
Interacting with Hardware Trojans Over a Network
Mohammed M. Farag, Lee W. Lerner, and Cameron D. Patterson

Cyber@VT
Bradley Department of Electrical and Computer Engineering

Blacksburg, VA 24061 U.S.A.
Email: {mmorsy, lwl, cdp}@vt.edu

Abstract—Hardware Trojan horses (HTHs) are emerging
threats to integrated circuits (ICs) outsourced to a global supply
chain or developed with untrusted tools and intellectual property
(IP). HTHs are stealthy in nature, and covert communication
is their usual means of interaction and information transfer.
Previous research has focused on short-range interaction via
side-channels and existing IC interfaces, while remote interac-
tion with HTHs across wired computer networks has received
less attention. Generalized and non-local HTH interaction can
support attacks normally associated with software Trojans. We
investigate remote communication with HTHs and provide partial
methods to exploit vulnerabilities in media layers of the protocol
stack. Specifically, we focus on covert communication over point-
to-point physical links in 10 gigabit Ethernet (10GbE) networks
by exploiting loose specifications in physical- and link-layer
protocols. The developed HTHs are assessed in terms of resource
overhead and achieved bit rate, and demonstrate the potential
for establishing high bandwidth covert channels using lightweight
implanted circuits. We also describe a PUF-based IC or IP
tracking attack enabled by HTH interaction across a network.

I. INTRODUCTION

Fabrication and assembly of contemporary electronics are
generally outsourced to a global supply chain. Even domestic
development of modern systems is often assisted by third-party
IP modules and commercial off-the-shelf (COTS) components
to increase productivity and reduce design costs. High volume
chip manufacturing cannot be considered trusted since ICs
are vulnerable to tamper and change by untrusted parties
throughout the design and fabrication process. Hardware Tro-
jan horses (HTHs) are malicious IC inclusions or alterations
to perform certain actions and functionalities not captured by
design specifications [1].

HTH insertion and detection methods are emerging research
topics that can partially leverage software Trojan horse (STH)
ideas and experiences. However, software platform homogene-
ity and programmability provide a higher degree of transi-
tive (non-direct) observability and controllability compared
to HTHs, making STHs the preferred choice for attacks.
For system-on-chip (SoC) ICs, development of programmable
and transitive HTHs would support more powerful attacks by
enhancing controllability and observability. In a HTH context,
transitivity is a module’s covert ability to relay information
of interest from a module’s input interface, with or without
processing, to a certain destination linked to the module’s out-
put interface. Transitivity would extend HTH communication
beyond the local node’s environment.

The enabling mechanism for HTH transitivity is a means of

interaction. HTHs are stealthy by nature and covert communi-
cation is their usual means of interaction. A covert channel
can be defined as “an enforced, illicit signaling channel
that allows a user to surreptitiously contravene the security
policy and unobservability requirements of the system” [2].
System vulnerabilities leading to covert channels are a result
of design oversights, weakness inherent in the system design,
or underspecification of underlying protocols. System vulner-
abilities must first be identified in order to provide a defense
against covert data channels. Vulnerabilities caused by design
oversights can be eliminated once they are discovered in the
system design phase. On the other hand, it may not be possible
to remove all potential weaknesses since doing so may lead
to inefficient systems. Flexible protocol specifications enable
application scalability even though loose specifications may
lead to vulnerabilities that can be exploited to violate security
specifications and establish covert channels.

We investigate development of HTHs supporting remote
interaction over wired computer networks. Software-based
covert communication in computer networks is an active
research area examining how STHs can exploit software
vulnerabilities in the protocol stack [3]. Development of HTHs
exploiting network protocols vulnerabilities is an interesting
new area to consider. However, it is also challenging due to
the number and diversity of layers implemented with both
hardware and software. Various layers of the protocol stack
can be exploited to create covert data channels, but intended
recipients may differ from one layer to another. To set up
end-to-end (peer-to-peer) communication in different network
topologies, a logical link between endpoints is established by
employing a chain of physical links to a particular destination.
The route to a particular destination is usually not fixed, and
a logical link may be established with temporally varying
physical links. Upper (host) layers of the protocol stack are
typically connected to applications or users serving as the
ultimate source and sink of commands and data.

