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Abstract—Secure Hash Algorithm 3 (SHA-3) based on the
KECCAK algorithm is the new standard cryptographic hash func-
tion announced by the National Institute of Standards and Tech-
nology (NIST). Hash functions are a ubiquitous computing tool
that is commonly used in security, authentication, and many other
applications. The calculation of SHA-3 is very computational-
intensive limiting its applicability on RISC processors used in
modern embedded systems and Systems on Chips (SoCs). In
this work, we study the SHA-3 computation bottlenecks on a
32-bit RISC processor and introduce two Application Specific
Instruction Set Processor (ASIP) architectures to speedup SHA-
3 computation on the 32-bit MIPS processor. Two ASIP archi-
tectures namely native datapath and coprocessor-based ASIPs
are developed with the aid of Codasip Studio, implemented and
evaluated on a Xilinx Virtex-6 FPGA. Compared to the reference
SHA-3 execution on MIPS, the evaluation results show a 25% and
61.4% speedup for the native and coprocessor-based ASIPs at the
expense of a 8.6% and 25.8% resource overheads, respectively.

Index Terms—SHA-3, Instruction Set Extension, Application-
Specific Instruction-set Processor, SoC, MIPS, FPGA

I. INTRODUCTION

The National Institute of Standards and Technology (NIST)

released the new standard for the Secure Hash Algorithm

(SHA-3) in August 2015 [1] based on the KECCAK function

developed by G. Bertoni et al. [2]. The KECCAK function

consists of five steps permutations (θ, ρ, π, χ, ι) repeated for

a certain number of rounds (typically 24 for SHA-3), these

permutations operate on a fixed length array (typically 1600

bits for SHA-3) called state matrix and produce an output of

the same length. Each permutation consists of the iteration of

a simple round function limited to bit-wise XOR, AND and

NOT and rotations as shown in Figure 1. The state could be

represented as a 3D array of 5×5×64 bit elements, a 1600-bit

block fills the array in 25 lanes of 64-bit size each [1].

The execution of the SHA-3 function is computationally-

intensive on lightweight embedded RISC processors because

of the large size of the SHA-3 state [3]. As reported by [4],

the performance of SHA-3 can be improved by utilizing vector

rotate instructions. Unfortunately, low-cost RISC instruction

set architectures (ISAs) do not include such instructions.

An application-specific instruction set architecture processor

(ASIP) can be developed to improve the SHA-3 computation

performance on a specific RISC ISA. ASIPs are custom de-

veloped processors that are optimized for special applications,
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Fig. 1. KECCAK step permutations [1]

unlike general-purpose processors. The ASIP design method-

ology is commonly adopted in embedded system and Systems-

on-Chip (SoC) design communities and its usage is rapidly

growing. ASIPs provide a trade-off between the flexibility of

general-purpose processors and the performance of ASICs.

One of the common approaches in ASIP design is to extend a

specific ISA with custom instructions, namely Instruction Set

Extension (ISE), optimized for a specific set of functions. The

ASIP ISE is tailored to meet the requirements of a specific

application by augmenting the processor’s microarchitecture

with optimized hardware to perform the custom-developed

instructions faster and more efficient.

The primary focus of this work is designing a SHA-3 ISE

to improve the SHA-3 computation performance, specifically,

on lightweight RISC processor architectures lacking for vector

rotate instructions; the MIPS 32-bit ISA is selected to resemble

such architectures. MIPS is a RISC processor architecture that

is widely used in industry and taught in many educational

institutes all over the world [5]. Recent MIPS versions such

as those embedded in PIC microcontollers are widely deployed

in contemporary electronic products and embedded systems.

In [6], various ISEs have been implemented for a 16-bit

PIC24 microprocessor architecture to improve the performance

of the five SHA-3 candidates. Another SHA-3 FPGA-based

ISE on a 32-bit LEON3 processor is presented in [7]. In

this work, we advance two ISEs to speedup the SHA-3

computation on a lightweight 32-bit MIPS processor [5] with

the aid of Codasip Studio, an automated ASIP development



environment [8]. The rest of this paper is organized as follows:

The adopted ASIP design flow is presented in Section II.

SHA-3 computation bottlenecks on 32-bit MIPS ISA are in-

troduced in Section III. The architectural and hardware design

of the proposed SHA-3 ASIPs are advanced in Section IV.

