
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

Smart Employment of Circuit Redundancy to
Effectively Counter Trojans (SECRET) in

Third-Party IP Cores
Mohammed M. Farag, Mohammad A. Ewais

Department of Electrical Engineering, Faculty of Engineering, Alexandria University
Emails: mmorsy@alexu.edu.eg, m.a.ewais@ieee.org

Abstract—Hardware Trojan horses (HTHs) are malicious
inclusions or alterations to hardware designs developed and
supplied by untrusted parties. The emerging threat of HTHs
has a direct impact on the FPGA design community which
mainly relies on third-party IP (3PIP) cores and design reuse
practices. Efficient design and detection of HTHs have been the
main interest of most related research work, but countermeasures
against HTHs have not attained sufficient attention. We advance
a novel approach promoting Smart Employment of Circuit
Redundancy to Effectively Counter Trojans (SECRET) in 3PIP
cores employed in reconfigurable hardware designs. Two identical
instances of the protected IP core are employed for observation
and operating purposes and a time shift is created between the
two core inputs. Trojan detection circuitry is inserted during the
design-time to monitor the observation core at run-time. Once
a Trojan is detected in the observation core, the operating core
with the delayed input is suspended or the identified triggering
inputs are isolated for a specific period of time to bypass the
Trojan activating trigger. We present the SECRET high-level
architecture, a proof-of-concept application to a 3PIP crypto core
containing an HTH of our design. The prototype is designed and
validated on a Spartan-3 FPGA. Simulation and implementation
results show the SECRET feasibility and effectiveness.

Index Terms—Hardware Trojan, Run-time Countermeasure,
Third-Party IP Core, Reconfigurable Hardware.

I. INTRODUCTION

Moore’s law has been enabling further and further reduc-
tions in transistor size leading to increasingly complex and
expensive designs with longer design cycles. To reduce time
to market, ease and facilitate hardware design practices, digital
circuit designers and manufacturers tend to rely on third-
party IP (3PIP) cores produced by foreign developers. The
size of the semiconductor IP market is estimated by two
billion Dollars and is expected to reach three Billions by 2016
according to the Gartner research firm [1]. The impact of the
hardware IP market and the reliance on it in security-critical
applications have raised the issue of untrust in hardware IP
cores. An untrusted party might alter the chip design or include
Trojans and backdoors during various phases of the IP core
production and delivering posing a major security threat.

A Hardware Trojan Horse (HTH) is a malicious insertion or
manipulation in a hardwired IC or a soft IP core that aims at
causing non-typical functionality, not stipulated by the design
specifications. An HTH can change the typical functionality
of a chip either by adding more logic, manipulating existing
logic and wires, or modifying the chip physical specifications

such as interconnect routes or transistor geometries. Some
Trojans are always-active, capable of causing harm at any
time, while others are usually-off and triggered by rarely-
occurring conditions, e.g. a sensor output, a counter value,
an internal logic state or a sequence of states, a particular
input pattern, or after passing a specific period of operation as
in time bombs. HTH effects or payloads include performance
degradation, partial or full functionality change, information
leakage, or denial-of-service [2].

Efficient design and detection of HTHs have been the
subject of extensive research during the last decade. Several
solutions have been proposed to detect and identify Trojans,
most of them are applied in the pre-deployment phase [3].
Design-time Trojan detection methods include physical in-
spection, side-channel analysis, functional testing, and Trojan
activation methods. Physical inspection methods destructively
extract the circuit structure and compare it to a reference
structure. Side-channel analysis techniques attempt to detect
HTHs by measuring the induced changes of side-channel sig-
nals including power and delay. Functional testing stimulates
the input of a chip and monitors the output to detect non-
typical output values and patterns that might be an indication
of Trojan existence. Trojan activation methods aim to increase
the likelihood of activating HTHs by generating test vectors
and patterns stimulating rarely-occurring triggering conditions
during the test and verification phases. Unfortunately, detecting
HTHs using compile-time approaches is extremely difficult
for several reasons, including the need for Trojan-free golden
references, the complexity and large size of modern ICs, the
small size and side effect and the hidden nature of HTHs.

