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ABSTRACT
Embedded electronics are widely used in cyber-physical pro-
cess control systems (PCSes), which tightly integrate and co-
ordinate computational and physical elements. PCSes have
safety-critical applications, such as the supervisory control
and data acquisition (SCADA) systems used in industrial
control infrastructure, or the flight control systems used in
commercial aircraft. Perimeter security and air gap ap-
proaches to preventing malware infiltration of PCSes are
challenged by the complexity of modern networked control
systems incorporating numerous heterogeneous and updat-
able components such as standard personal computing plat-
forms, operating systems, and embedded configurable con-
trollers. Global supply chains and third-party hardware
components, tools, and software limit the reach of design
verification techniques. As a consequence, attacks such as
Stuxnet have demonstrated that these systems can be sur-
reptitiously compromised.

We present a run-time method for process control violation
prediction that can be leveraged to enhance system secu-
rity against configuration attacks on embedded controllers.
The prediction architecture provides a short-term projec-
tion of active controller actions by embedding an accelerated
model of the controller and physical process interaction. To
maintain convergence with the physical system, the predic-
tor model state is periodically synchronized with the actual
physical process state. The predictor is combined with run-
time guards in a root-of-trust to detect when the predicted
process state violates application specifications. Configu-
rations can be screened before they are applied or moni-
tored at run-time to detect subtle modifications or Trojans
with complex activation triggers. Advanced notification of
process control violations allows remedial actions leveraging
well known, high-assurance techniques, such as temporarily
switching control to a stability-preserving backup controller.
Experimental simulation results are provided from a root-of-
trust developed for an aircraft pitch control system.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based
Systems]: Process control systems; C.3 [Special-purpose
and Application-based Systems]: Real-time and embed-
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General Terms
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Keywords
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1. INTRODUCTION
A process control system (PCS) is an embedded computer
platform used to monitor and control physical processes.
PCSes are a subset of cyber-physical systems, which tightly
integrate and coordinate computational and physical ele-
ments. One example of a PCS is feedback control, where an
embedded controller uses sensor measurements of a physical
plant to compute feedback signals preserving system sta-
bility. PCSes are widely used in safety-critical infrastruc-
ture applications such as power grids, assembly lines, water
systems, pipelines, power plants, and other industrial sys-
tems [1, 5]. Recent PCS attacks such as Stuxnet, which is
described as the real start of cyber warfare, have highlighted
embedded system vulnerabilities and the inadequacy of ex-
isting security solutions.

The Stuxnet worm infects Windows computers, spreads via
networks and removable storage devices, and exploits four
zero-day attacks (previously unknown vulnerabilities). An-
tivirus software missed the attack because programmable
logic controller (PLC) rootkits hide Stuxnet modifications to
the system, and two stolen certificates validate new drivers.
The goal of Stuxnet is to sabotage a specific physical system
by reprogramming embedded controllers to operate outside
their nominal bounds by intercepting routines that read,
write, and locate PLC commands and data. Many secu-
rity companies state that Stuxnet is the most sophisticated
attack they have ever analyzed [3], and it is estimated to
have infected 50,000–100,000 computers. The primary tar-
get is believed to be the Bushehr nuclear plant in Iran, and
likely caused a 15% drop in production of highly enriched
uranium [4].

PCSes are usually assembled from commercial-off-the-shelf
(COTS) components and third-party intellectual property



(IP). Despite the lack of trust in such components, feasible
alternatives may not exist for the timely development of new
systems. Trojans can be introduced into the global supply
chain as either hardware or software modifications to embed-
ded components. Since controllers are often programmable,
many Trojans need only be implemented in software. Even
hardware trust may be misplaced in configurable platforms,
such as those utilizing field programmable gate arrays (FP-
GAs). PCS threats can originate from numerous sources,
including hostile governments, terrorist groups, disgruntled
employees, malicious intruders, and untrusted insiders.

Embedded system security solutions can be classified as ei-
ther design-time or run-time techniques [16]. Design-time
approaches typically seek to verify that a system is error-free
pre-deployment. An example method is formal verification
of system implementation to design specifications. However,
system-level verification is difficult to achieve for complex
assemblies of heterogeneous components. Such design-time
techniques are expensive in terms of both time and effort,
and can be only afforded for a limited set of applications.