The performance and implementation results of the SHA-3

computation on the reference MIPS and ASIP architectures

are provided in Section V. Conclusions are portrayed in

Section VI.

II. DESIGN FLOW OF THE SHA-3 ASIP

The ASIP design flow adopted in this work is illustrated

in Figure 2. Some design procedures are conducted using

Codasip Studio and others are done manually to optimize the

ASIP design process. The design flow procedures are:

1) Developing the Instruction Accurate (IA) and Cycle Ac-

curate (CA) models of the lightweight MIPS processor

using Codasip Studio. The IA model provides a detailed

instruction set description. The CA model is a detailed de-

scription of the microarchitecture of the processor design.

Both models are used to generate the CA and IA assemblers

and simulators which are used to test and verify the design.

The CA model also generates a synthesizable HDL code

of the processor design.

2) Software implementation of SHA-3 on the 32-bit MIPS.

This software design is tested using MARS simulator [9],

and then tested and verified on both the Codasip IA and

CA simulators. The results are validated against a SHA-3

reference code written in C language [10].

3) Multiple iterations of the profiling and software optimiza-

tion are carried out to find computation bottlenecks and

improve the performance of the software implementation

until no further improvements could be reached in software.

4) Custom instructions are designed at the ISA level to im-

prove the SHA-3 computation speed and incorporated into

the reference MIPS microarchitecture by two approaches:

the native datapath ISE and the coprocessor-based ASIP. In

both approaches, the IA and CA models are implemented,

tested, and verified using the first three procedures.

5) Register transfer level (RTL) Verilog HDL is generated for

both the reference MIPS and the two SHA-3 extended

ASIP processors using Codasip Studio. The hardware

designs are simulated and verified using the Codasip-

generated HDL testbenches on the Xilinx ISim simulator.

6) The RTL Verilog code of all designs is then synthesized

for a Xilinx Virtex-6-XC6VLX75t-2-FF484 FPGA using

Xilinx ISE. The Xilinx ISE tool is also used to report back

the FPGA utilization as a hardware footprint indication.

7) The SHA-3 ASIPs are compared to the MIPS reference

design in terms of the SHA-3 computation speed, total

processor area, and SHA-3 program code size metrics.

III. COMPUTATION BOTTLENECKS OF SHA-3 ON MIPS

KECCAK is mainly composed of a number of step permuta-

tions which introduce the computation bottlenecks presented

in this section. As the KECCAK permutations are repeated in
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Fig. 2. The adopted ASIP design flow

nested loops, a minor improvement in one step can result in

a major performance enhancement of the whole algorithm.

Most of the bottlenecks discussed in this section are repeated

50 times (number of words in the state matrix) and each step

is repeated 24 rounds. The main bottlenecks are listed below:

1) θ computation bottlenecks: The θ permutation is a linear

transformation applied to the state, in which each bit

is XORed with the XOR result of the two surrounding

columns. To implement θ each adjacent five lanes in a sheet

should be XORed which requires loading them from the

memory (loading two words for each lane), XORing them

in a sequential manner, and storing the result back to the

memory. Rotating each lane by one bit is needed to imple-

ment θ, this rotation is not straightforward because MIPS

uses 32-bit register size while SHA-3 lanes are 64 bits.

Therefore, multiple instructions are needed to implement

this function leading to increase the computation time.

2) ρ computation bottlenecks: The ρ permutation rotates

each lane by a variable offset, which is more complex

than the previous 64-bit rotation by one bit because the

rotation value is not constant and may exceed 32 bits which

increases the number of cycles required to implement a

generic function for 64-bit rotation.

3) π computation bottlenecks: The π step loads the ρ

step output state from the memory, scrambles this state

by rearranging lane positions, and stores it back to the

memory again. The computation of the new positions

requires multiple instructions containing multiplication and

modulus. This bottelneck was solved in software by pre-

calculating the positions at the compile-time.

4) χ computation bottlenecks: The χ permutation is a

nonlinear transformation working on the lanes of the state.

It requires loading three subsequent lanes; applying several

NOT, AND and XOR operations on them in a sequential

manner, and finally storing the result in memory.

5) ι computation bottlenecks: The ι permutation XORs

the lane A[0, 0] with a variable round constant which

is changed every round. Calculating the variable round

constant is a significant overhead that requires many cycles.

This bottleneck is solved in software by precalculating the

positions at the compile-time.