Design-for-Trust and Security (DFTS) is the alternative
approach to improve Trojan detection by adding security
components at the design phase to monitor and protect ICs
and IP cores at run-time [4]. Security monitors and wrappers
are implemented from the system’s security specifications and
integrated into the protected IC to detect HTHs at run-time.
DFTS protection schemes do not assume the existence of
a golden reference or the ability to inspect the internals of
the hardware modules. Run-time Trojan detection methods
can be efficiently applied to protect 3PIP cores deployed in
reconfigurable hardware designs because these platforms can
easily host the security components and the design flow can be
regularly modified to accommodate the DFTS requirements.



Although many contributions have been presented to both
design- and run-time Trojan detection methods, complemen-
tary research issues such as recovery from and countermea-
sures against HTHs are not sufficiently addressed in the
literature. In this paper, we propose a DFTS method to counter
HTHs in 3PIP cores deployed in reconfigurable hardware
platforms such as FPGAs. We promote Smart Employment of
Circuit Redundancy to Effectively Counter Trojans (SECRET)
in 3PIP cores. Two identical instances of the protected 3PIP
core are employed for observation and operating purposes,
and a predetermined controllable time shift or delay is created
between the two core inputs. The IP core input and its
time-shifted version are applied to the redundant observation
and effective operating cores, respectively, while the IP core
outputs are taken from the operating IP core. Trojan detection
circuitry is inserted during the design phase to monitor the
redundant observation IP core at run-time. Once a Trojan
is detected in the redundant core, the operating IP core is
suspended or the identified triggering inputs are isolated for a
specific time duration to bypass the Trojan activating trigger.
Identified input values and sequences responsible for Trojan
activation are stored in order to be filtered out in the future.

In this paper, we present a proof-of-concept application of
SECRET to an Advanced Encryption Standard (AES) crypto-
graphic IP core. We introduce our design of an HTH inserted
into the IP core at the RTL level and the DFTS monitor to
detect the Trojan. The proof-of-concept design is implemented
and validated on a Spartan-3 XC3S5000 FPGA, functional
feasibility and effectiveness of SECRET are established, and
the architecture is characterized in terms of the overheads. The
remaining of this paper is organized as follows: a background
on HTH DFTS techniques with emphasis on HTH countering
methods is presented in Section II. We advance the underlying
assumptions, threat model, high-level architecture, and timing
analysis of SECRET in Section III. SECRET application to a
crypto 3PIP core containing an HTH of our design is advanced
in Section IV. SECRET simulation and implementation results
for the crypto core are presented in Section V. Conclusions
and future work directions are portrayed in Section VI.

II. BACKGROUND

3PIP cores are widely deployed in reconfigurable systems.
Although ideally these cores would be verified by a trusted
party in the pre-deployment phase, cost and productivity
requirements can make such a development model impractical.
Recent progress in DFTS has been made to embed security-
enhancing, application-specific, run-time protection circuits
within a system to establish tailored trustworthy computing
bases. Many run-time Trojan detection methods have been
presented in the literature [3]. In this section we discuss some
related DFTS efforts with an impact to Trojan countering.

Abramovici and Bradley identified that no existing in the
pre-deployment phase mechanisms can guarantee detection of
all HTHs and they propose an application-dependent security
infrastructure monitoring datapath signals for illegal behav-
iors. In this approach, reconfigurable Design-for-Enabling-

Security (DEFENSE) logic is added to the functional design
to implement run-time security monitors [5]. The signals are
selected by a designer directly in the RTL and grouped to
create multiplexed probe networks sourcing information to
security monitors. The hardware-based monitors are config-
urable finite-state machines that check the current set of signals
for behavioral properties specified by the designer. Probe and
monitor configurations are controlled by a security control pro-
cessor, which may also initiate countermeasures implemented
by controlling specified datapath signals. When a security
violation is detected, the software control processor may
override signals or take actions to isolate the core. However,
the authors acknowledge that broader countermeasures are
required to create a system-level protection scheme. In general,
it is an intractable problem to create real-time countermeasures
tailored specifically to every possible attack on every system
interface. Therefore, the security designer must also be given
the flexibility to create abstract countermeasures or real-time
enforcement practices that align with system specifications.

