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Abstract—In this paper, we present a novel design of a
dynamically configurable hardware accelerator for the new NIST
SHA-3 standard, namely the Keccak hashing function. The SHA-
3 accelerator is composed of a static datapath built based on
two different folded architectures of the Keccak function and
controlled by a programmable Finite State Machine (FSM) that
can be dynamically configured at run-time to hash a message of
arbitrary size and digest length. The proposed hardware architec-
tures enable implementing all functions and modes of operation
supported by the Keccak SHA-3 hashing standard. Two proto-
types of the accelerator are developed and validated on a Xilinx
Virtex-6 FPGA kit as a stand-alone system and on a ZedBoard kit
featuring a ZynQ-7000 SoC FPGA, where the SHA-3 accelerator
is implemented in the programmable logic and interfaced to an
ARM Cortex-A9 processor. Hardware implementation is followed
by a hardware/software co-design of a SHA-3 SoC running the
keyed-Hash Message Authentication Code (HMAC) and Pseudo
Random Number Generator (PRNG) security applications. The
ARM processor runs the application software and offloads SHA-
3 computations to the hardware accelerator. The implementation
results illustrate the performance enhancement of the SHA-
3 SoC over pure software implementations in addition to the
unprecedented flexibility offered by the proposed accelerators.
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I. INTRODUCTION

Hash functions are mainly used for message authentication
and are a major building block in other security protocols such
as keyed-Hash Message Authentication Code (HMAC) [1] and
Pseudo Random Number Generation (PRNG) [2]. In 2012,
National Institute of Standards and Technology (NIST) has
announced the selection of the Keccak function among five
algorithm finalists to be the winner of the SHA-3 competition
announced in 2007. The Keccak sponge function won the
competition due to overcoming the security vulnerabilities of
SHA-1 and SHA-2, its superior security and performance char-
acteristics, and its suitability for hardware implementation [3].

As a sponge construction, the Keccak function depicted
in Figure 1 accepts a binary message of an arbitrary length
and computes a digest of a fixed size d bits. The number of
inputs bits to a Keccak function is b bits. The message is
divided into M blocks of 7 bits each, where r is called the rate.
The security level of the function is indicated by the capacity
¢ = 2 x d where b = r 4+ ¢. A Keccak round is composed
of a sequence of five operations called 0, p, 7, x and ¢. The
five operations operate in fixed sequence on a 5 x 5 W-bit
state such that the lane width W = b/25. The functions 6,
p, T, x and ¢ perform successive permutations on the state
by AND, logical rotate, and XOR operations as shown by
Figure 2. The Keccak function is repeated for a number of

rounds Np = 12+ 2 x logo W, on the same state, then another
block of r-bits is XORed with the state and the Ny rounds are
repeated. The Keccak function is specified by two parameters:
b and ¢, where the notation Keccak-f[b](M,d) is the Keccak
function on a message M with b-bits input and a digest size
d [4]. There are four SHA-3 hash functions: SHA-3-224, SHA-
3-256, SHA-3-384 and SHA-3-512 where SHA-3-d is Keccak-
f[1600](M,d) or simply Keccak[c](M,d).

In this work, we propose two folded architectures for a
Keccak hardware accelerator, namely Dynamic Configurable
Capacity Keccak (DCC) and Dynamic Configurable Capac-
ity and Lane width Keccak (DCCL). The DCC architecture
enables implementing the functionality of any of the four
hash functions Keccak-f[1600](M,d), thus changing the se-
curity level on demand. DCC can also implement the two
SHA-3 variable length Extendable Output Functions (XOFs)
SHAKEI128 and SHAKE256 by adjusting the digest size and
appending domain separation bits to the message to distinguish
the XOFs from the four SHA-3 functions. The XOFs can
be implemented directly from the Keccak-f, where SHAKE-
c= Keccak[c](M]||11,d) and || denotes padding. The DCCL
architecture enables changing both the capacity and the number
of input bits b thus implementing any of the Keccak-f[b](M,d).

absorbing squeezing

Fig. 1. Keccak sponge construction: Z = SPONGE]f, pad, r](M, d) [4].
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Fig. 2. Keccak-f function operations (step mappings) [4].



The Keccak hardware accelerator is interconnected as an
I/O peripheral to a processor that dynamically controls the
SHA-3 accelerator configuration at run-time according to the
application requirements where the trade-off is always security
versus latency. Both the DCC and DDCL are implemented
using the Xilinx Vivado High-Level Synthesis (HLS) design
flow. The HLS flow allows early exploration of different archi-
tectural alternatives and optimizations such as loop unrolling
and pipelining using simple compiler directives added to the
same source code. HLS enables quick implementation and
validation of the developed accelerator in addition to its easy
integration to the full system using the AXI interface protocol.

