1. For the following single-input single-output SS equation

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B} u(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \\
& y(t)=\mathbf{C x}(t)+\mathbf{D} u(t)
\end{aligned}
$$

with $\mathbf{D} \neq 0$, show that the related SS equation

$$
\begin{aligned}
& \dot{\mathbf{z}}(t)=\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right) \mathbf{z}(t)+\mathbf{B D}^{-1} v(t), \quad \mathbf{z}(0)=\mathbf{z}_{0} \\
& w(t)=-\mathbf{D}^{-1} \mathbf{C}(t)+\mathbf{D}^{-1} v(t)
\end{aligned}
$$

has the property that if the initial conditions of both systems are the same, i.e. $\mathbf{z}_{0}=\mathbf{x}_{0}$, the second system will act as the inverse of the first system, i.e. $w(t)=u(t)$ when $v(t)=y(t)$.

