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Lecture Outline

 Adding reference inputs to the design of state feedback 

controllers

 Pre-scaling reference inputs to achieve zero steady state 

error

 Introduction to state estimators/observers
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Full state feedback (from last lecture)

Plant

(A,B,C,D)
u

y

K

r +

-

x

( ) ( ) ( )t t t x Ax Bu

Assume full state feedback of the form

( ) ( ) ( )t t t u r Kx

where r is a reference input and (assume a single 

input for simplicity)

1 nK R

Closed loop 

system
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Full state feedback with reference input

 ( ) ( ) ( )t t t  x A BK x Br

Now we will not assume r = 0 as we did in regulator case, and 

assume we have a certain reference input r ≠ 0 that we would like 

the output y to track (what does this mean?)

clA

( ) ( ),     assume  0y t t Cx D

A sufficient condition on the output y for tracking r is

which makes ess = 0  (zero steady state error)

lim ( ) lim ( )
t t

y t r t
 


assuming a 

single input 

for simplicity
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Full state feedback with reference input

lim ( ) lim ( )
t t

y t r t
 



0 0

0

lim ( ) lim ( )

( )
lim 1

( )

s s

s

sY s sR s

Y s

R s

 







Final value 

theorem

Closed loop transfer 

function at DC equals 1
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Full state feedback with reference input

Illustrative 

Example
Find the feedback gains K of the following SS system such 

that the closed loop poles become -2+2i and -2-2i, then 

find the closed loop TF at DC

0 1 0
( ) ( ) ( )

1 1 1
t t t

   
    

    
x x u

 7 3KSolution From last lecture

 ( ) 1 0 ( )y t t x

 ( ) ( ) ( )

0 1 0
( ) ( ) ( )

8 4 1

t t r t

t t r t

  

   
    

    

x A BK x B

x x
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Full state feedback with reference input

Illustrative 

Example
Find the feedback gains K of the following SS system such 

that the closed loop poles become -2+2i and -2-2i, then 

find the closed loop TF at DC

0 1 0
( ) ( ) ( )

1 1 1
t t t

   
    

    
x x u

 7 3KSolution From last lecture

 ( ) 1 0 ( )y t t x

    

   

11

1

2 2

( )

( )

1 0 4 1 01 1
1 0 1 0

8 4 1 8 14 8 4 8

Y s
TF s s

R s

s s

s ss s s s





      

        
          

           

clC I A B C I A BK B
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Full state feedback with reference input

Illustrative 

Example

0

( ) 1
lim 1

( ) 8s

Y s

R s
  

ySS = 0.125

rSS = 1

How can we 

overcome this 

lack of 

tracking?

sys = ss(A-B*K,B,C,D)

step(ss)
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Pre-scaling reference input

Illustrative 

Example
0 1 0

( ) ( ) ( )
1 1 1

t t t
   

    
    

x x u

Solution

 ( ) 1 0 ( )y t t x

 

 

( ) ( ) ( )

0 1 0
( ) ( ) ( )

8 4 1

( ) 1 0 ( )

t t N r t

t t N r t

y t t

  

   
    

    



x A BK x B

x x

x

If we pre-scale the reference input r by a factor       before entering 

closed loop system

ഥ𝑁
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Pre-scaling reference input

Illustrative 

Example
0 1 0

( ) ( ) ( )
1 1 1

t t t
   

    
    

x x u

Solution

 ( ) 1 0 ( )y t t x

If we pre-scale the reference input r by a factor       before entering 

closed loop system

ഥ𝑁

    
11

2

( )

( )

4 8

Y s
TF s N s N

R s

N

s s


      


 

clC I A B C I A BK B

0

( )
lim        8

( ) 8s

Y s N
N

R s
   
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Pre-scaling reference input

Illustrative 

Example

ySS = 1

rSS = 1

Problem 

solved with 

pre-scaling r

sys = ss(A-B*K,Nbar*B,C,D)

step(ss)
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Full state feedback with pre-scaled reference 

(summary)

Plant

(A,B,C,D)
u

y

K

r +

-

x

 ( ) ( ) ( )

( ) ( )

t t N r t

y t t

  



x A BK x B

Cx

Assuming full state feedback and pre-scaled reference input to 

achieve Steady state tracking
( ) ( ) ( )u t N r t t Kx

Closed loop 

system

ഥ𝑁

 
1

1
N




 C A BK B



13

MATLAB example 1 (2nd order system)

  
8

( )     
5 10

Maximum overshoot =5%

2% settling time 4 sec

G s
s s


 



• Find the desired two poles

• Find K that achieves so (same as last lecture)

• Find Nbar that achieves steady state tracking

• Make sure closed loop system satisfy the specifications
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MATLAB example 2 (3rd order system)

   
8

( )     
5 10 7

Maximum overshoot =5%

2% settling time 4 sec

G s
s s s


  



• Find the desired two poles

• Place the remaining pole far away

• Find K that achieves so (same as previous lecture)

• Find Nbar that achieves steady state tracking

• Make sure closed loop system satisfy the specifications
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Intro to State estimators / observers

• What we did so far

Plant

(A,B,C,D)
u

y

K

r +

-

x
Closed loop 

system

ഥ𝑁

• Problem is that we have assumed full state feedback which 

means we have full access to the state variables of the system 

from which is evaluated

• This is not true since in reality we only have access to the sensor 

outputs y and not the state variables x

• Could try output feedback but will have less degrees of freedom 

compared to state feedback (cannot control all pole locations 

freely like what we did with K)

u N r Kx
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Intro to State estimators / observers

