\frac{d^{m}}{d s}\left[\frac{N(s)}{D(s)}\left(s-p_{i}\right)^{l}\right]\right\}\right|_{s=p_{1}}, b_{1}=\left.\frac{1}{(l-1)!}\left\{\frac{d^{l-1}}{d s}\left[\frac{N(s)}{D(s)}\left(s-p_{i}\right)^{l}\right]\right\}\right|_{s=p_{i}}
\end{aligned}
$$

Laplace Transform for Solving Diff. Eq.

Example: Solve the following differential equation

$$
\begin{gathered}
y^{(3)}+3 \ddot{y}+3 \dot{y}+y=1, y(0)=\dot{y}(0)=\ddot{y}(0)=0 \\
s^{3} Y(s)-s^{2} y(0)-s \dot{y}(0)-\ddot{y}(0)+3\left(s^{2} Y(s)-s y(0)-\dot{y}(0)\right) \\
+3(s Y(s)-y(0))+Y(s)=\frac{1}{s} \\
\left(s^{3}+3 s^{2}+3 s+1\right) Y(s)=\frac{1}{s} \\
Y(s)=\frac{1}{s\left(s^{3}+3 s^{2}+3 s+1\right)}=\frac{1}{s(s+1)^{3}} \\
Y(s)=\frac{c_{1}}{s}+\frac{b_{3}}{(s+1)^{3}}+\frac{b_{2}}{(s+1)^{2}}+\frac{b_{1}}{s+1}
\end{gathered}
$$

Laplace Transform for Solving Diff. Eq.

Determining coefficients:

$$
c_{1}=\left.\frac{1}{s(s+1)^{3}} s\right|_{s=0}=1
$$

$$
b_{3}=\left[\frac{1}{s(s+1)^{3}}(s+1)^{3}\right]_{s=-1}=-1 \quad b_{1}=\left.\frac{1}{2!}\left(2 s^{-3}\right)\right|_{s=-1} ^{13-0}=-1
$$

$$
b_{2}=\left\{\frac{d}{d s}\left[\frac{1}{s(s+1)^{3}}(s+1)^{3}\right]\right\}_{s=-1}=\left[\frac{d}{d s}\left(\frac{1}{s}\right)\right]_{s=-1}=\left.\left(-s^{-2}\right)\right|_{s=-1}=-1
$$

$$
\therefore Y(s)=\frac{1}{s}-\frac{1}{(s+1)^{3}}-\frac{1}{(s+1)^{2}}-\frac{1}{s+1}
$$

Inverse Laplace transform:

$$
y(t)=1-\frac{1}{2} t^{2} e^{-t}-t e^{-t}-e^{-t}
$$

Try MATLAB functions: laplace
ilaplace

Transfer Function

Consider a linear system described by differential equation
$y^{(n)}(t)+a_{n-1} y^{(n-1)}(t)+\cdots+a_{0} y(t)=b_{m} u^{(m)}(t)+b_{m-1} u^{(m-1)}(t)+\cdots+b u^{(1)}(t)+b_{0} u(t)$
Assume all initial conditions are zero, we get the transfer function(TF) of the system as

$$
\begin{aligned}
T F & =G(s)=\left.\frac{\mathcal{L}[\text { output } y(t)]}{\mathcal{L}[\text { input } u(t)]}\right|_{\text {zero initial condition }} \\
& =\frac{Y(s)}{U(s)}=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}}
\end{aligned}
$$

Try MATLAB functions:

Transfer Function

Example:

$$
\begin{aligned}
& e(t)=R i(t)+L \frac{d i}{d t}+e_{c}(t) \quad\left\langle\quad i(t)=C \frac{d e_{c}(t)}{d t}\right. \\
& e(t)=R C \frac{d e_{c}(t)}{d t}+L C \frac{d^{2} e_{c}(t)}{d t^{2}}+e_{c}(t)
\end{aligned}
$$

$$
L C \ddot{e}_{c}+R C \dot{e}_{c}+e_{c}=e \quad 2^{\text {nd }} \text { order linear ordinary differential }
$$

equation with constant coefficients

$$
L C s^{2} E_{c}(s)+R C s E_{c}(s)+E_{c}(s)=E(s)
$$

$$
G(s)=\frac{E_{c}(s)}{E(s)}=\frac{1}{L C s^{2}+R C s+1} \Leftarrow
$$

Transfer Function

Remarks:

- The transfer function is defined only for a LTI system
- All initial conditions of the system are set to zero
- The transfer function is independent of the input of the system
- The transfer function $\mathrm{H}(\mathrm{s})$ is the Laplace transform of the unit impulse response $h(t)$

$$
\begin{aligned}
h(t)=\left.y(t)\right|_{\chi(t)=\delta(t)} & =\mathcal{L}^{-1}\{H(s) \cdot \mathcal{L}\{\delta(t)\}\} \\
& =\mathcal{L}^{-1}\{H(s)\}
\end{aligned}
$$

- What about Step Response (Output of the system when input is the unit step function)? How is it related to TF?

$$
\begin{aligned}
h_{\text {step }}(t)=\left.y(t)\right|_{x(t)=u(t)} & =\mathcal{L}^{-1}\{H(s) \cdot \mathcal{L}\{u(t)\}\} \\
& =\mathcal{L}^{-1}\left\{\frac{H(s)}{s}\right\}
\end{aligned}
$$

Transfer Function

How poles and zeros relate to system response??

- Why we strive to obtain TF models?
- Why control engineers prefer to use TF model?
- How to use TF model to analyze and design control systems?
- we start from the relationship between the locations of zeros and poles of TF and the output responses of a system

```
Try MATLAB function:
tf2zp,tf
impulse
step
Isim
```


Transfer function

$$
X(s)=\frac{A}{s+a}
$$

Time-domain impulse response

$$
x(t)=A e^{-a t}
$$

Position of poles and zeros

Impulse Response

Transfer function

Time-domain impulse response

$$
x(t)=A e^{-a t} \sin (b t+\phi)
$$

Position of poles and zeros

Transfer function

$$
X(s)=\frac{A_{1} s+B_{1}}{s^{2}+b^{2}}
$$

Time-domain impulse response

$$
x(t)=A \sin (b t+\phi)
$$

Position of poles and zeros

Impulse Response

Transfer function

$$
X(s)=\frac{A}{s-a}
$$

Time-domain impulse response

$$
x(t)=A e^{a t}
$$

Position of poles and zeros

Transfer function:

Time-domain
 dynamic response

$$
x(t)=A e^{a t} \sin (b t+\phi)
$$

Position of poles and zeros

Impulse Response

Transfer Function

Characteristic equation
obtained by setting the denominator polynomial of the transfer function to zero

$$
s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}=0
$$

Note: stability of linear single-input, single-output systems is completely governed by the roots of the characteristics equation.

Block Diagram Representations

- The transfer function relationship

$$
Y(s)=G(s) U(s)
$$

can be graphically denoted through a block diagram.

Block Diagram Representations

- Equivalent block diagram of two blocks in series (cascade)

\[

\]

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{X(s)}{U(s)} \cdot \frac{Y(s)}{X(s)}=G_{1}(s) \cdot G_{2}(s)
$$

Block Diagram Representations

- Equivalent block diagram of two blocks in parallel

$$
G(s)=\frac{Y(s)}{U(s)}=\frac{Y_{1}(s)+Y_{2}(s)}{U(s)}=G_{1}(s)+G_{2}(s)
$$

Block Diagram Representations

- Equivalent block diagram of a feedback system

Block Diagram Representations

- Summary

Transformation

1. Combining blocks in cascade

Original Diagram

Equivalent Diagram

2. Moving a summing point behind a block

Moving a pickoff point ahead of a block

5. Moving a summing point ahead of a block

6. Eliminating a feedback loop
or

Block Diagram Representations

- Example

Block Diagram Representations

- Example (cont.)