On the other hand, covert data channels established with
lower (media) layers of the protocol stack act as carriers
across the endpoints of a physical link. Interactions between
multiple HTHs along a logical link require connecting a chain
of compromised physical links. Escalating covert information
from a compromised lower layer to upper layers of the
stack is another way of delivering covert data to intended
recipients. Alteration between upper and lower layer covert
channels might help to evade detection by specific defenses.

However, it may not be necessary to create an end-to-end
covert channel because the attacker may be a man-in-the-
middle eavesdropping on the network.

In this paper, we advance a lightweight HTH supporting
two-way covert communication in point-to-point physical links
by exploiting vulnerabilities in the underlying media layer
protocols. Covert data channels are established by inserting
HTHs exploiting unenforced, loose specifications of IP cores
implementing media layer functionalities in a manner that
maintains system operability. Specifically, we explore inser-
tions in a PCS/PMA 10GBASE-X IP core implementing the
physical layer functionalities of the 10GbE protocol specified
in the IEEE 802.3-2008 standard [4], and in an Aurora IP core
implementing the link-layer functionalities in a high-speed
serial protocol. Aurora is an open source implementation of a
link-layer protocol developed by Xilinx to support serial links
between chips employing multi-gigabit transceivers (MGTs),
with the protocol specifications adopted from the IEEE 802.3
standard [5].

The remainder of this paper is organized as follows: Sec-
tion II provides a brief overview of HTH- and STH-enabled
covert communication. Section III describes how HTH interac-
tions could enable remote tracking of specific chips deployed
across a computer network. HTHs supporting point-to-point
covert communication in 10GbE networks are described in
Section IV, while Section V focuses on HTHs targeting the
Aurora protocol. Finally, Section VI provides a summary and
conclusions.

II. TROJAN-ENABLED COVERT COMMUNICATION

Previous research addressing covert communication using
HTHs has emphasized use of hidden modules and structures
to leak sensitive information from a chip. Common under-
lying assumptions are that a HTH can be added to critical
components on the chip such as cryptographic modules, an
inability to detect the HTH with existing analysis techniques,
and the attacker has local access to the compromised IC. HTHs
of this type commonly employ electromagnetic radiation via
hidden on-chip antennas, power, or temperature side-channels
to encode and leak sensitive information off a chip. Such
HTHs transmit covert data over a short range, limited by the
hidden nature of the Trojan, such that an attacker residing
close to the compromised IC can receive and decode leaked
information. Karri et al. presented several examples of covert
communication using power and temperature side-channels
in their Trojan taxonomy [6]. Most of the existing covert
communication techniques adopting HTHs and side-channels
are localized in the sense that an attacker needs physical
proximity or access to the compromised device to exploit
information obtained by the embedded HTH.

Adding HTHs to input/output subsystems of a compromised
IC provides another means to establish covert channels. In-
formation is covertly transferred via existing interfaces and
peripherals by hiding extra data in legitimate communication
and interface protocols. For example, HTHs can support
covert communication by changing signaling specifications of

existing hardware interfaces. Characteristics such as phase,
rate, or sequencing can be modulated in unconventional way
to encode covert data along with legitimate data. To evade
detection by evaluations and typical run-time defenses, covert
data transferred using a shared medium should mask itself
in signaling or data that is generally ignored by the designer.
Attributes characterizing legitimate communication should not
be significantly affected by channel sharing. For example, the
data rate of a legitimate interface should not be reduced by
the insertion of covert information.

The Embedded Systems Challenge competition demon-
strates leaking sensitive information from a BASYS FPGA
board by changing the RS232 serial interface signaling specifi-
cations [7], [8]. Sun et al. developed a pin hijacking transceiver
module exploiting idle or dead time in an I2C interface to
create two-way communication between an FPGA chip and
a serial memory device [9]. They also described another
covert channel encoding data in a DDR2 memory interface’s
phase delay attribute, which is normally used for calibration
purposes. HTHs exploiting existing interfaces for covert com-
munication are normally limited to inter-chip interactions, and
we are not aware of HTHs supporting covert communication
across computer networks.