• The solution to the lack of measurements of x is to use state 

estimator/observer

• A state estimator/observer is a replica of the actual system or 

plant that tries to estimate the true state variables of the system 

from the actual measured output y and provides the estimated 

state vector

• We can then combine the developed estimator together with state 

feedback control to have a realistic method of controlling the 

closed loop poles based on the feedback of estimated state 

variables (more on this later but we will focus on 

estimator alone for the moment)

• Estimation strategies we have in hand

 Open loop (bad strategy as we will see)

 Closed loop

x̂

ˆu  Kx
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Estimator

(A,B,C,D)

Open loop estimator

• Assuming we know the input u and plant matrixes A, B, C, and 

that D = 0

• We can just simulate a replica of the actual plant on say a 

computer and obtain an estimate as follows

x̂

Plant

(A,B,C,D)

xu

y

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

t t u t

t t u t

 

 

x Ax B

x Ax B

ŷ

x̂
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Open loop estimator

• However we do not know x(0) so how well the above estimator 

works if the initial estimation error is not zero

• Define the estimation error e(t)

( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

t t u t

t t u t

 

 

x Ax B

x Ax B

Dynamic eq. of actual plant

Dynamic eq. of simulated plant 

(estimator)

   

ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

( ) (0)t

t t t

d
t t t t

dt

t t

t e

 

  



  A

e x x

x x A x x

e Ae

e e

ˆ ˆIf   (0) (0),    ( ) ( )   t t t  x x x x
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Open loop estimator

• Everything looks fine if initial error e(0) = 0

• If e(0) ≠ 0, e(t) as t → ∞ may decay to zero if the eigenvalues of A

have negative real part (if the original plant is stable)

• Since the estimation error is totally dependent on A, this is not a 

good estimation strategy since we cannot control the dynamics of 

the estimation error at all

• We may make use of other available information in building a 

better state estimator (how?  closed loop estimator)

( ) (0)tt e A
e e
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Closed loop estimator

• The idea is to feedback the error in the estimated output, i.e. its 

difference from the actual output of the system which can be 

observed

• L is a selectable gain matrix (similar to K) that will allow us to 

control the dynamics of the estimation error e(t) as will be seen

Estimator

(A,B,C,D)

x̂

Plant

(A,B,C,D)

xu

y

ŷ

+

-

L
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Closed loop estimator

Estimator

(A,B,C,D)

x̂

Plant

(A,B,C,D)

xu

y

ŷ

+

-

L

( ) ( ) ( )t t u t x Ax B Dynamic eq. of actual 

plant

Dynamic eq. of simulated 

plant (estimator) ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t y t   x Ax B L
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Closed loop estimator

( ) ( ) ( )t t u t x Ax B Dynamic eq. of actual 

plant

Dynamic eq. of simulated 

plant (estimator) ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )t t u t y t y t   x Ax B L

( ) ( )

ˆ ˆ( ) ( )

y t t

y t t





Cx

Cx

Output eq. of actual plant

Output  eq. ofestimator

   

 

 

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

( )

t t t t t y t y t

t t t

t

     

  

 

e x x A x x L

Ae LC x x

A LC e

• Let’s try to find the dynamics of e(t) with the added feedback to 

the estimator
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Closed loop estimator

 

 

( ) ( )

( ) (0)
t

t t

t e


 

 
A LC

e A LC e

e e

• It is obvious that by choosing a proper gain matrix L, we can 

control the dynamics of the estimation error, i.e. make it go to zero 

fast such that the estimated state variables converge to the actual 

state variables fast enough

• This is all controlled by the eigenvalues of A-LC

   
1

0
n

j

j

s s s



    I A LC

Desired pole locations of state estimator 

where?  we will see later
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Controller and Observer design (Dual problems)

• K and L are chosen to achieve desired pole locations

• Controller and Observer design are called dual problems

• Just like before when the system had to be controllable to find K, 

the system now has to be observable to find L

   
1

0
n

m

m

s s s



    I A LC

Desired pole locations of state estimator

   
1

0
n

j

j

s s s



    I A BK
Controller design

Observer/Estimator design

Desired pole locations closed loop sys

1 nK R

1nL R
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Akermann’s formula for Observer design

  1 0 0 1n desired


T
L O Φ A

• It gives a formal way to obtain L

• Without proof

Observability 

matrix
Desired characteristic 

equation of state 

estimator/observer

• Clearly On needs to be invertible, hence full rank, hence the 

system must be observable in order to be able to find L
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Observer design

For the system with the following matrices and initial 

state vector

Example

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Test observability

• Find L that makes poles of estimator/observer at -3 and -4
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Observer design

For the system with the following matrices and initial 

state vector

Solution

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Test observability

 
1 0

      rank 2     observable
1 1.5

n n
   

       
   

C
O O

CA
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Observer design

For the system with the following matrices and initial 

state vector

Solution

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Find L that makes poles of estimator/observer at -3 and -4

   

    

  

1

1

2

1

2

0

0 1 1.5
1 0 3 4

0 1 2

1 1.5
3 4

1 2

n

m

m

s s s

Ls
s s

Ls

s L
s s

L s



    

     
        

     

   
   

  

I A LC
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Observer design

For the system with the following matrices and initial 

state vector

Solution

 
1 1.5

,     1 0 ,
1 2

 
  

 
A C

• Find L that makes poles of estimator/observer at -3 and -4

  

   

1

2

2 2
1 1 2

1

2

1 1.5
3 4

1 2

3 2 1.5 0.5 7 12

4

2.333

s L
s s

L s

s L s L L s s

L

L

   
   

  

       




MATLAB

Use AT and CT as your A and B in “place” function

L = place(A.’,C.’,desired poles)