Run-time techniques add trusted components to provide as-
surances about certain aspects of system behavior. An ex-
ample of a trust anchor component is a trusted platform
module (TPM) commonly used in modern personal comput-
ers [11]. Common additions include encryption and authen-
tication modules that help assure information integrity and
provide isolated compartments for applications with various
levels of privilege. Such techniques can be costly in terms
of design overhead and added latency and thus are often
not appropriate for applications such as high-performance
or general purpose computing. Yet for many applications,
such as embedded cyber-physical systems, the security gains
that can be achieved through trusted run-time anchors jus-
tify their presence.

We generate run-time components to simultaneously address
design-for-security, -trust, and -reliability (DFSTAR). To
protect against Stuxnet-like cyber threats, a secure cyber-
barrier is placed around the system’s control path. Sys-
tem behavior checks are synthesized at design-time from an
application’s operational and security specifications. Using
this methodology, a tailored trustworthy control flow is cre-
ated for the target application. This fundamentally new ap-
proach is not domain-specific and provides a proactive solu-
tion for sustaining system-level security with reliable control.
Existing verification techniques are complemented but not
exclusively relied upon to ensure functional system trust and
security compliance. System-level PCS reliability is also ad-
dressed by incorporating specifications that should already
be defined for high-reliability systems.

Farag et al. presented a configurable hardware-assisted ap-
plication rule enforcement (CHARE) protection scheme to
ensure an embedded system adheres to system specifica-
tions [8]. CHARE addresses several aspects of control secu-
rity, including high-assurance module interactions and con-
figuration programming in embedded systems. A centralized
CHARE trust anchor serves as the most privileged root-of-
trust for control flow, and inserts a distributed set of policy-
aware specification guards on module interfaces. Specifi-
cation guards provide on-line monitoring and proactive en-

forcement of policy rules emanating from security, perfor-
mance, or reliability specifications. CHARE components
tailor the hardware surrounding a system’s datapath and
control logic to the intended application, but do not affect
the implementation of the original logic itself. A hardware-
oriented solution offers resistance to software attacks and
the performance necessary to implement real-time checks.
CHARE reconfiguration allows for policy changes, but the
trust anchor itself can only be updated with physical access
or trusted channels.

The DFSTAR methodology encourages the synthesis of be-
havioral expectations of an entire system, including physi-
cal processes themselves. The models developed during the
design stage of a cyber-physical system can be viewed as a
manifestation of such system expectations. We propose that
a security architecture for PCSes providing secure configu-
ration management can be synthesized from these models
following the DFSTAR methodology. In this work, a protec-
tion scheme utilizing CHARE extended with a novel process
control violation prediction method is developed for embed-
ded PCS controllers. Prediction logic incorporates a second
instance of the embedded controller connected to a physical
plant model running faster than real time in order to predict
the future state of the physical system. The model’s state
is periodically synchronized with the physical plant’s state
to prevent state divergence. CHARE specification guards
check if future system states will violate system-level poli-
cies. Controller configuration updates are tested against the
current state of the process before they are applied. Addi-
tionally, if a violation is predicted after applying an update,
guards switch from the faulty controller to a high-assurance,
stability-preserving, backup controller until the system is
stabilized. For process control networks, CHARE may be
collectively applied over the network of controllers, sensors,
and supervisory software.

The remainder of this paper is organized as follows: Sec-
tion 2 surveys existing run-time approaches to embedded
PCS reliability and security. Section 3 describes the concept
of process control violation prediction and how it can be used
to defend against configuration attacks on networked PCS
controllers. This section also describes a prototype archi-
tecture and implementation flow for the protection system.
Experimental results from applying the prediction method
to a flight pitch controller simulation are provided in Sec-
tion 4. Finally, conclusions and future work are summarized
in Section 5.