Hicks et al. propose a hybrid hardware/software Trojan de-
tection and countermeasure defense strategy named BlueChip
combining both design- and run-time components [6]. During
design-time, Bluechip invokes an Unused Circuit Identification
(UCI) algorithm to identify suspicious circuitry. BlueChip
provides a detour around suspicious hardware by removing the
suspicious circuitry and replacing it with a hardware logic that
triggers a software routine implementing the same functional-
ity of the removed hardware. Blue-chip is one of the few meth-
ods attempting to provide effective countermeasures against
HTH threats. However, software replacement of suspicious
hardware circuitry is not the best measure because, usually,
the software performance is worse the hardware requirements
of the original circuitry. Moreover, despite the complexity of
the Bluechip approach, some HTHs can evade detection by
the UCI algorithm as stated in [7] and BlueChip might add
unnecessary overhead for false positives.

Waksman et al. present a solution for disabling HTHs that
instead of trying to detect inserted hardware Trojans, they
scramble inputs at run-time to prevent the Trojan from receiv-
ing its trigger [8]. The authors use three techniques to prevent
Trojan activation: applying periodical power resets to prevent
triggering time bombs; using data obfuscation to encrypt input
values to untrusted units to prevent HTHs from recognizing
data-based triggers; and sequence breaking by scrambling
the order of the inputs entering the hardware component to
prevent HTHs from recognizing their sequence-based triggers.
However, this method only provides probabilistic security
guarantees about preventing activation of design-level HTHs.
Furthermore, this solution solely focuses on input-triggered
HTHs leaving the chance for internally-triggered Trojans to
easily conduct their tasks.

Kim et al. introduce a set of design methodologies and
practices to enable operation recovery of hardware components
employed in reconfigurable platforms and infected with HTHs
by applying Dynamic Partial Reconfiguration (DPR) [9]. They
propose replacement of modules infected with HTHs during



run-time to enable operation continuity despite the attack.
The method is based on a modified system architecture,
including an embedded reconfigurable logic, bus architectures
for isolating infected hardware modules and maintaining the
system performance, and hardware controllers to manage DPR
with reliable interface signaling. The authors describe a set of
practices of utilizing reconfigurable logic to regenerate system
functionality while minimizing the performance degradation
and keeping seamless operation under attacks. Unfortunately,
the DPR design flow has been immature yet and the associated
architectural restrictions and timing considerations can limit
the applicability of this method. Furthermore, this method
assumes the existence of diverse alternatives for the suspected
cores which, if satisfied, can increase the design cost.

III. SECRET BASICS AND HIGH-LEVEL ARCHITECTURE

We aim at providing a run-time DFTS countermeasure
against HTHs deliberately embedded in 3PIP cores employed
in reconfigurable hardware designs. Most DFTS techniques
address how to detect HTHs at run-time yet few of them
answer the question of how to deal with the detected Trojans
to continue the circuit operation securely, or in other words can
we design Trojan-tolerant circuits. The answer of the previous
question depends on the circuit’s ability to continue its op-
eration under attack while reducing or eliminating the Trojan
effects. In this paper, we present the SECRET countermeasure
in which an HTH can be tolerated in a smart way by allowing
the Trojan to be activated at run-time while isolating and
suppressing the Trojan payload and going back in time to
suspend the identified activating trigger if possible. Prior to
describing the SECRET approach to realize such a time travel
to the past, the threat model considers the following:

• The threat model considers a 3PIP core containing an
HTH and is implemented in a reconfigurable platform.

• The proposed SECRET countermeasure only addresses
usually-off rarely-triggered HTHs evading detection by
design-time Trojan detection methods. Always-active
Trojans with a permanent payload cannot be countered
using the proposed solution.

