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Course Staff

 Instructors
 Dr. Mazhar Tayel (Semiconductor Technology)
 Drs. Noha Othman and Mohamed Hamdy Osman (Semiconductor Physics 

and Devices)
 Email: mohamed.osman2@alexu.edu.eg
 Webpage: http://eng.staff.alexu.edu.eg/~mosman/
 Office: 3rd floor EE Buliding

 TAs:
 Eng. Abdelrahman Zayed (Semiconductor Physics and Devices)
 Eng. Mostafa Ayesh and Eng. Mai Fouad (Semiconductor Technology)

 Office Hours: Wednesday 10.00 AM - 1:00 PM
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Basic Course Inforrmation

 Textbook
 “Solid State Electronic Devices” 6th ed. by Ben Streetman, Sanjay K. 
Banerjee

 Other reference books and supplementary material
 “Modern semiconductor devices for integrated circuits,” by Chenming Hu 

Prentice Hall, 2010.
 Devices course at http://ecee.colorado.edu/~bart/book/book/contents.htm
 Quantum physics course at http://users.aber.ac.uk/ruw/teach/237/
 Quantum physics course at https://ocw.mit.edu/courses/physics/8-04-

quantum-physics-i-spring-2013/lecture-videos/

 Prerequisites
 Modern Physics EE131 (Atomic Physics part)
 Solid state electronics EE233 (quantum mechanics principles and 

Schrodinger wave equation, free electron theory of metals and band theory 
of semiconductors)
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Basic Course Inforrmation

 Grading (150 marks)
 Final (90 marks)
 Year work (60 marks)

 Midterm (30 marks or more)
 Year work (30 marks or less)  lab + attendance + quizzes

 Course Webpage
http://eng.staff.alexu.edu.eg/~mosman/page3/
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Course Outline

 Semiconductor physics
 Energy bands, carrier concentrations at equilibrium and carrier transport in 

semiconductors

 Semiconductor devices
 PN junction diode, bipolar junction transistors (BJT), Metal oxide 

semiconductor field effect transistor (MOSFET)

 Semiconductor technology
 Crystal growth and wafer manufacturing, film formation, photolithography 

and fabrication process 
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Lecture Outline 

 Particle-wave duality
 Experimental observations that led to quantum theory and 

modern atomic structure
 Bohr’s atomic model
 Schrodinger’s wave equation and its solution in some 

fundamental systems (e.g. Infinite potential barrier)
 Schrodinger equation for the Hydrogen atom  four 

quantum numbers (n, l, m, s)
 The periodic table and electronic configuration of other 

more complicated atoms 
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Particle-wave duality

 Historically in 19th century, light was thought to consist of 
electromagnetic (EM) waves whose propagation is 
governed by Maxwell equations whereas matter was 
thought to consist of localized particles whose motion can 
be described by classical mechanics (Newton’s laws)

 Later on, experimental observations led to the so-called 
particle-wave duality concept in the early 20th century

 Any particle with energy E and momentum p has an 
associated wave with frequency ν and wavelength λ related 
to E and p as

E h
hp




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
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Experimental observations

 The photoelectric effect experiment demonstrated the  discrete 
(quantized) nature of light which could not be explained by 
treating light as waves

 Maximum kinetic energy of emitted electrons (measured by 
stopping potential V) grows linearly with frequency of incident 
light (constant of proportionality is later called Plank’s constant)

 Maximum kinetic energy of emitted electrons does not depend 
on incident light intensity!!! (Only number of emitted electron, i.e. 
resulting current I depends on incident light intensity)

skgmh /.  10626.6 234
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Experimental observations

 Einstein later explained the photoelectric effect as follows 
“Light consists of photons each with energy hν ”

 Unless the energy of one photon is not enough to release 
one electron from the potential barrier binding it to metal, 
no electrons will be released regardless of how many 
photons are incident (light intensity means nothing)

 This experiment demonstrates particle-like behavior of light
 Wave-like behavior of light has been already established 

experimentally by e.g. interference of two light beams

 qhEelect 

Kinetic energy of 
emitted electrons

Workfunction of 
metal (minimum 
energy required to 
release an electron 
from the barrier)
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De Broglie hypothesis