2. EXISTING RUN-TIME APPROACHES
TO PCS SECURITY AND RELIABILITY

The need for high-assurance control of physical processes by
cyber-systems has led to the development of several fault de-
tection techniques. In the case of embedded controller faults
or attacks, erroneous controller behavior is ideally detected
and corrected while the physical process can still return to
equilibrium. PCS fault detection techniques typically ob-
serve either physical process measurements to new controller
inputs or controller responses to new sensor measurements.
Sha introduced a protection architecture based on monitor-
ing physical process measurements to detect faults [14]. In
this architecture, sensor measurements of the physical pro-
cess are monitored by decision logic that determines if a



process violation has occurred, as illustrated by Figure 1.
If a violation is detected, the decision logic switches con-
trol to a high-assurance and presumably slower version of
the controller until the system is stabilized. A limitation of
this scheme is that system stability cannot always be recov-
ered as the controller fault is not detected until after it has
caused the physical process to deviate from allowed opera-
tional limits.
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Figure 1: Plant fault detection [14]

Dai et al. advanced a fault detection architecture based
on observing controller responses to new sensor inputs [6].
Physical process measurements are sent to both the regu-
lar high-performance version of the process controller and a
trusted benchmark version of the controller algorithm. The
responses of both controllers are used to generate a resid-
ual to determine if a controller fault has occurred, as shown
in Figure 2. Unfortunately, the physical process is already
affected by the erroneous controller output by the time the
controller fault is detected and corrective actions, such as
switching over to a high-assurance version of the controller,
can occur. This may result in the inability to return the
system to a stable state before damage is incurred.
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Figure 2: Controller fault detection [6]

Cárdenas et al. presented a physical model-based attack de-
tection method with foundations in anomoly-based intru-
sion detection theory for computer systems and networks [3].
The specific threats addressed with this protection scheme
include embedded controller intrusion attacks arising from
compromised plant sensor data. Instead of using models of
network traffic or software behavior, physical system mod-
els are used to develop a change detection-based intrusion
detection algorithm. An embedded system implementation
of a physical plant linear model runs concurrently with the
plant, as illustrated in Figure 3. Controller responses are

sent to both the physical plant and the embedded model.
An anomaly detection module is then used to compare how
sensor data measured from the physical plant compares to
the response of the embedded plant model. When no dif-
ferences are detected, the physical plant measurements are
sent to the embedded controller which can then compute the
feedback response. Sensor data intrusion is suspected when
a difference is detected, in which case the embedded model’s
estimated physical plant state is sent to the embedded con-
troller in an effort to filter out compromised measurements
and continue plant control. This work develops a rigorous
analysis and classification of PCS intrusion attacks and as-
sociated detection methods. However, it does not provide a
means to detect and circumvent direct threats to controllers
themselves such as configuration updates and Trojans.
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Figure 3: Controller intrusion attack detection [3]

Although many security solutions have been proposed for
legacy embedded systems [2], these solutions are not opti-
mized for process control applications. Design-time secu-
rity techniques are very expensive and may not anticipate
all system vulnerabilities. Such techniques often do not ad-
dress vulnerabilities raised by software patches and updates,
hardware reconfigurations, and zero-day exploits. This leads
to a demonstrated possibility of controllers being surrepti-
tiously compromised. An alternative approach is admitting
the possibility of unanticipated threats and trying to cope
with them using run-time security solutions. However, most
existing run-time solutions are reactive, and can only detect
erroneous controller behavior after its occurrence. Such de-
tection methods may allow a physical processes to become
unstable before corrective action can be taken. These tech-
niques also tend to be threat-specific, leading to increased
overheads for integrated solutions.

3. CONTROLLER ATTACK PREDICTION
AND PREEMPTION

Our research stems from the observation that novel, deeply
embedded protections are needed to cope with Stuxnet-class
threats to process control systems. The specific goal of the
work in this paper is to protect embedded controllers from
configuration threats using a run-time security architecture
synthesized with the DFSTAR methodology. Trust is nei-
ther required in the active controller-under-protection nor
its update and communication infrastructure, and applies
only to a small set of simple, self-contained, synthesized,
and verifiable CHARE add-ons. A CHARE root-of-trust is
established to ensure an application’s security and reliabil-
ity specifications are being observed, and essentially serves
the role of an ideal control room operator. Specification
guards enable the root-of-trust to directly monitor system
operation and override the controller-under-protection. The
DFSTAR methodology incorporates security enhancements



to the system structure and automatic tool extensions to the
existing design flow.