Covert communication in computer networks uses protocols
such as TCP/IP for information transfer instead of the payload
data used in steganography. The vast amount of data, large
number of existing protocols, and the ease of eavesdropping
on computer networks provide many opportunities for high
bandwidth covert communication. Zander et al. surveyed a
number of software-based covert channels in network proto-
cols, and possible countermeasures [10]. Covert channels may
be classified as storage channels involving a shared medium
accessed by both the transmitter and receiver, and timing
channels involving modulation of certain characteristics.

Various protocols and layers have been exploited by STHs
to create covert channels over networks. Examples of such
exploits include unused header bits, header extensions and
padding, TCP initialization sequences, IP identification and
framing offset, checksum fields, and many other vulnerabil-
ities. For example, a TCP initial sequence number is used
to coordinate between transmitter and receiver, and may be
optionally selected by the client according to loose rules. As
reported in [10], a covert channel may encode information
in this field while maintaining a uniform data distribution.
Previous research addressing covert channels in computer
networks has emphasized software methods, with less attention
to hardware exploits and countermeasures.

III. EXAMPLE ATTACK SCENARIO

In this section we present an attack scenario to illustrate
communicating useful information with HTHs. Our attack
makes use of Physically Unclonable Functions (PUFs), which
when challenged provide identifier responses unique to the
devices on which they are implemented due to subtle variations
in the fabrication process [11]. PUFs have been proposed
for device and IP authentication across an untrusted supply

Network

PUF signatures

and origination

addresses

Device B

IP w/

HTH

Serial connection

Device A

IP w/

HTH

Device C

IP

Device D

IP

Ethernet connection

Distribute Trojan IP (attacker

has no direct access)

Collect tracking information

(attacker has access)

Device E

IP w/

HTH

Fig. 1. Trojan IP system tracking attack scenario.

chain [12]. It has also been suggested that PUF-sourced
unique identifiers might be useful for device tracking [13].
Building on this idea, our attack utilizes PUFs to perform
reconnaissance on target systems post-deployment.

Fig. 1 illustrates conceptually how a PUF with additional
Trojan circuitry inserted into a third-party IP module might
be used to track systems. IP cores must often be obtained
from several vendors because both hard (e.g. process-tailored
PHYs) and soft (e.g. link-layer netlist) blocks are needed.
After this point, the attacker may have no visibility into which
systems use the IP. However, this attack does not require PUF
signatures to be linked to devices beforehand as the attacker
would still likely be able to generally target a specific project
and may be able to infer system information from recovered
PUF identifier information when the system comes online. A
PUF is particularly useful for this attack because it enables
a single Trojan IP core to be implemented on any number of
devices while providing unique information for each. In Fig. 1,
devices A, B, and E make use of the Trojan IP while devices
C and D do not. The attack is considered successful when
the HTH communicates its PUF-created unique identifier, and
perhaps an origination address copied from observed data
packets, back to the attacker. The attacker must ultimately have
some level of observability over a part of the cyber system in
order to recover HTH communications.

This paper develops possible ways for the distributed Trojan
IP to communicate tracking information to the attacker. Sec-
tion IV explores point-to-point covert data channels created
over Ethernet links, illustrated in Fig. 1 as the connection
between device B and the computer network. This enables
tracking information to be recovered by eavesdropping on the
network with which the system communicates. More deeply
embedded HTHs may require intra- or inter-device point-to-
point links to propagate information out of a system. Section V
therefore explores covert channels over serial links such as
the connection between devices A and E. This also enables
tracking information to be recovered by monitoring a device
in a HTH chain. The attacker can leverage access to device E
to recover tracking information sourced from device A.