An intensive research effort was devoted prior to the
NIST’s selection of Keccak to evaluate the SHA-3 competition
finalists. The premier two reasons for choosing Keccak to
implement SHA-3 are security and performance. A significant
amount of cryptanalysis was applied to Keccak and the main
conclusion is that Keccak has a huge security margin quali-
fying it to be the hashing standard for the next decade [3].
The software performance of the candidates was benchmarked
on general purpose processors and embedded microcontrollers,
and Keccak has achieved reasonable speed [3]. The hardware
implementation results from various sources were a major pro
for Keccak. ASIC and FPGA implementations were introduced
for all the finalists, multiple architectural alternatives were
evaluated, Keccak has the highest throughput/area ratio and it
is the only candidate that gives better results than SHA-2 [3].

In [5], an efficient implementation of the Keccak-f[512]
and Keccak-f[1024] functions is presented, regular RTL prac-
tices and HDL coding techniques are used to optimize the
design. A high-speed Keccak-f[512] is implemented in [6]
in which all lane operations inside the state are executed
in parallel. Keccak-f[512] is compared to SHA-2-256 and
demonstrates higher throughput per area ratio. An extremely
compact Keccak-f[512] is presented in [7] for lightweight
applications. The small area is achieved by iterating the
operations on the lane, thus imposing long latency. In [8], an
efficient low-area implementation was presented for each of
the five candidates. For the SHA-3 function, an iterative folded
architecture was built to minimize the area. The throughput is
reduced by folding the architecture as well, but this implemen-
tation achieves high throughput to area ratio. In [9], the five
nominees for the SHA-3 where implemented using both the
traditional HDL flow and the HLS flow. A comparison was
drawn between both approaches, although the HLS approach
imposes a noticeable overhead on the design, the ranking of
the HLS implemented nominees was the same as that for the
traditional HDL design flow.

In this paper, we advance the first implementation, to the
best of our knowledge, of a dynamically configurable SHA-3
System-on-Chip (SoC) using the Xilinx Vivado HLS design
flow. The rest of this paper is organized as follows, the archi-
tecture of the SHA-3 accelerator is illustrated in Section II.
In section III, we compare the performance of our system to
the relevant results reported in the literature. Conclusions and
future work directions are portrayed in Section IV.

II. DYNAMIC CONFIGURABLE SHA-3 ARCHITECTURE

We advance two folded architectures for the Keccak-f
function. Both architectures are implemented using the Vivado
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Fig. 3. Dynamic configurable SHA-3 SoC.

HLS flow and interfaced to an ARM processor in the SoC
illustrated in Figure 3. The developed SoC is hosted and tested
on a ZynQ-7000-based ZedBoard FPGA kit. The ZynQ-7000
architecture comprises: a programmable system (PS) featuring
an ARM Cortex-A9 dual-core processor and its I/O peripherals
as software counters and UARTSs; and programmable logic
(PL) which is configured to implement custom hardware mod-
ules. The SHA-3 system is composed of five main components
which are the Keccak Accelerator, an ARM processor, a DDR-
3 memory, an AXI bus, and a counter.

o ARM Processor runs the software application needing
the hash functionality and controls the Keccak hardware
accelerator. The interaction between the processor and the
accelerator is done via the memory. The processor places
a data header in a specific memory location that contains
necessary information for the accelerator to run. The infor-
mation contained in the header is the memory address of the
message to be hashed, the message size, the memory address
to place the digest, and the configuration data which is the
capacity for the DCC architecture and the capacity and lane
width for the DCCL architecture. After the header is placed,
the ARM initializes the accelerator operation via asserting
a Start signal and waits for the accelerator to assert the Idle
signal which indicates the operation completeness.

e Counter: It is cleared when the ARM issues the start signal
to the accelerator and starts counting clock cycles while the
Idle signal is deasserted. When the Idle signal goes high,
the counter pauses and the ARM can read the accelerator
latency from the counter for performance evaluation.

o SHA-3 Accelerator: Both DCC and DCCL architectures are
implemented in HLS and only one accelerator is interfaced
to the processor. When the Start signal from the processor
is asserted the accelerator (i) initially reads the header from
the memory; (ii) reads the message starting from the address
provided in the header where a block of r bits is read each
time; (iii) performs the hash function on the fetched blocks
until the entire message is hashed; and (iv) writes back the
computed digest to the memory address given by the header.

