
Interval Types (Hypothetical)

Erasure and DTAs (Hypothetical) F-bounded Generics (F-subtypes and F-supertypes)

Wildcard Types (Variance Annot.)

• Future work:
o Include type variables (tvars) in the subtyping rules.
o Define a ⋉–like operator to model general inheritance

declarations (e.g., class C<T> extends D<F<T>>).

o Model multiple type params (multi-ary generic classes).

• Mutual Coinduction: For modeling mutual generic classes,
 circular or infinitely-justified subtyping relations, mutually-
 dependent type params, and the mutual dependency
 between subtyping and containment.

 Multiple

 Simultaneous Simultaneous
 Pre-Fixed Points Pre-Fixed Points

o (Infinite) mutual coinduction useful in modeling quant-
um phenomena, e.g., superposition or entanglement?

• Java Subtyping Operad (JSO): Models
 the construction of the self-similar
 subtyping relation between ground
 generic types in Java.

• References: See http://arxiv.org/a/abdelgawad_m_1

• The two compositions 𝐹𝑇 ◦ 𝐸 and 𝐸 ◦ 𝐹𝑇 define two self-maps
(a.k.a., endomaps) over subtyping and over subclassing/
inheritance, resp. The two endomaps are closure operators.

• For a generic class C, its F-subtypes or C-subtypes (types T

in T where T <: C<T>) are C-coinductive types (or, C-

coalgebras); its F-supertypes or C-supertypes (types T in

T where C<T> <: T) are C-inductive types (or, C-algebras).

• Free types are the greatest F-subtypes. Cofree types (e.g.,
C<!>; useful as l-bounds in DFBG) are the least F-supertypes.

• Real functions—i.e., ones from ℝ to ℝ—with function-bounded

domains (e.g., the function cos(𝑥 ≤ cos(𝑥))) inspire our model-

ing of F-bounded and doubly F-bounded generics (DFBG).

• A doubly F-bounded type variable in DFBG ranges over
types that are F-subtypes of the erasure of its upper bound
and that are F-supertypes of the erasure of its lower bound.

• DFBG motivates defining admittible versus valid entities:
type args, types (e.g., Enum<Object>) and subtype relations.

Preorders & Posets (Thin) Categories

Closure Operator Monad

Pre-Fixed Point (Inductive Object) Algebra

Post-Fixed Point (Coinduct. Object) Coalgebra

Least Pre-FP/Greatest Post-FP Initial Algebra/Final Coalgebra

Modeling Object-Oriented Generics
A Lattice- & Category-Theoretic Approach

Moez AbdelGawad (moez@cs.rice.edu)

Informatics Research Institute, SRTA-City, Alexandria, Egypt

• The partial product operator (⋉) is used to model that only generic

classes are paired with type arguments to construct new types but
all types, incl. non-generic ones, share in the subtyping relation.

• Operators ∆ and ⇕ ('triangle/wildcards' & 'intervals') construct inter-

vals in Hasse diagram (a directed acyclic graph) of input subtyping
relation. Intervals of a directed graph are paths modulo endpoints.
o Operator ∆ requires ⊤ (i.e., Object, or O) as an upper bound or

⊥ (i.e., Null, or N) as a lower bound of the constructed interval;

operator ⇕ only requires the lower bound to be a subtype of the
upper bound (i.e., ⇕ is strictly more general than ∆).

• The erasure 𝐸(𝑃𝑇) of a parameterized type 𝑃𝑇 maps type 𝑃𝑇 to the
class used to construct the type (e.g., 𝐸(List<Integer>)=List).

• The free type 𝐹𝑇(𝐶) corresponding to a generic class 𝐶 is the
parameterized type representing the most general instantiation of
class 𝐶 (e.g., 𝐹𝑇(List)=List<?>).