IV. HTH INTERACTION ACROSS 10GBE PHYSICAL LINKS

We first consider how to propagate covert information across
10GbE links, enabling a PUF signature to be transmitted

from a device to a network. 10GbE offers a more efficient
and less expensive approach to moving data on backbone
connections between network switches while also providing a
consistent technology end-to-end. It uses the IEEE 802.3 MAC
sublayer, connected through a 10 gigabit media independent
interface (XGMII) to the 10GBASE physical layer entity
specified in IEEE 802.3 clause 48. The physical layer of
10GbE consists of the physical coding sublayer (PCS), the
physical medium attachment (PMA), and the physical medium
dependent (PMD) sublayers [4].

10GBASE-X is a serial interface IP block implementing the
PCS and PMA functionalities between the XGMII MAC and
the PHY layers. The 10GBASE-X PCS maps XGMII data and
control characters to/from a stream of code groups according
to an 8B/10B transmission code. The PCS is responsible
for data encoding/decoding, lane synchronization and align-
ment, conversion of XGMII idle control characters to/from
a randomized sequence of code groups, and PHY clock rate
compensation achieved by embedding special non-data code
groups in the idle stream. Clock recovery and serializing /
deserializing data are performed in the PMA. The PMD layer
consists of four lanes employing high speed serial transceivers
running at 3.125 GHz. Fig. 2 illustrates the block diagram of
the PCS/PMA 10GBASE-X IP core.

PCS

Transmit control

8
b

/
1

0
b

e
n

c
o

d
e

r

8
b

/
1

0
b

e
n

c
o

d
e

r

8
b

/
1

0
b

e
n

c
o

d
e

r

8
b

/
1

0
b

e
n

c
o

d
e

r

8
b

/
1

0
b

d
e

c
o

d
e

r

8
b

/
1

0
b

d
e

c
o

d
e

r

8
b

/
1

0
b

d
e

c
o

d
e

r

8
b

/
1

0
b

d
e

c
o

d
e

r

Code group

alignment

Synchronize

Deskew

Receive

control

Elastic buffer

P
M

ASerializerDeserializer

8
-
b

i
t
s

8
-
b

i
t
s

8
-
b

i
t
s

8
-
b

i
t
s

1
0

-
b

i
t
s

1
0

-
b

i
t
s

1
0

-
b

i
t
s

1
0

-
b

i
t
s

T
X

D
<
3

1
:
0

>

T
X

C
<
3

:
0

>

R
X

C
<
3

:
0

>

R
X

D
<
3

1
:
0

>

R
X

_
C

L
K

tx_lane<3:0>rx_lane<3:0>

T
X

_
C

L
K

I
d

l
e

r
a

n
d

o
m

i
z
e

r

XGMII

MDI

PMD

Receive Transmit

PCS service

interface

PMA service

interface

PMD service interface

C
o

n
f
i
g

u
r
a

t
i
o

n

v
e

c
t
o

r

S
t
a

t
u

s

v
e

c
t
o

r

RX

HTH

TX

HTH

PUF

TX

memory

RX

memory

tx_code_group<39:0>rx_unaligned<39:0>

Fig. 2. PCS/PMA 10GBASE-X IP core.

The PCS transmit process continuously generates code
groups based upon transmit data (TXD) and control (TXC)
signals, while the PCS receive process continuously accepts
code groups from the PMA service interface and generates
receive data (RXD) and control (RXC) on the XGMII. All
received idle code groups are replaced with idle characters
before forwarding to the XGMII. The 8B/10B transmission
code as well as the rules by which the PCS encode and
decode code groups are specified in IEEE 802.3 clause 36.
10GBASE-X PCS ordered sets consists of combinations of
special and data code groups of length four beginning in lane
0. The PCS defines special code groups for control purposes,
and provides capabilities such as synchronization, deskew, and
error detection.