• The threat model does not impose constraints on the Tro-
jan triggering conditions or the payload type. The Trojan
might be activated by either a specific input combination,
a sequence of inputs or internal state changes, or even
after a specific operation time, and its payload might
range from functionality change to denial-of-service.

• The protected 3PIP core can be hierarchically instantiated
as a top-level module or a lower-level component.

The underlying assumptions of SECRET are listed below:

• We assume that the protected 3PIP core is equipped with
DFTS monitors and wrappers that can detect HTHs at
run-time. DFTS Trojan detection methods are the key-
enablers of SECRET, yet they are not the main interest of
this work. The successful operation of SECRET mainly
relies on effective detection of HTHs at run-time.

• We assume that the Trojan detection circuitry can detect
HTHs inserted at various hierarchical levels and having
different triggering conditions and payload types.

• Another assumption is that the Trojan detection circuitry
can detect Trojan payloads affecting either the IP core
outputs or internal states. Also it might detect either the
Trojan trigger or the Trojan payload at run-time. The
effectiveness of the SECRET countermeasure is tied to
and confined by the detection scheme capabilities.

• We assume the black-box model of the protected 3PIP
core indicating that, unlike most Trojan detection solu-
tions, the SECRET countermeasure does not need golden
references. However, we should point out that the under-
lying DFTS Trojan detection approach might require the
existence of a golden reference.

• Also we assume that the protected 3PIP core can tolerate
output delay and discontinuity for a short time duration.

• Finally we assume that resources overhead translated into
silicon area is a cheap price that can be paid to apply
sufficient countermeasures enabling operation continuity
of 3PIP cores deployed in security-critical applications.

Security-through-diversity solutions rely on multiple diver-
sified instances of a system or component, realizing the same
functionality yet developed and outsourced by different parties,
accompanied by a majority voting mechanism to detect the
odd behavior of the underlying components. Unlike security-
through-diversity techniques widely used in the hardware
Trojan detection methods [6], [10], [11], our approach employs
a redundant or identical instance of the 3PIP core to counter
HTHs potentially embedded in the core. This implies that no
additional costs are needed to purchase diverse 3PIP cores
realizing the same functionality. The challenge becomes how
to utilize a redundant instance of the IP core containing the
same Trojan infections and running under the same inputs and
conditions to overcome and counter the Trojan effects.

Figure 1 shows the high-level architecture of SECRET. Two
identical instances of the protected 3PIP core are utilized:
an effective operating instance and a redundant observation
instance. The IP core input is directly applied to the observa-
tion core which is monitored by the DFTS run-time monitors
and wrappers having access to the core’s inputs, outputs,
and internal states. The observation core is redundant and its
output is only accessible by the Trojan detection circuitry. The
operating core inputs are connected to the time-shifted version
of the IP core inputs. A controllable time-shift or delay can be
created using a FIFO buffer or a bunch of cascaded registers.

A security controller of our design is the SECRET link
to the DFTS circuitry monitoring the observation core in
which Trojan detection alarms are raised at run-time. It also
acts as an actuator that properly tunes and adjusts SECRET
parameters and promptly applies appropriate countermeasures
accordingly. The SECRET security controller has control over
the time-shift duration between the two cores, passing/isolating
the delayed inputs to the operating IP core, and suspending or
disabling the operation of the operating core. The time shift
between the redundant observation and effective operating IP