Our threat model does not distinguish between hardware
faults, software bugs, and malware such as Trojans since
the common denominator is non-compliant controller behav-
ior. A Stuxnet-like threat can hide itself using sophisticated
means, but is less able to disguise its ultimate goal of dis-
turbing system stability. Regardless of how the threat orig-
inates, the role of trusted protection system is to anticipate
and deter consequences to the controlled process. Based
on this philosophy, we present a novel method to predict
and preempt erroneous behavior in physical process control.
For the PCS domain, specifications for normal system be-
havior are already known, and accurate models for the con-
trolled process usually exist. Our solution is complementary
to other approaches that try to validate the design or pre-
vent malware infiltration, and serves as a last line of cyber-
defense against various threats to embedded controllers.

Physical systems and processes are characterized by quan-
titative temporal properties such as process response time,
actuator delays, and sensor time constants. These physical
latencies are not inherent in system models. The vast ma-
jority of physical processes can be described and modeled as
linear time invariant systems with a high degree of accuracy
under very realistic assumptions. Often, a plant model run-
ning on an embedded processor can be executed much faster
than a real plant operating in a physical system. In a PCS,
an embedded controller responds to variations in the state
of a physical plant in order to maintain system stability.
Execution speed of an embedded controller corresponds to
the temporal characteristics of the associated physical pro-
cess. The typical operating frequency of a digital embed-
ded system controlling a physical process is proportional to
the sampling rate of the physical process. Our approach to
detect erroneous behavior of embedded controllers exploits
potential speed differences between a physical plant and its
model, which is analogous to the difference between running
a physical system and simulating it.

The main idea of our approach is examining what the con-
troller implementation will try to do in the future by em-
bedding a second instance of the controller with an accel-
erated model of the plant. The model can be implemented
in either hardware (such as an FPGA) or software (per-
haps on a separate processor) depending on the required
speed-up. The second controller instance can be identi-
cal to the original controller and implemented on the same
platform. To maintain convergence with the physical sys-
tem, the model’s state is periodically synchronized with the
plant’s state. The embedded controller instance should be
subject to the same conditions as the active controller by
synchronizing the model’s input with the system reference
input, and applying the same patches and updates to both
instances. A redundant embedded subsystem incorporating
these measures can accurately predict the behavior of an
embedded controller for several time steps in the future.

The operation of the added protection system is illustrated
in Figure 4. During regular operation, the prediction unit
continuously scans projected states of the active control al-
gorithm against the corresponding projected states of the

physical process. If a fault or Trojan activity causing the
physical process to deviate from allowable bounds is de-
tected by the specification guards, the root-of-trust imme-
diately transfers control from the active controller to the
high-assurance, stability-preserving controller, such as that
used in [14]. The root-of-trust is also used to interface with
all new configuration and parameter updates to the active
controller. When a new update is received, it is first tested in
the prediction unit using the current process state as a basis.
The update is rejected if the prediction unit detects a devia-
tion from allowable process bounds during initial screening.
The update is only applied to the active controller when
no violations are projected. After the update has been ap-
plied, the root-of-trust resumes predictive monitoring of the
active controller to deter latent attacks introduced through
the new update.
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Figure 4: Procedure for testing controller configu-
rations

3.1 Prototype Controller Architecture
Some of the relevant, basic concepts of feedback control and
modern control systems are presented in [7, 9]. In order to
enhance the security, trust, and reliability of an embedded
PCS, the existing system is augmented with a root-of-trust
synthesized from a process model and specifications. As
shown in Figure 5, major components of the predictive and
preemptive architecture are:

• The original controller module containing an active
controller-to-be-protected, a high-assurance, stability-
preserving controller, and a mechanism to switch be-
tween them. This embedded system module runs at
the typical sampling rate of the physical process.

• A prediction module consisting of a process model and
a second instance of the active controller. This subsys-
tem runs n times faster than the active control system
module.