A. Idle Sequence-based Covert Channels

In this section, we sketch HTHs supporting covert com-
munication in 10GbE physical links by changing signaling
specifications of the underlying PCS layer. Idle ordered sets
‖I‖ are transmitted in full columns whenever the XGMII is
idle. The idle sequence (ISQ) provides a continuous fill pattern
to establish and maintain lane synchronization, perform lane-
to-lane deskew, and achieve PHY clock rate compensation. An
‖I‖ sequence consists of one or more consecutive sync column
‖K‖, skip column ‖R‖, or align column ‖A‖ ordered sets.
Some of the rules governing ‖I‖ ordered set sequencing are:

• Each ‖A‖ is sent after r non-‖A‖ columns where r is a
randomly distributed number between 16 and 31.

• When not sending an ‖A‖, either ‖K‖ or ‖R‖ is sent with
a random uniform distribution between the two.

Both ‖A‖ spacing as well as ‖K‖, ‖R‖, or ‖A‖ selection
are based on a random integer r generated by a PCS idle
randomizer employing a pseudo-random binary sequence gen-
erator. We exploit the ISQ ordered sets to encode covert data
between the endpoints of the physical link by adding a HTH
to the standard idle randomizer. To satisfy ISQ constraints,
only ‖K‖ and ‖R‖ ordered sets are used to encode data as
shown in Fig. 3. Spacing between consecutive ‖A‖’s is fixed
at 32 characters, which does not degrade lane synchronization
or clock compensation and only slightly decreases lane-to-
lane deskew robustness. Other techniques such as Huffman
encoding enable uniformly distributed covert data using the
three ordered sets to increase entropy.

-R+K +R +K +K +R +A -R-A +K +R -K -R -R +K -K -R

Pseudo random spacing

Fixed spacing (32-characters)

 , 0 1 0 1 1 0 0 1 0 1 1 0 0 1 , 1

A. Standard Idle Sequence

(Pseudo random)

-A+K +R+K +K +R +A -R-A +K +R -K -R -R+A -K -R

B. Custom Idle Sequence

Covert information

Fig. 3. Standard and custom idle sequence timing diagram.

As shown in Fig. 2, the TX HTH is a binary encoder
instantiated inside the PCS idle randomizer, and the RX HTH

is a binary decoder instantiated inside the receive control
module. The TX and RX HTHs could be selectively enabled
by a rarely occurring data sequence in the transmit and receive
directions. In our example scenario, a tracking PUF provides
the TX HTH with the IP or device signature to be sent over
the ISQ covert channel. Configuration and status vectors are
possible interfaces for covert information flowing to and from
the core. Portions of these interfaces may be used in the
development and test phases while kept idle during normal
operation. These interfaces could be employed by the TX
and RX HTHs to forward covert data to upper layers of the
protocol stack. Store and forward techniques using hidden
memory modules might also also be used. Table I shows the
incremental resource utilization of the HTHs on an FPGA.

TABLE I
XILINX VIRTEX-7 FPGA RESOURCE UTILIZATION FOR HTHS IN A

10GBASE-X IP CORE (% OF PCS/PMA CORE).

Regs # LUTs
TX HTH 16 (0.7%) 13 (0.5%)
RX HTH 5 (0.23%) 5 (0.2%)
PCS/PMA IP 2146 2473

V. HTH INTERACTION IN MULTI-GIGABIT TRANSCEIVERS

We now consider how to propagate covert information
across high-speed serial links, enabling a PUF signature to be
transmitted between devices. MGTs are the preferred means
of transferring high-speed data between ICs since the sender
and receiver do not share a global or transmitted clock signal.
Parallel data words are serialized by the MGT transmitter, and
the receiver performs the reverse function. Low voltage current
mode logic supports signaling rates up to 28 Gbps over a single
differential pair of conductors. Compared to parallel data
transfer, MGTs reduce pin count, electromagnetic interference,
ground bounce due to simultaneous switching outputs, and
power. An MGT integrates clock, data, and control in a single
bitstream transferred over a point-to-point serial link [14].

Aurora 8B/10B is a simple example of a link-layer protocol
defining the packet structure, communication channel initial-
ization and validation, error handling, and clock compensa-
tion [5]. Fig. 4 shows the top-level block diagram of the Aurora
IP core, including a brief description of individual modules.
Aurora shares characteristics and basic functionalities of other
media layers such as 10GBASE-X PCS and XAUI [15].
Aurora protocol specifications are drawn from the IEEE 802.3
standard. Fig. 4 depicts insertion points and top-level interfaces
of the developed HTHs. The HTHs are evaluated in terms of
performance measured by covert communication bit rate, cost
estimated by resources usage, productivity assessed by imple-
mentation difficulty, and impact on the main communication
channel.