Redundant 
Observation IP Core

3PIP Core Instance #1

Effective
Operating IP Core

3PIP Core Instance #2

FIFO Buffer/ Time-
Shift Registers

DFTS Monitors, Wrappers, and Run-
Time Trojan Detection Circuitry

SECRET 
Controller C

lo
ck

 
G

a
te

clock

IP
 C

o
re

 I
n

p
u

ts

IP
 C

o
re

 O
u

tp
u

ts

suspend

Pass Logic 
Switches

B
u

ff
e

re
d

 I
n

p
u

t 
A

n
a

ly
si

s 
a

n
d

 
Tr

ig
g

e
r 

Id
e

n
ti

fi
ca

ti
o

 C
ir

cu
it

ry

Identified 
Triggers Memory

Fig. 1. SECRET High-level Architecture

cores TRED (Redundant-Effective Delay) is controlled by ad-
justing the FIFO length or the number of shift register stages.
To control connectivity of the delayed input to the operating
core, a set of pass logic switches that can isolate a specific
input is inserted under the control of the SECRET controller. A
simple AND clock gate can be used to suspend the operating
core if needed under the control of the SECRET controller.
The overheads incurred by the SECRET architecture include
the DFTS security monitors, the redundant IP core, the security
controller, and the delay registers and switches.

Figure 2 is a timing diagram illustration of the operation of
an IP core containing an HTH and protected with SECRET.
This timing diagram provides a typical behavior of a generic
usually-off HTH with a rarely occurring trigger equipped with
a DFTS Trojan monitors that can detect the Trojan payload
after a specific time of its start. Vertical lines in red indicate
events caused by the Trojan with unknown occurrence time.
The activation time Tactivation is the time needed to activate the
Trojan either externally via the core inputs or internally via
state changes, where Tactivation equals zero for data-triggered
Trojans and is greater than zero for sequence-triggered and
time-activated Trojans. A latency time Tlatency is considered
between the triggering sequence end and the payload begin-
ning, which equals to zero if the payload begins immediately
after the trigger ends. We assume that the DFTS monitor needs
a duration of Tdetection from the payload beginning to detect
the Trojan. In this scenario, we do not consider the case in
which the DFTS monitors can detect the Trojan trigger rather
the payload, i.e. we only considered the worst case scenario
where the Trojan will be detected after its payload begins.

Inputs to the operating IP core are delayed by a time
duration of TRED. The basic underlying idea of SECRET is
that if we can isolate identified input triggers to the operating
core or suspending its operation, if the Trojan is triggered
internally or if the input trigger cannot be identified, during
the triggering sequence, the Trojan activation condition will be
bypassed and the IP core can continue its secure operation. The
suspension time Tsuspension can immediately start after Trojan
detection. TRED and Tsuspension are the two main parameters of
the SECRET countermeasure. As demonstrated by Figure 2,
two conditions must be satisfied to circumvent the Trigger:

T
rigger b

egin

T
rigger e

n
d

P
a

ylo
a

d
 b

e
gin

T
ro

ja
n

 d
e

te
ctio

n

regular inputs Trigger

Secure operation

regular inputs Trigger

Secure operation

Clock

IP core input

Observed output & state

Suspend

Delayed input

IP core output
No

 change

Tactivation Tlatency Tdetection

Su
sp

e
n

sio
n

 e
n

d

D
ela

ye
d

 trigg
er b

e
gin

Tsuspension

D
ela

ye
d

 trigg
er e

n
d

regular inputs

Insecure operation

Fig. 2. Timing diagram of SECRET countermeasures

1) The Trojan must be detected before the delayed trigger
to the operating core begins. This condition can be
mathematically formulated as:

TRED ≥ Tactivation + Tlatency + Tdetection

2) Assuming the first condition is satisfied, the monitoring
IP core must be suspended during the delayed activation
duration to completely avoid the triggering sequence.
This condition can be mathematically formulated as:

Tsuspension ≥ TRED + Tactivation

− (Tactivation + Tlatency + Tdetection)

= TRED − (Tlatency + Tdetection)

TRED and Tsuspension are the two SECRET parameters that
can be set to fixed values in the design-time to circumvent the
Trojan trigger in the effective operating core. Unfortunately,
SECRET parameters are functions of the unknown Trojan and
DFTS detection circuitry timing parameters. Compared to time
travel to the past, TRED is the time duration in which we can
go back in time to prevent triggering detected HTHs in the
present. In the given scenario, unfortunately, we do not know
precisely the time of the event —the onset of the trigger
or payload— we aim to avoid. If the DFTS monitors can
detect the triggering onset, we can precisely set both SECRET
parameters. Information gained from the design-time analysis
of the IP core associated with the core application context and
the DFTS monitor timing characteristics can provide upper-
bound estimates of the required timing parameters.