• A CHARE module that wraps the controller and pre-
diction modules. This subsystem consists of specifica-
tion guards as well as specialized model synchroniza-
tion and timing blocks.
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Figure 5: Predictive and preemptive security archi-
tecture

CHARE specification guards can be used to monitor either
the physical process or the controller module input/output
activity to assure compliance with the desired behavior of
the physical process or a high-assurance benchmark con-
troller. In this architecture specification guards monitor the
process model output, as shown by Figure 5. Detection of
anomalous behavior in the predictive subsystem triggers the
guards to switch from the active controller of the physical
process to a high-assurance controller. Recursion is possible
with more than one backup controller and their predictive
counterparts. The specialized synchronization unit is re-
sponsible for periodically updating the state of the model
with the estimated state of the physical process. A special-
ized sample and hold unit updates the predictive subsystem
input with the physical process reference input. The timing
unit is responsible for clock generation and time emulation
for the predictive subsystem.

The specification guard attached to the prediction module
contains a maximum likelihood detector and a fault detector
to predict faults before they actually occur in the controller-
under-protection. Theoretically, if the predictive controller
is secure and no threats are affecting it, the output of the
controller will conform to the normal operating criteria de-

scribed by the security policies embedded in the fault de-
tector module. Any threat affecting the prediction module
controller will show up later in the actual controller and, if
not preempted, will increasingly affect the predictive con-
troller’s output. In practice, many factors other than those
related to security threats can cause such a deviation from
the normal operating conditions, such as mistuning of the
controller parameters and the random noise resulting from
the process. To address the challenge of distinguishing faults
resulting from cyber-attacks from noise, accurate descrip-
tions of the controller characteristics, operating conditions,
and the statical distribution of noise are needed.

The fault detector does not rely on a single sample to decide
the controller’s integrity. For PCSes, it has been shown that
as the number of the observed samples increases, the statisti-
cal distribution of the process noise becomes Gaussian with
constant mean and variance values [6]. Consequently, the
statistical distribution of the controller’s output follows the
Gaussian noise distribution as it is the only random vari-
able in the output equation. Deviation from the normal
operating conditions caused by either cyber-threats or con-
troller faults shifts the predictive controller’s output mean
and variance computed over a significant number of sam-
ples to new values outside the range defined by the security
policy. In other words, deviation of the output root mean
square (RMS) value from nominal bounds indicates a fault
or attack in the controller-under-protection. The maximum
likelihood detector unit shown in Figure 5 is used to evaluate
the RMS value of the embedded model’s output in the pre-
diction module. The fault detector then tests the predictive
controller’s output against the the RMS value generated by
the maximum likelihood detector to determine if the likeli-
hood ratio lies within the predefined threshold range cap-
tured by the security policies.

3.2 Timing and Synchronization
Our approach advances new terminology such as: the time
scaling factor n which indicates the predictive subsystem
speed-up; the prediction window Wpred which denotes the
foreseen time period; and synchronization time Tsync which
determines the updating frequency of the model’s state in
the predictive subsystem. Wpred is function of n and Tsync,
as shown by equation (1). Tsync is application-dependent
whereas n is both application- and platform-dependent. As-
suming flexibility in assigning n and Tsync, increasing n im-
proves Wpred at zero cost in terms of the updating frequency,
while increasing Tsync augments Wpred on the expense of
reducing the updating frequency. Tsync is often the more
flexible and tunable parameter when significant changes to
Wpred are needed. Multiple trade-offs must be evaluated
when assigning values of n and Tsync where the physical
process characteristics and the embedded platform features
are the assignment criteria.

Wpred = n · Tsync (1)

Time scaling is accomplished by applying modifications to
both system and input signals. System modifications vary
for continuous- and discrete-time models of the physical pro-
cess. For a continuous-time model, time scaling is achieved
by multiplying system state space matrices by the desired
time scaling factor n. For discrete-time embedded systems



employing digital controllers, scaling down the sampling time
of the physical process by a factor of n automatically scales
down the time of the system internal signals. Input sig-
nal time cannot be scaled down because this requires prior
knowledge of signal contents. To tackle this problem, the
model’s input can be periodically synchronized with the ref-
erence input at the physical system sampling rate by assign-
ing Tsync to be Tsampling seconds. However, this approach
limits the prediction window to n · Tsampling seconds.

Another approach can be adopted where the process model
and the physical system are synchronized whenever the ref-
erence input to the physical system is changed. Such an ap-
proach produces an adaptive prediction window, which may
not be preferred for security reasons. In a PCS, the reference
input to a physical process is often the desired stable out-
put of the system which implies that reference input changes
are limited in terms of both amplitude and frequency. This
implies that a sample and hold technique can be used to pe-
riodically update the model’s input with the reference input
without the need for an adaptive synchronization method.
We adopt this approach to establish a security scheme with
a controllable synchronization time and a fixed prediction
window.