 Not only light has both particle- and wave-like behavior but 
all particles in a matter do so!!!  Hypothesis that was later 
confirmed experimentally

 Any particle with energy E and momentum p has an 
associated wave with frequency ν and wavelength λ related 
to E and p as

E h
hp








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Experimental observations

 Davisson-Germer experiment showed that electron beams also cause 
interference patterns when diffracted from a periodic crystal

 In the experiment, maximum energy (constructive interference) was 
obtained at a certain θ which results in a certain λ from Bragg’s equation

 This λ matches the wavelength obtained from De Broglie’s relation                  
for an electron with the same measured experimental momentum

2 sind n Constructive interference 
condition (Bragg’s condition)

h p 
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Hydrogen spectrum and Bohr’s model

 Spectrum of light emitted from hydrogen gas is measured when electric 
discharge is created in the Hydrogen gas

 From the peaks of the measured spectrum, the main features of the 
Hydrogen atom were discovered 

 Since the energy of the emitted photons (related to their frequencies by E = 
hν) corresponds to the energy released by an electron inside the atom and 
hence to the energy separation between two allowable energy levels where 
the electron moves from the higher to lower level
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Hydrogen spectrum and Bohr’s model
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Hydrogen spectrum and Bohr’s model
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 Emission spectrum led Bohr to construct his model based on following 
postulates
 Electrons have certain quantized allowable energy levels where they can shift from one to another 

releasing the energy difference on form of photon
 Angular momentum of an electron is quantized

 Without going through math (see 2.3 in Streetman), we can derive

,...3,2,1    ,  nnp 
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Hydrogen spectrum and Bohr’s model

 Bohr’s model prediction matches the experimental emission peaks 
in the Hydrogen spectrum

 Shortcomings of Bohr’s model
 It only accounts for gross features of the atom  only 1 quantum number n

exists where later quantum mechanics will result in 4 quantum numbers 
(n,l,m,s) to fully describe/identify a state (orbital) of an electron

 Cannot be extended to more complicated atoms with more than one electron

 Bohr’s model was a step towards a more comprehensive theory 
based on Quantum mechanics
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Schrodinger’s wave equation

 One can find the wave function ψ associated with a particle (e.g. electron) 
in a system (e.g. atom) by solving the following partial differential equation
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Properties of wavefunction

 The probability of finding the particle in a certain volume M is calculated as

and hence

 Classical quantities such as momentum and energy are random in 
quantum mechanical language and instead their averages (Expected 
values) are calculated within the limits of Heisenberg uncertainty principle

   
volume

dxdydzzyxzyx ,,,,* 

Probability density function
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Properties of wavefunction

 Classical quantities such as momentum and energy are random in 
quantum mechanical language and instead their averages (Expected 
values) are calculated within the limits of Heisenberg uncertainty principle
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Infinite potential well (particle in a box)
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Infinite potential well (particle in a box)
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 For H atom, we use spherical coordinates (r,θ,φ) (nucleus in the center of 
coordinate system)

 Details of math are beyond the scope of the course but you basically do 
separation of variables by decomposing wavefunction into three parts

and then solve each differential equation separately

Schrodinger equation for a Coulomb's potential well
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 As an example, solution of phi-dependent equation

where the exponent m denotes the magnetic quantum number
 Also the radial and theta dependent parts will produce two more quantum 

numbers n and l respectively

 The three quantum numbers are inter-related as

 In addition, there is a fourth quantum number that identifies the spin of the 
electron

 n, l, m, s uniquely define a quantum state (sometimes called orbital)

Schrodinger equation for a Coulomb's potential well
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Allowable states of an electron in H atom

 Standard notation for electronic configuration
l = 0  s         l = 1  p          l = 2  d           l = 3  f
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Electronic configuration of other atoms

 For Si with Z = 14    1s22s22p63s23p2   [Ne] 3s23p2   

 For Ge with Z = 32   1s22s22p63s23p63d104s24p2    [Ar] 3d104s24p2 

 All previous discussion is for an isolated atom but what happens for if 
atoms are brought closer as in a crystal??