IV. SECRET APPLICATION TO A 3PIP CRYPTO CORE

As a proof of concept, we apply SECRET to an open
source AES cryptographic 3PIP core that works on a fixed
data size of 128-bit and uses a key size of 128, 192 or 256
bits [12]. Figure 3 shows a block diagram of the target Crypto
core. The key length is determined at compile-time and is
kept fixed at run-time. The bus cycle is 10, 12, or 14 clock
cycles based on the key size, which determines the number of
encryption/decryption rounds. The IP core works as a memory-
mapped processor peripheral with address space of 32 words
each of 32-bit width. This memory is accessible through an
address port, and the address space is divided into 4 parts:



• The first part is a write-only key space that is 4, 6 or 8
words based on the key size selected at compile-time.

• The second part is the input data space that consists of 4
write-only words.

• The third part is a 4-word read-only result space.
• The last part is a single read/write control word that

contains only 4 bits and the rest is reserved.
• The remaining memory words are reserved.
The core operates in the following sequence: First the user

key and input data are written to the key space and data space
in the memory, respectively. Before a key_valid bit in the
control word is set to start key expansion, and a dec or enc
bit is set to start the encryption/decryption operation. Both key
expansion and encryption can start simultaneously by setting
the key_valid bit, which has to be maintained high during
the operation. A counter is used as an address to select the
round key. The total number of processing rounds is a constant
defined by the key size. The result is stored in the result space
in the memory where it can be read through the read data port.

A. Trojan Implementation

HTHs must be implemented such that it cannot be activated
during all validation and testing phases. This requires the
Trojan to have the smallest effect possible on both area and
power consumption, and also requires that its trigger is very
difficult to detect, implying that it should depend on more than
one unlikely condition. We note that the read and write selects
are mutually exclusive and should not be asserted together.
When reading the write-only memory space the control word
is read instead, and the reserved memory areas are read as
zeros. Taking advantage of these two notices we implemented
our HTH at the RTL level to satisfy the previous conditions.

We set the trigger to be a combination of two unlikely
conditions. The first is a string of zeros and ones written to
the reserved part of the control word, this reserved part has
no effect on the normal core operation, and thus cannot be
detected at run-time, and the random selection of this string
makes it extremely unlikely to detect. The second condition is
to simultaneously assert both read and write selects. When
both conditions are satisfied, the write-only key space is
converted to a read/write space for n-bus cycles and the key
can then be leaked during this period. To minimize the Trojan
size and make it difficult to detect, the key space will be
converted to a read/write space for only a single bus cycle.
Figure 3 shows the HTH triggers and payload in the AES
core. The Trojan has only a 1.4% and 0.17% resource and
power overhead, respectively, as shown in Table I .

B. Run-time Detection and SECRET Logic

The most important assumption for successful operation of
SECRET is to detect potential HTHs at run-time. Despite
Trojan detection is not our main goal, we design a run-time
monitor that can detect the implemented HTH. Detection of
the implemented HTH is done by monitoring all transactions
on inputs and outputs, and detecting illegal transactions. For
the selected crypto core, an example of illegal transactions

AVS AES Encryption/Decryption Core

5

32

32

address

writedata

readdata
Memory

0-7: Key

8-11: Data

12-15: Result

31: CTRL Word
0 1 6 7

16-30: Reserved

FSM Controller

1

3

2

4

5

6

AES Datapath

SubBytes
ShiftRows

MixColumns
AddRoundKey

Key 
Expansion 
Datapath

Payload

Trigger

T
ri

gg
e

r

Fig. 3. Block Diagram of the target encryption/decryption core

would be a read request to a write-only memory space that
returns something other than the control word, or a read
transaction to the reserved memory part that returns a non-
zero value. The Trojan detection circuitry is implemented as
hardware assertion checkers [13].