We consider both event-driven and time-driven faults. Accu-
rate detection of event-driven faults depends on the proper
and frequent updating of the model’s state in the predictive
subsystem. Figure 5 shows the switching technique created
to update the model’s state xk with the estimated plant’s
state xe generated by the Kalman filter state observer. The
model’s state updating frequency is a function of the desired
prediction window and the model’s input synchronization
scheme. Predictive subsystem time must emulate the real
time in order to successfully detect time-driven faults and
properly operate time-driven modules and processes. Time
emulation requires generating the predictive subsystem time
in terms of n and Tsync, and relating it to the real time t.
The predictive subsystem time is directly proportional to n,
whereas Tsync formulates the reference time base which pe-
riodically resets the predictive time tpred to the real time t
as shown by equation (2). Figure 6 illustrates the predictive
subsystem time for the case study described in Section 4
where the the time scaling factor n is 10, and two values
of Tsync (1 and 10 seconds) are used for different prediction
windows.

tpred = Tsync · b
t

Tsync
c+ n ·mod(

t

Tsync
) (2)

3.3 Model-based Design Flow Enhancements
Figure 7 illustrates a prototype design and implementation
flow to create a root-of-trust for an embedded controller-
under-protection. We focus on model-based design used to
generate solutions for problem domains that have a well-
established mathematical basis, such as process control, sig-
nal processing, and communications. Although model cre-
ation and analysis are a routine part of engineering, models
are mostly used to explore and validate abstract solutions
such as structures and algorithms, while the actual solution
is implemented from scratch. In contrast, model-based de-
sign automatically synthesizes the solution—usually either
hardware or software—directly from the model.
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Figure 6: Relationship between real time and pre-
dictive subsystem time

Controller design begins with functional specification, often
initially captured as plaintext documentation or assertions of
expected behaviors of the system for the the intended appli-
cation. Specifications reflecting application-specific security
or reliability policies for the controller and physical process
can similarly be developed at this time. Specifications guide
the functional design of control algorithms in a tool such
as MATLAB Simulink or Stateflow. The process model’s
structure is often captured graphically also using these tools
in an effort to evaluate control algorithms. Tools such as
Simulink Coder or HDL Coder then automate software and
hardware generation of the controller, which is mapped to
embedded platform components such as dedicated proces-
sors or configurable FPGA fabric.

The root-of-trust in Figure 7 consists of the process con-
trol violation prediction and CHARE modules detailed in
Figure 5. The model developed to describe the process can
be reused in the prediction module and implemented with
the same tools used to synthesize the controller. An opti-
mized implementation of the process model helps to reduce
the time and space overheads of our predictive subsystem,
which is especially important in embedded control environ-
ments that do not use PC-class hosts. As with specifications,
this design flow assumes that the process model is accurate
and can be trusted. Fortunately, process and high-assurance
backup controller models tend to be stable, synthesized, self-
contained, and subject to formal verification.

Functional and security policy specifications are inputs to
the design flow for creating CHARE specification guards,
as shown in Figure 7. Application-independent specifica-
tion languages are used to prepare policies for synthesis,
such as acceptable ranges for process sensor and controller
outputs. Clearly specifying permitted ranges and rates-of-
change for process and controller I/O specifically guards
against Stuxnet-like attacks on processes requiring smooth
control changes.

Though the DFSTAR methodology is neither hardware- nor
software-specific, we choose to focus primarily on the de-
velopment of root-of-trust hardware. A hardware-oriented
solution provides the access and performance necessary to
implement run-time protections with increased tamper re-
sistance [12]. An example of CHARE implemented on a
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modern embedded processing platform marketed for indus-
trial control applications is shown in Figure 8 [17]. The
CHARE root-of-trust is synthesized to programmable hard-
ware fabric. Processes to be monitored, such as the active
controller and prediction module, can be hosted on the em-
bedded processor cores.