A. Clock Correction-based Covert Channels

The tight jitter requirements on a transmission clock prevent
an MGT from using the recovered clock as a reference, and

 Aurora IP core

Lane Logic

 Transceiver initialization

 Control characters

 Encoding & decoding

 Error detection

 Single or multi-lanes

Global Logic

 Channel initialization

 Random idle sequence generation

 Global channel maintenance

 Error monitoring

RX Interface

 Framing or streaming

 RX Flow control

TX Interface

 Framing or streaming

 Clock correction

 TX Flow control

M
G

T

b
o

u
n

d
a

r
y

H
i
g

h

s
p

e
e

d

s
e

r
i
a

l

b

o
u

n
d

a
r
y

Internal

signals

M
u

l
t
i
-
g

i
g

a
b

i
t

T

r
a

n
s
c

e
i
v
e

r

A
u

r
o

r
a

b
o

u
n

d
a

r
y

RX data

TX data

Control

Control

Serial I/O

CC

TX

HTH

CC

RX

HTH

ISQ

TX

HTH

ISQ

RX

HTH

Fig. 4. Aurora IP core structure.

communicating MGTs usually have different oscillators. Small
deviations between the transmitter and receiver clock frequen-
cies result in either overflow or underflow of the receiver FIFO.
Most MGTs tolerate slight differences in oscillator frequencies
with built-in clock correction (CC) compensation that uses a
unique symbol or sequence of symbols not found elsewhere in
the data stream. On the transmitter side, the Aurora protocol
implements CC by periodically inserting sequences of multiple
/CC/ control characters into idle patterns or user data. On
the receiver side, the PCS looks for and drops the next CC
sequence if the FIFO is getting close to full. If the FIFO is
getting close to empty, the PCS writes the next CC sequence
twice into the FIFO [5]. Aurora uses a CC control module
respecting the following rules:

• CC sequences should last at least two cycles to ensure
they are recognized by the receiver.

• Duration and period should be precisely assigned to
correct for the difference between oscillators frequencies.

• The minimum separation time between consecutive CC
sequences is eight clock cycles.

CC can source covert information with sequence variation
instead of standard periodic initiation. The CC is performed
by asserting a DO CC control signal which stalls data and
relays a sequence of repeated /CC/ characters. Different pulse
modulation techniques can be used for covert data encoding.
We employ pulse code modulation (PCM) and pulse width
modulation (PWM) to encode data in the CC, as illustrated in
Fig. 5. In a PCM CC cycle, asserting DO CC for a certain
period denotes a logic 1 while releasing it denotes a logic 0.
In a PWM CC cycle, n bits of data can be encoded in the
DO CC signal hold time (pulse width). The CC TX HTH is a
custom encoder driving the DO CC signal as shown by Fig. 4.
The CC TX HTH is a custom decoder instantiated inside the
Aurora RX interface module to detect received CC sequences
carrying covert information.

A CC-based TX HTH reduces the data rate of the main
channel. The bit rate R is the number of data bits transferred
per second via the covert channel, while the channel utilization
ratio U is a function of the CC pulse width TPW , period T ,

A. Standard Clock Correction

C. Custom PWM Clock Correction

T

Tpw Tsep

DO_CC

DO_CC

DO_CC

B. Custom PCM Clock Correction

Covert information (n=3)

Covert information

DD DCC D D DD D D D D DCC D D D CC DD D D

Serial stream

DD DCC D D DCC D D D D DCC D D D CC DD D CC

001 000 010 000 101

0 1 1 0 1

DD CCCC D D DCC D D D D DD D D D CC CCD D D CC

Serial stream

Serial stream

Fig. 5. Standard, PCM, and PWM clock correction timing diagram.