Our detection logic comprises a small memory space that
holds a copy of the key, assertions that compare output data
with individual words of the stored key and assertions that
compare the output data to the control word format. This
detection circuit is very simple and effective for detecting spe-
cific HTHs, namely, those who would leak the encryption key.
The aforementioned HTH and the simple detection circuitry
are sufficient for the SECRET demonstration purpose.

In the SECRET architecture, we set TRED to four bus cycles
which introduces a four-bus-cycle delay to read transactions
instead of zero bus cycles delay. This delay is a SECRET
parameter and it should not pose a problem for streaming
applications using the crypto IP core. Once a Trojan is de-
tected, the recovery process immediately begins. The operating
core is disabled for a specific time Tsuspension, preventing the
operating core from receiving the attack trigger. Tsuspension is
another SECRET parameter selected to ensure that the trigger
is prevented and no unnecessary transactions are stopped. In
this specific application, the operating core is disabled for two
bus cycles which is an enough time to prevent at least one
of the two conditions required to activate the Trojan. After
the disable signal is deasserted the delayed core continues its
operation normally. During this time a Security_Emulate
signal is asserted to flag that the core is suspended.

At the same time, a trigger analysis module checks the input
FIFO buffer attempting to identify the trigger. This process
runs concurrently to the recovery process and it can prevent
future attacks exploiting the same Trojan. Deeper buffers can
be used to increase the probability of detecting the trigger at
the expense of increased output delay and resource overheads.
If any abnormal input values or sequences are detected, they
are stored in a dedicated memory, and in the future all inputs
are compared to the memory contents and isolated if matched.

V. RESULTS AND EVALUATIONS

Figure 4 shows the simulation results of the SECRET
application to the crypto 3PIP core. It illustrates the trigger
beginning and end, where the trigger control word is written
and the read and write signal are applied together. The payload



begins after one cycle of the Trojan trigger sequence. The
Trojan is detected in the same bus cycle where the Trojan
payload begins. The buffer delay TRED is four bus cycles, and
the suspension time Tsuspension is two bus cycles.

The AES crypto core is synthesized using Xilinx tools on
a Spartan-3 XC3S5000 FPGA and at a clock frequency of
100 MHz. Our Trojan is implemented at the RTL level by
modifying the HDL source code describing the IP core. Table I
depicts the synthesis results of the 3PIP core, HTH, detection
and SECRET logic. The results depict an increase of only
3.12% in the number of LUTs and a 0.43% increase in power
consumption for the infected core compared to the Trojan-free
implementation. These results demonstrates the difficulty of
detecting the implemented HTH using design-time techniques.

Adding the detection and SECRET protection logic con-
taining the redundant IP core and SECRET logic leads to a
significant increase in the resources, as expected. The added
detection and recovery logic are responsible for increasing
power consumption by 22.45%. The selected length of the
delay buffer has a direct impact on resources and power
consumption. The redundant core which is always running
and, consequently, consumes more power than the operating
one which is suspended under attacks. The resource and power
overheads are highly dependent on the IP core itself, the
employed detection method, and the SECRET parameters.

Fig. 4. Simulation of SECRET application to the AES Crypto 3PIP core

TABLE I
SYNTHESIS RESULTS OF THE IP CORE, HTH, AND SECRET LOGIC

Design Registers LUTs Power
# % # % mW %

Trojan 1 0.017 99 1.43 0.92 0.1764
Operating core 2761 46.3 3169 45.5 193.72 37.15
Redundant core 2761 46.3 3169 45.5 209.61 40.2
SECRET Logic 440 7.383 527 7.57 117.09 22.45
Total 5962 100 6964 100 521.34 100