The specification guard components to be validated are sim-
ple, independent, and largely synthesized from high-level ab-
stractions, such as SystemVerilog assertions or Bluespec Sys-
temVerilog rules with guarded atomic actions, as described
in [8]. Our future work will explore methods for generat-
ing relevant assertion automata guards in detail. For the
sake of verification, Simulink wrappers can be generated to
enable simulation of the synthesized predictive subsystem,
synchronization, and switchover blocks.

4. EXAMPLE CONTROL APPLICATION
In order to illustrate and evaluate our approach, an air-
craft autopilot pitch controller is used as a case study [13].
Flight control is a safety-critical application where controller
faults can have catastrophic consequences. Linear Quadratic
Gaussian (LQG) control is a modern approach adopting
time-domain analysis, state space representations, and state
observers to enhance the control process. It concerns un-
certain linear systems disturbed by additive white Gaussian
noise and undergoing control subject to quadratic costs [15].
LQG controllers are widely deployed, and their structure
helps to present our concepts and architecture effectively.

Nevertheless, our approach is still applicable to other con-
trol techniques.

4.1 Pitch Control Process Model
The motion of an aircraft is governed by a set of six non-
linear differential equations. These equations can be decou-
pled into longitudinal and lateral equations under certain
assumptions [13]. The pitch angle is a third-order longitudi-
nal problem and is controlled by adjusting the angle of the
rear elevator. Figure 9 shows the basic coordinate axes and
forces acting on an aircraft.

As described in [13], the equations of motion of a Boeing
commercial aircraft can be written as:

α̇ = −0.313α+ 56.7q + 0.232δe

q̇ = −0.0139α− 0.426q + 0.0203δe

θ̇ = 56.7q

where α is the angle of attack; q is the pitch rate; θ is the
pitch angle; and δe is the elevator deflection angle.

Using the differential equations controlling the plane motion,
the state space representation of the pitch angle system is
as follows:24α̇q̇

θ̇

35 =

24 −0.313 56.7 0
−0.0139 −0.426 0

0 56.7 0

3524αq
θ

35+

24 0.232
0.0203

0

35 ˆδe

˜
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In the presence of noise, this equation can be expressed in a
state space form:

ẋ = Ax+Bu+ ωproc

y = Cx+Du+ vsensor

where x is a column matrix composed of α, q, and θ elements
representing system’s state; the input u is the elevator de-
flection angle δe; the output y is the pitch angle θ; and ωproc

and vsensor are the process and measurement noise, respec-
tively. The noise is assumed to be Gaussian distributed with
zero-mean and constant power spectral density.

The autopilot uses a feedback controller in a closed-loop con-
figuration to stabilize the aircraft by adjusting its attitude
angle. For this system, the input is the elevator deflection
angle and the output is the pitch angle. LQG control is one
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Figure 9: Coordinate axes and forces acting on an
aircraft [13]

of the most commonly used optimal control techniques, and
combines a Kalman filter (a linear-quadratic estimator) with
a linear-quadratic regulator [15]. In the presence of noise,
physical system faults can be distinguished with the aid of a
Kalman filter sequence characterized by a zero mean and a
fixed covariance matrix in normal operating conditions [10].
The Kalman filter optimally estimates the state of a linear
system disturbed by noise. Figure 10 shows the structure of
the LQG control technique.
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Figure 10: LQG control architecture

Figure 11 illustrates the step response of the pitch controller
system for both the open-loop system and the closed-loop
feedback control configurations. Knowing the system state
helps maintain synchronization between the physical system
and our predictive subsystem. The design meets or exceeds
the constraints with a maximum overshoot of less than 10
percent, a rise time of approximately 2 seconds, a settling
time of less than 10 seconds, and a steady-state error of less
than 2 percent.

4.2 Preliminary Results and Evaluation
Simulink is used to model and evaluate the application and
security enhancements. In our experiments, the sensor sam-
pling rate is 100 samples/sec, the time scaling factor n is
10, and two values of Tsync (1 and 10 seconds) are used for
different prediction windows. Figure 12 illustrates the step
response of a stable pitch control system versus the predic-
tive subsystem, and synchronizes between both systems for
the test case of Tsync = 1 second. A moving window al-
lows periodic projection of the future system state from the
updated current system state.
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To illustrate the effectiveness of our approach in predicting
and preempting erroneous behavior, we insert a time-driven
fault in the embedded controller’s model. The fault is in-
jected by manipulating a single element of the gain matrix
in the feedback controller model. This fault is kept dormant
for a pre-assigned period of time as shown by Figure 13(a).
Such a fault can be inserted during aircraft maintenance as
a system patch or update to a rigorously verified embedded
controller, and can force the plane out of its stable state in
a very short time.