In the DCC-SHA-3 architecture shown in Figure 4, the
software sets the capacity of the Keccak sponge function to
hash a message of an arbitrary size and desired hash length
with a minimum capacity of ¢ = 448 bits. Therefore, the
DCC-SHA-3 accelerator can be configured as any of the four
Keccak-f[1600] functions enabling the software designer to
trade off security for latency on the fly according to the
application requirements. The configuration data is transferred
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Fig. 4. High-level architecture of the DCC and DCCL Keccak accelerators.

to a ConfigReg controlling a programmable FSM controller.
The StateReg is a set of 25 64-bit registers storing data needed
by the round state. At the beginning of each round, the Memory
Copy Controller (MCC) block copies r bits from the main
memory, where r = 1600 — c. Each 8 bytes are placed in one
of the 18 64-bit registers R which are designed to accommodate
the largest possible rate = 1152 corresponding to the smallest
possible capacity ¢ = 448. The r bits are then XORed with
the state and passed to the sponge function Keccak-f. Each
clock cycle, the sponge function is executed on the state and
the result is fed back to the function for the next round. After
24 rounds, the d-bit digest is written back from the StateReg to
MCC. The Keccak-f and MCC modules are pipelined, thus the
MCC block can continue saving the message into the registers
while the sponge is being executed.

In the DCCL architecture depicted in Figure 4, both
the lane width and capacity of the Keccak function can be
configured. The lane width can be configured as a multiple
of 8 bits, therefore all Keccak functions from Keccak[200]
up to Keccak[1600] can be implemented by simply modifying
the message header. The 6 and p functions include rotation
operations so they must accommodate the maximum possible
lane width of 64 bits to prevent overflow. The resultant state
form 6 and p is stored into a TempReg. The width of 7, x, and
¢ modules is set to one byte, and the folded datapath is used
iteratively to operate on the W -bit state to save area at the
expense of throughput reduction. For instance, for W = 64,
the 8-bit datapath needs 8 cycles to complete the operation.

A. Hardware/Software Co-Design of SHA-3 Applications

Hash functions are mainly used for message authentication,
but they are also widely used for other security protocols such
as HMAC and PRNG. HMAC is used to simultaneously verify
both data integrity and message authenticity and involves a
cryptographic hash function such as SHA-3 in conjunction
with a secret key. The HMAC standard function developed
by NIST in [10] is computed using the following equation:

MAC (text) = HMAC (K, text)
— H((Ko © opad)||H((Ko @ ipad) |text))

where K is the secret key, opad, ipad are constant pads and
H is a hash function.

PRNG is an algorithm for generating unpredictable random
numbers based on a given seed. PRNGs are central in many
security and non-security applications. Good statistical prop-
erties are an essential requirement for the PRNG output which
must not be predictable from previous outputs. Because they
satisfy this requirement, hash functions are a basic building
block in a widely-used class of PRNGs. We implemented the
PRNG algorithm presented in [2]. The algorithm is composed
of two steps: feed(o) and fetch(l). feed(o) feeds the Keccak
with the seed o (message) by splitting the seed into N r-bit
blocks and feeding them in sequence to the sponge function as
shown in Figure 1. fetch(l) squeezes [ bits from the Keccak
by reapplying the sponge on the state without feeding any seed
and reading [ bits as the output from the state. It is clear that
HMAC and PRNG functions mainly rely on the SHA-3 hash
function which forms the computational intensive part of both
applications. Therefore, we partition the SHA-3 SoC shown in
Figure 3 into the dynamic configurable hardware accelerator
running the SHA-3 hash function and a software program on
the processor running the remaining application tasks such as
padding and other logical operations.

III. SYSTEM IMPLEMENTATION AND EVALUATION

The throughput obtained from the DCC and DCCL archi-
tectures can be calculated using the following equation:
b
T T.x N
where T'h is the throughput in Mbps, b is the number of input
bits, T, is the clock period and N is the number of cycles

required to hash a single block. For both architecture, the
number of cycles N required to hash a block of size b is:

N = max(Nyc, Ng) 2)

Th (1

where Njsc is the number of cycles required to copy b bits
from memory, and Ng is the number of clock cycles required
for the sponge function computation which equals to 25 cycles.

Burst access is used to copy data to and from the DDR-3
memory, thus Njso required to copy b bits is computed as:

Nye =9+ b/64

where 9 cycles are required to initiate a transaction to the
memory through the AXI bus, then one clock cycle is required
to copy each 64 bits of data. Therefore, the latency ranges from
25 to Njs¢ according to the configurable capacity c.

The number of iterations executed in the DCCL depends on
the width W, and it is independent of the rate and capacity.
The rate only changes the number of bytes copied into the
internal buffer before execution. Therefore the bandwidth for
a given W can be calculated using Eqs 1 and 2 given that:

NSZNRX(3+W/8) (3)

= (1242 x logaW) x (3 + W/8) 4)

where the number of cycles per round (3 + W/8) is decom-
posed into one cycle for both 6 and p, one cycle for extracting

the input byte to 7w and the following functions, one cycle to
merge back the lane, and one cycle per byte in the lane.