VI. CONCLUSIONS

In this work we advanced a novel approach that exploits
circuit redundancy to counter hardware Trojan threats in 3PIP
cores deployed in reconfigurable hardware designs. SECRET
employs two identical instances of the protected IP core,
one for observation and the second with delayed input for
operating. Once a Trojan is detected in the redundant observed
core, the operating core is suspended or the input triggers are

isolated. We presented the SECRET architecture, timing be-
havior, and main parameters. A proof-of-concept application to
a 3PIP crypto core with an embedded HTH was introduced and
the simulation and validation results establish the SECRET
feasibility and effectiveness. The implementation results depict
the increased overhead incurred by using a redundant instance
of the protected IP core. The SECRET protection is highly
dependent on the target IP core and the Trojan design yet
the architecture and DFTS practices presented herein can be
generally applied to protect a broad range of 3PIP cores widely
deployed in reconfigurable hardware designs.

This work provides an initial effort to evaluate the proposed
SECRET countermeasure which can be merged with related
Trojan detection methods to produce a very efficient Trojan
detection and countering solution. Many research points can
emanate from this work including precise characterization of
the SECRET parameters, identifying qualified run-time Trojan
detection techniques to enable SECRET, confining potential
target IP cores and HTH threats, studying run-time trigger
identification algorithms, and automation of the SECRET logic
design process. In our future work, we will also investigate
reducing overheads incurred by using a redundant instance
of the protected IP core. We will also investigate dynamic
tuning of the SECRET parameters to increase the probability
of countering various types of HTHs.

REFERENCES

[1] John Koeter. Tomorrow’s semiconductor IP - not business as usual. Chip
Design Magazine, 2013.

[2] M Tehranipoor and F Koushanfar. A survey of hardware trojan taxonomy
and detection. Design Test, IEEE, PP(99):1–1, 2013.

[3] Mark Beaumont, Bradley Hopkins, and Tristan Newby. Hardware
trojans-prevention, detection, countermeasures (a literature review).
Technical report, DTIC Document, 2011.

[4] Mohammed M Farag. Architectural Enhancements to Increase Trust in
Cyber-Physical Systems Containing Untrusted Software and Hardware.
PhD thesis, Virginia Polytechnic Institute and State University, 2012.

[5] Miron Abramovici and Paul Bradley. Integrated circuit security: new
threats and solutions. In Proceedings of the 5th Annual Workshop on
Cyber Security and Information Intelligence Research: Cyber Security
and Information Intelligence Challenges and Strategies. ACM, 2009.

[6] Matthew Hicks, Murph Finnicum, Samuel T King, Milo Martin, and
Jonathan M Smith. Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically. In Security and Privacy
(SP), 2010 IEEE Symposium on, pages 159–172. IEEE, 2010.

[7] Cynthia Sturton, Matthew Hicks, David Wagner, and Samuel T King.
Defeating UCI: Building stealthy and malicious hardware. In Security
and Privacy (SP), 2011 IEEE Symposium on, pages 64–77. IEEE, 2011.

[8] Adam Waksman and Simha Sethumadhavan. Silencing hardware back-
doors. In Security and Privacy (SP), 2011 IEEE Symposium on, pages
49–63. IEEE, 2011.

[9] Lok-Won Kim and J.D. Villasenor. Dynamic function replacement
for system-on-chip security in the presence of hardware-based attacks.
Reliability, IEEE Transactions on, 63(2):661–675, June 2014.

[10] D McIntyre, F Wolff, C Papachristou, Swarup Bhunia, and D Weyer.
Dynamic evaluation of hardware trust. In Hardware-Oriented Security
and Trust, 2009. HOST’09. IEEE International Workshop on, pages 108–
111. IEEE, 2009.

[11] Hany AM Amin, Yousra Alkabani, and Gamal MI Selim. System-level
protection and hardware trojan detection using weighted voting. Journal
of Advanced Research, 5(4):499–505, 2014.

[12] Thomas Ruschival. Avalon AES ECB-Core (128, 192, 256 bit). http:
//opencores.org/project,avs aes, 2009.

[13] Marc Boulé and Zeljko Zilic. Generating hardware assertion checkers.
Springer, 2008.