and occurrence probability PCC :

R =
bits encoded per CC cycle

CC period
(1)

U = PCC · TPW /T (2)

As shown by Fig. 5(B), the CC TX HTH encodes a single
bit per CC cycle, where the CC period and pulse width are
constant values. The CC probability is the likelihood of a
1-bit occurring in the covert data, or 0.5 in a DC-balanced
data stream. The maximum bit rate and channel utilization
are determined using CC constraints on the pulse width and
period:

RPCM = 1/(Tpw + Tsep) (3)

UPCM = 0.5 · Tpw/(Tpw + Tsep) (4)

RPCM max = fref clk/10 (5)

UPCM max = 10% (6)

The PWM TX module encodes n bits of data by asserting
the DO CC signal for a variable number of clock cycles, and
fixing the CC period as shown in Fig. 5(C). The CC period is
arbitrarily assigned to a value larger than the maximum pulse
width. When the period is twice the maximum pulse width,
the maximum bit rate and channel utilization are:

RPWM max = n/(2n+1) · fref clk (7)

UPWM max = 25% (8)

CC-based covert communication is experimentally validated
using the RocketIO transceivers on a Xilinx Virtex-5 FX130T
FPGA. The Xilinx CoreGen tool provides HDL for the Aurora
core. Two MGTs running at 2.5 Gbps line rate and 125 MHz
reference clock frequency are connected on a custom MGT
interface board attached to a Xilinx ML510 evaluation plat-
form. The maximum bit rates of the PCM and the PWM side-
channel communication are 12.5 and 23.43 Mbps (for n=3),
respectively, at 10% and 25% channel utilization. Moreover,
the bit rate and channel utilization are parametric functions
with tunable design parameters that can be adjusted to achieve
significant data rates at channel utilizations still satisfying the

TABLE II
XC5VFX130T FPGA RESOURCE UTILIZATION FOR HTHS IN

MULTI-GIGABIT TRANSCEIVERS (% OF AURORA CORE).

Regs # LUTs
PCM HTH (TX, RX) 24, 20 (1.4%, 1.2%) 27, 31 (1.4%, 1.6%)
PWM HTH (TX, RX) 22, 17 (1.3%, 1%) 34, 29 (1.8%, 1.5%)
ISQ HTH (TX, RX) 16, 5 (1%, 0.3%) 13, 5 (0.7%, 0.3%)
Aurora IP 1630 1870

covert requirement. Established pulse modulation and digital
encoding practices simplify the design effort.

B. Idle Sequence-based Covert Channels

MGTs must incorporate a number of functions to permit
high line rates. ISQs are ordered sets of control characters
used to perform word boundary alignment and channel bond-
ing during initialization. During operation, ISQs are inserted
during wait states to keep the channel active. The Aurora
protocol’s ISQ uses /A/, /K/, and /R/ control characters applied
in a pseudo-random sequence subject to the Aurora constraints
drawn from IEEE 802.3 [5]. We change the signaling specifi-
cation of the Aurora protocol to encode covert information in
ISQs in a manner similar to Section IV.

The ISQ TX HTH is a binary encoder instantiated inside
the Aurora core and the ISQ RX HTH is a binary decoder
instantiated inside the Aurora lane logic module. ISQ TX
HTH encodes binary data in /K/ and /R/ characters between
separating /A/ characters as illustrated by Fig. 4. The ISQ
TX HTH bit rate depends on the number of bytes per lane,
where every byte corresponds to an idle character. The covert
channel bandwidth B is a function of the achieved bit rate and
the MGT wait state time percentage I%:

RISQ = 31/32 · Bytes/lane · fref clk (9)

BISQ = Bytes/lane · fref clk · I% (10)

In a test with a 125 MHz reference clock frequency, 4-byte
lane width, and assuming 10% idle time, the covert channel
communication bit rate is 600 Mbps while the bandwidth is 60
Mbps without decreasing the main channel bandwidth. Table II
shows the absolute and relative resource utilization of TX and
RX HTHs.