IV. ISE AND HARDWARE DESIGN OF THE SHA-3 ASIP

A custom implementation of the 32-bit MIPS ISA is devel-

oped where a subset of the MIPS instructions are implemented

with the aid of Codasip Studio, both the C-language compiler

and the HDL design are generated and tested. Afterwards, two

ISEs are advanced to resolve the SHA-3 bottlenecks presented

in the last section: native datapath and coprocessor-based ISEs.

Design of the ISE at the architecture level and their support

at the hardware mircoarchitecture level are presented herein.

A. SHA-3 Native Datapath ASIP

In this approach, the SHA-3 bottlenecks are resolved by

minor microarchitecture modifications to the MIPS processor

native datapath. The syntax of the added instructions and

their high-level descriptions are depicted in Table I.

TABLE I
NATIVE DATAPATH ASIP NEW INSTRUCTIONS

Instruction Description

AndNot
AndNot $destination, $source1, $source2

$destination← (∼ $source1)&$source2

Rot1

Rot1$source1,$source2

if $source2 < 32 then

Most← $source1≪ $source2
Least← $source1≫ (32− $source2)

else

Least← $source1≪ ($source2− 32)
Most← $source1≫ (64− $source2))

end if

Rot2

Rot2 $destination, $source1, $source2

if $source2 < 32 then

Least← Least|($source1≪ $source2)
Most← Most|($source1≫ (32− $source2))

else

Most← Most|($source1≪ ($source2− 32))
Least← Least|($source1≫ (64− $source2))

end if

$destination← Most

MFLeast
MFLeast $destination

$destination← Least

To support the ISE at the hardware level, the MIPS ALU is

augmented with additional logic as shown in Figure 3. For the

rotation instructions, two special internal registers: MSW and

LSW are introduced to hold the intermediate value for the 64-

bit rotation because the full rotation operation takes two cycles

to execute. Because only one 32-bit output can be written back

to the register file, the most significant 32 bits of the output

are written back to the register file and the least significant 32

bits are written back in another cycle. To switch between the

most and least significant words, a multiplexer is introduced.

In order to implement the AndNot instruction without adding
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Fig. 3. SHA-3 MIPS-based native datapath ASIP

extra logic, a resource sharing approach is used by adding a

NOT gate before the ALU input (SrcA) incorporated within

an already existing multiplexer.

B. SHA-3 Coprocessor-Based ASIP

In this approach, the SHA-3 computation bottlenecks are

tackled by adding a SHA-3 coprocessor that operates on

multiple inputs at once, and in order to keep the MIPS register

file architecture unchanged, five auxiliary registers are used.

The syntax of the added instructions and their high-level

description are depicted in Table II.

TABLE II
SHA-3 COPROCESSOR NEW INSTRUCTIONS

Instruction Description

LWAu

LWAu $destinationAu, #offset($base)

Executed by the regular ALU:

$destinationAu← memory[$base+#offset]

XOR5

XOR5 #offset($base)

Executed by the additional ALU:
Result← $Au0⊕ $Au1⊕ $Au2⊕ $Au3⊕ $Au4
Executed by the regular ALU:
memory[$base+#offset]← Result

Chi

Chi #index, #offset($base)

Executed by the additional ALU:
Result ← $Au[#index]] ⊕ ((∼ $Au[#index +
1])&Au[#index+ 2])
Executed by the regular ALU:
memory[$base+#offset]← Result

Rot

Rot #offset($base)

Executed by the additional ALU:
{Most, Least} = {$Au0, $Au1} ≪ $Au2
Executed by the regular ALU:
memory[$base+#offset]← Most

SWLeast

SWLeast #offset($base)

Executed by the regular ALU:
memory[$base+#offset]← Least

The microarchitecture of the extended MIPS processor is

shown in Figure 4. Five auxiliary registers are added to the

decode stage to supply parallel inputs to the Co-ALU which

can execute three operations only; XOR5, Rot and Chi. For

the Rot instruction, only the most significant 32 bits are stored

during the first cycle while the least significant 32-bits are

held in an internal register to be stored in another cycle. This

requires adding a multiplexer to select between the most and

least words. To incorporate the coprocessor datapath within the

MIPS processor without interfering with the original datapath,

the memory data port input is multiplexed to select between

the original and coprocessor datapaths. As the coprocessor

supports loading from memory to its auxiliary registers, the

auxiliary register data inputs are connected to the memory

data output associated with a write enable and three bits for the

auxiliary register address taken from the instruction bits[18:16]

to choose between auxiliary registers. The same three bits are

used as an immediate index for the Chi instruction.