• Erasure and free types define a Galois connection (EGC) between
subclassing and subtyping (i.e., are adjoints of an adjunction):

for all type arguments T, classes C, D, C ⊴ D ⇔ C<T> <: D<?>

(C is the erasure of C<T>; D<?> is the free type of D)

 which expresses a fundamental property of generic OOP, namely, that
 inheritance is the only basis of subtyping in generic OOP.

• The composition 𝐹𝑇 ◦ 𝐸 maps a parameterized type to its correspond-
ing free type, while the composition 𝐸 ◦ 𝐹𝑇 maps a class to itself.

More

• A simple intuitive model of generic object-oriented
 (OOP) type systems that includes Java wildcards,
 F-bounded generics, and erasure — and avoids
 explicit use of existential types.

• Existential types naturally arise in functional
 programming but do not match well with object-
 oriented inheritance and subtyping.

• Provide a basis for better compiler diagnostics (no
 mystic "capture of …" compiler error messages).

• Accommodate a first-class approach to generics,
 where parametric type info is available at runtime.

Goals

Partial Products and Intervals.
Erasure, Free Types, and

the Erasure Galois Connection (EGC)

Constructing Subtyping from Subclassing (and Containment)

List[Integer-Num] lin

List[PosInt-Num] lpi

List[Integer] li

lpi instanceof List[Null-Num] // yes

lpi instanceof List[Integer-Num] // no

lin := li // yes li := lin // no

List[Null-Vector[Null-Num]] // nest

// Default Type Arguments (DTAs)

class C<T=Object>

// default type arg. is Object

class G<T=Integer>

// default type arg. is Integer

// Erased type, where class name

// is used as type name

C c // type of c is C<Object>

G g // type of g is G<Integer>

// If unspecified, default default

// type arg. is upper bound (Java)

Code Examples

class Real extends Num

class Integer extends Real

class PosInt extends Integer

List<Integer> li

li instanceof List<? extends Num> // yes

li instanceof List<? super Num> // no

List<? extends Vector<? extends Num>> // nest

class C<T> // T ranges over all types

class D<T extends C<T>> // T is F-bounded; ranges over C-subtypes (C-coalgebras/C-smalls)

class E<T extends E<T>> // E=Enum. T ranges over E-subtypes (E-coalgebras/E-small types)

class E<T super C<T>> // Hypoth. T ranges over C-supertypes (C-algebras/C-big types)

Copyright @ Moez A. AbdelGawad 2019 – Modeling Object-Oriented Generics – Applied Category Theory (ACT) Conference – 15-19 July 2019 – Department of Computer Science (Quantum Group) – Oxford University, Oxford, UK

 T = C ⋉ G ∆(T)

Ii = ∆(Ti)

⋉

Subtyping
(T under <:)

Containment
(I under ⊑)

Subclassing
(C under ⊴; inheritance)

Ti+1 = C ⋉ G Ii
⋉

∆

F-sub/supertypes, Cofree Types, and
Doubly F-bounded Generics (DFBG)

Illustrating
Partial Graph/Poset Products, and
Function-bounded Real Functions

cos(𝑥 ≤ cos(𝑥)) cos(cos 𝑥 ≤𝑥)

cos(𝑥)

G H

G⋉{2}H G⋉{2,3}H

(Note the ―triangles‖ in subtyping, due to co/contra/in-variant wildcard subtyping rules) (w/ intervals. T1 = C ⋉ G ⇕(T0))

class C<T> extends Object

class C<T> extends Object

class E<T> extends C<T>

class C<T> extends Object

class D<T> extends Object A class is a member of set C.
A generic class in G ⊆ C is a class having a type parameter.

An (admittable, ground) type in set T is a non-generic class
or a generic class parameterized by an interval.

A (type) interval in set I is a pair of <:-ordered types.

Interval-based Subtyping Rules (Core)

(Ground=No tvars. Rule 𝑆𝑢𝑏𝑡𝐺𝐺 assumes class C<T> extends D<T>)
(w/ wildcards. T1 = C ⋉ G ∆(T0))