VI. CONCLUSIONS AND FUTURE WORK

Computer networks are a natural medium to investigate non-
local interaction with HTHs. We introduced novel HTHs for
covert communication in point-to-point 10GbE and high-speed
serial links by exploiting loose specifications in the IP core
controlling the physical communication medium. A detailed
evaluation and experimental testing of the developed HTHs
was presented for MGTs controlled by the Aurora link-layer
protocol. We also described how HTH interaction could enable
remote tracking of ICs over a wired network. To enable the
proposed PUF attack, we are developing methods that do
not require support from host layers. All covert information

insertion, communication, and retrieval can take place entirely
within network adapters and switches.

Thwarting covert interactions exploiting interface under-
specification is another focus of our future work. System and
module specifications can be necessarily loose to enhance
portability or enable certain applications such as autonomic
computing. As shown in this paper, such ambiguities can
be leveraged to violate system-level security policies while
maintaining legal operation as defined by design specifica-
tions. The developed HTHs also illustrate security threats
arising from the use of third-party IP to assemble computing
platforms. Verification of functional specifications is not al-
ways a complete method of evaluating and providing system
security, and even specifications with rigorous provisions to
enhance security may be insufficient to anticipate all possible
attacks. We are investigating use of run-time monitoring and
enforcement guards to prevent covert communication through
underspecified interfaces.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” Design Test of Computers, IEEE, vol. 27,
no. 1, pp. 10–25, Jan–Feb 2010.

[2] The Common Criteria Recognition Arrangement, “Common Criteria for
Information Technology Security Evaluation,” Common Criiteria, Tech.
Rep., Sep 2006.

[3] I. S. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R. Miller, “Covert
channels and anonymizing networks,” in Proceedings of the 2003 ACM
workshop on Privacy in the electronic society, ser. WPES’03. ACM,
2003, pp. 79–88.

[4] “IEEE standard for information technology–telecommunications and
information exchange between systems–local and metropolitan area
networks–specific requirements Part 3: CSMA/CD access method and
physical layer specifications,” IEEE Std 802.3-2008, pp. 1–586, 2008.

[5] Aurora 8B/10B Protocol Specification, Xilinx, Apr 2010.
[6] R. Karri, J. Rajendran, and K. Rosenfeld, “Trojan taxonomy,” in Intro-

duction to Hardware Security and Trust. Springer New York, 2012,
pp. 325–338.

[7] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware trojan design
and implementation,” in Proceedings of the 2009 IEEE International
Workshop on Hardware-Oriented Security and Trust. IEEE Computer
Society, 2009, pp. 50–57.

[8] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno, “A case
study in hardware trojan design and implementation,” International
Journal of Information Security, vol. 10, pp. 1–14, 2011.

[9] J. Sun, R. Bittner, and K. Eguro, “FPGA side-channel receivers,” in
Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA’11. ACM, 2011, pp. 267–276.

[10] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” Communications
Surveys Tutorials, IEEE, vol. 9, no. 3, pp. 44–57, 2007.

[11] E. Simpson and P. Schaumont, “Offline hardware/software authentication
for reconfigurable platforms,” in Cryptographic Hardware and Embed-
ded Systems - CHES 2006, ser. LNCS. Springer, 2006, vol. 4249, pp.
311–323.

[12] J. Graf and J. Hallman, “Trust in the FPGA supply chain using physically
unclonable functions,” in The 35th Annual Government Microcircuit
Applications & Critical Technology Conference (GOMACTech), 2010.

[13] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA intrinsic
PUFs and their use for IP protection,” in Cryptographic Hardware and
Embedded Systems - CHES 2007, ser. LNCS. Springer, 2007, vol.
4727, pp. 63–80.

[14] A. Athavale and C. Christensen, High-Speed Serial I/O Made Simple.
Xilinx, 2005.

[15] P. Noel, F. Zarkeshvari, and T. Kwasniewski, “Recent advances in high-
speed serial I/O trends, standards and techniques,” in Electrical and
Computer Engineering, 2005. Canadian Conference on, May 2005, pp.
1292–1295.