Figure 13(b) and (d) illustrate the predictive subsystem out-
put for different windows. Initial system stability is as-
sumed. The smaller prediction window predicts the fault
10 seconds before its occurrence, and the larger prediction
window foresees the fault about 50 seconds before its oc-
currence. Smaller windows are more accurate but see the
fault later. As time advances, the predictive subsystem an-
ticipates the fault as the sawtooth waveform with increasing
peaks indicating fault advancement. The backup controller
used in this evaluation is simply the developed fault-free
LQG controller. Figure 13(c) and (e) show the multiplexer
selection signal and the time of switching for the two selected
prediction windows. For both case studies, the countermea-
sure has successfully prevented faults occurring as illustrated
by Figure 13(f).

This proof-of-concept experiment was performed by mod-
eling the process and our protection system in Simulink.
Future experiments will examine a fully hardware-oriented
root-of-trust. Simulink profiler results for the pitch con-
troller model are given in Figure 14. One minute of real time
is simulated in 22 sec of CPU time on a single core of a 2.80
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Figure 13: Step response of a pitch control system
and the predictive subsystem under attack

GHz Intel Core i7 workstation with 24GB of memory and
running the Linux 2.6.32 kernel. In practice, optimized C
implementations would run more quickly than the Simulink
models.

The predictive subsystem and active control system design
complexity are almost the same, and the CHARE trust an-
chor contributes about 25% of the total complexity as mea-
sure in terms of total software methods. However, it is an-
ticipated that the overhead of the root-of-trust will shrink
significantly for a hardware-based implementation. Most of
the CPU time is consumed by the predictive subsystem as
it runs n times faster than the active controller. On a multi-
core platform, however, the predictive subsystem runs con-
currently with the active controller.

5. CONCLUSIONS AND FUTURE WORK
Comprehensive rather than point solutions are needed to
help PCS infrastructure withstand an emerging malware on-
slaught. As illustrated by Stuxnet, preventing malware in-
filtration is difficult in complex, networked control systems
having zero-day exploits. Trojans may also arise from the
global supply chain and use of third-party IP. This leads
to a demonstrated possibility of controllers being surrepti-
tiously compromised. Erroneous controller behavior must
be detected before it critically affects a physical process.

Existing solutions to run-time bug and fault detection in-
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clude monitoring the process state arising from past con-
troller actions, or comparing present outputs from indepen-
dent controllers. Our run-time system includes a second
instance of the active controller connected to a model of the
plant giving a short-term projection of future controller ac-
tions and process state. The model’s state is periodically
synchronized with the plant’s state to prevent divergence.
Erroneous controller behavior is detected before it affects
the physical process, allowing preemptive alarms or actions.

The blocks conferred with trust should be minimal in com-
plexity and number so that synthesis and formal verification
methods may be applied. In addition, these blocks should
have rigorous update procedures, and use distinct software
and hardware resources. Ideally the trusted blocks do more
than just protect against malware by also enhancing relia-
bility in the presence of software bugs and hardware faults.
The DFSTAR methodology meets these goals by exploiting:
(1) the inherent controllability and observability of a PCS;
(2) the existence of specifications for normal PCS opera-
tion; and (3) the model-based design approach commonly
used during PCS development.

Tools are under development to automatically generate the
trusted components described in this paper. FPGA plat-
forms enable the use of integrated yet independent resources
for monitoring functions, and allow both hardware and soft-
ware implementation of synthesized blocks. Once the tools
are complete, we will be able to assess the design-time and
run-time overheads of the DFSTAR methodology. After tar-
geting simple controller applications such as pitch control,
we will look at inserting a system monitor in a network of
process controllers. We also plan to see how these tools
scale up to to more complex multiple-input-multiple-output
(MIMO) controllers used in modern PCS platforms.
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