V. IMPLEMENTATION RESULTS AND EVALUATION

Both the reference MIPS and ASIP processor architectures

are implemented and tested on a Xilinx Virtex-6 FPGA.

The SHA-3 algorithm was executed on all architectures and

the execution time was calculated for each one. The SHA-3
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Fig. 4. SHA-3 coprocessor-based ASIP

extended architectures are compared to the reference MIPS

processor in terms of the SHA-3 computation speed, total

processor area, and SHA-3 code size or memory utilization.

Table III provides a comparison between our basic MIPS,

the native datapath and coprocessor-based extended MIPS, the

KECCAK-extended PIC24 processor presented in [6] and the

accelerated LEON3 processor presented in [7]. Results of the

two developed ASIP in the table are referred to the reference

MIPS results while the results of the compared architectures

are referred to their base designs.

TABLE III
SHA-3 ASIP IMPLEMENTATION AND TESTING RESULTS

Execution time Area Code Memory
Cycles/bytes # of Slices Bytes

Reference MIPS 222.6 6074 3592
Native ISE 178.1(80%) 6595(109%) 3320(92%)

Coprocessor ISE 137.9(62%) 7643(126%) 3292(92%)

PIC24 [6] 188 - 3480
PIC24+ISE [6] 132(70%) - 2415(69%)

LEON3 [7] 693 7902 20000
LEON3+ISE [7] 369(49%) 8648(109%) 18100 (89.5%)

The hash computation speed is defined as the number of

bytes hashed per clock cycle which is inversely proportional to

the computation time measured in clock cycles for hashing one

byte of the message. The results show a significant reduction

of SHA-3 execution time referred to the execution time on the

MIPS reference architecture by 20% and 38%, which is equiv-

alent to a 25% and 61% speedup in the computation of SHA-3

on native and coprocessor-based approaches, respectively.

The developed processors are synthesized and implemented

on a Xilinx Virtex-6-XC6VLX75t-2-FF484 FPGA. Although

extensions and modifications to the MIPS-I ISA are limited,

the results show a relatively large overhead in the ASIP

hardware resources specially for the coprocessor based ASIP.

This is because the MIPS processor is lightweight and only

a subset of the MIPS instructions are implemented. Applying

both ISEs on a complete MIPS processor is expected to have

less hardware area overhead. The SHA-3 executable code size

is reduced by around 8% for both ASIPs.

From the previous results, it is clear that both ASIP ap-

proaches improved the execution speed and memory usage at

the expense of hardware area. The coprocessor-based ASIP ap-

proach improves the throughput more significantly compared

to the native datapath approach. Comparing our results to the

ISE presented [6] shows a slight improvement of the execution

time in our SHA-3 coprocessor ASIP, which is compensated

in the code size of the PIC24 ISE. Comparing our work to the

LEON3 FPGA-based ISE presented in [7] depicts that their

execution time reduction ratio is better than ours. However,

comparing the absolute execution time of SHA-3 on both

32-bit architectures illustrates a significant superiority of our

SHA-3 ASIPs which is at least twice faster than the SHA-3

LEON3 ISE; the same applies for the memory usage.

VI. CONCLUSIONS

In this paper, we presented an ASIP design to improve

the throughput of the SHA-3 algorithm computation on a

lightweight MIPS processor. The ASIP design flow is adopted

with the aid of Codasip Studio to develop a SHA-3 ISE to

a 32-bit MIPS processor. Two ISEs were presented: native

datapath ISE and coprocessor-based ISE. The extended MIPS

processor is synthesized on a Virtex 6 FPGA, the native

and coprocessor-based ASIPs improve the throughput of the

reference implementation of the SHA-3 algorithm by 25%

and 61.4%, respectively. The slice area of the MIPS pro-

cessor, however, increased by 8.6% and 25.8% for the two

approaches,respectively. The relative large overhead imposed

by the two approaches is attributed to the small area of the

MIPS reference processor because only a small subset of the

MIPS ISA is implemented. As the ISA of the MIPS processor

is similar to many 32-bit RISC processors, therefore, the

presented SHA-3 ASIPs can be extended to other 32-bit RISC

processor architectures.
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