The DCC and DCCL architectures for Keccak-f[512] are
implemented and validated on a Xilinx Zedboard and Virtex-6



TABLE 1. HARDWARE IMPLEMENTATION RESULTS OF KECCAK-f[512]
Architecture Platform | Flow | Slices MHz MBits/s M;ii‘z 2
DCC SA Virtex 6 HLS 1,541 182 4,992 3.23
DCCL SA Virtex 6 HLS 1,888 175 424 0.22
DCC SoC Zedboard HLS 2,891 110.74 1,676 0.57
DCCL SoC Zedboard HLS 2,923 104 256 0.08
B. Jungk [8] Virtex 6 HDL 397 197 1,071 2.69
N. Moreira Virtex 5 HDL 1,062 317 13,530 12.74
et al. [1]

E. Hom- Virtex 6 HLS 1,494 211.2 8,838 5.92
sirikamol [9]

J. Kaps et al. Virtex 6 HDL 106 - 136 1.28
[7]

K. Latif et Virtex 6 HDL 915 301.5 13,670 14.94
al. [5]

T. Honda et Virtex 6 HDL 1,181 251.7 5,660 4.79
al. [6]

FPGA kit. The Zedboard is selected due to the availability of
an embedded processor enabling SoC design. The DCC and
DCCL architectures are implemented as a stand-alone (SA)
system on a Virtex-6 FPGA kit, where most relevant results
from the literature are based on this kit. The area utilization in
slices, maximum obtainable frequency in Mhz, throughput in
Mbps, and throughput to area ratio in Mbps/slice are displayed
in Table I for different SHA-3 implementations. In our DCC
and DCCL SHA-3 SoC accelerators, the storage and buffering
resources increase the resource utilization compared to the
stand-alone implementation. The low throughput to area ratio
of the DCCL compared to DCC is attributed to the increased
control overhead to fold Keccak operations which increases
the resource utilization, in addition to increasing the compu-
tation time by W/8 clock cycles per round which reduces
the throughput. Comparing our HLS implementation of the
SA DCC to other implementations shows that HDL-based
design can achieve much better throughput to resource ratio
as stated by [1], [5] compared to the HLS-based flow which
adds a significant control overhead degrading both resource
utilization and throughput metrics. The price paid for adding
the reconfiguration capability to our Keccak accelerators is
reducing resource utilization to throughput ratio.

To evaluate the performance of the configurable hash SoC,
we implemented the HMAC and PRNG algorithms using two
approaches: pure software and mixed hardware/software co-
design. The SHA-3 SoC depicted in Figure 3 is realized on
a ZynQ-7000 SoC FPGA incorporating an ARM processor.
The pure software implementation of the algorithm runs on
the processor and calls a software-implemented Keccak func-
tion whenever it is required in the algorithm. In the hard-
ware/software implementation, whenever the hash function
is called, the processor passes the configuration header and
message to the Keccak hardware accelerator and the processor
waits for the accelerator to compute the message digest.
Figure 5 shows the execution time in ms of the PRNG and
HMAC for both the software and hardware/software imple-
mentations for various message sizes. Both DCC and DCCL
are used to implement the hardware Keccak accelerator, the
software configures the accelerator to implement the Keccak-
fI512] function. The HMAC algorithm uses a 256-bit key
with message sizes ranging from 256 to 1024 bytes. The
PRNG algorithm implements two feed(c) and one fetch(l)
requests on a seed of size ranging from 256 to 1024 bytes.
The comparison shows the latency enhancement achieved by
the DCC and DCCL SoC over the direct software design.

HMAC and PRNG execution time in ms versus message/seed size in Bytes
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Fig. 5. HMAC and PRNG execution time for different message/seed sizes.

IV. CONCLUSIONS

In this paper we advanced two novel architectures for the
SHA-3 hardware accelerator; a capacity configurable architec-
ture and a capacity and lane-width configurable architecture.
The SHA-3 dynamic configurable accelerator comprises a
static hardware block implemented based on a folded archi-
tecture of the Keccak-f function and controlled by a pro-
grammable FSM. The dynamic configuration feature enables
the accelerators to implement any of the Keccak-f functions,
any of the four SHA-3 functions, and the two XOF functions.
The two accelerators are implemented and validated as a stand-
alone system on a Virtex-6 FPGA and as an integrated SoC
on a ZynQ-7000 FPGA incorporating an ARM Cortex-A9
processor. The HMAC and PRNG security functions are used
as a typical hardware/software co-design application of the
SHA-3 SoC. As a future work, we will investigate architectural
optimizations of the SHA-3 accelerators using the HDL-based
design flow to improve the performance metrics.
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