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ABSTRACT 
The Advanced Encryption Standard (AES) is the last standard for cryptography 
and has gained wide support as means to secure digital data. In this paper, 
Tradeoffs of speed vs. area that are inherent in the design of a security processor 
are explored. Two implementations of the AES on Xilinx Virtex 4 FPGA are 
introduced, the first design is called optimized area AES which is based on the 
basic architecture of the AES, the second one is called optimized speed AES which 
is based on the sub-pipelined architecture of the AES. An AES crypto processor 
with serial interface was implemented and it could be used with any of our 
designed encryptor or decryptor. 
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 INTRODUCTION 
On November 26, 2001, the algorithm known as Rijndael was chosen to be the 

replacement for DES and since then it is known as the Advanced Encryption 
Standard (AES). The AES has been the topic of much research to find suitable 
architectures for its hardware implementation [1]. Architectural choices for a given 
application are driven by the system requirements in terms of speed and the 
resources consumed. This can simply be viewed as throughput and area. In this 
brief, we introduce two optimized hardware implementations of the AES encryptor 
and decryptor with 128-bit plaintext and 128-bit key on Virtex 4 FPGA and a 
crypto processor with serial interface which could be used with our implementation 
of AES Algorithm. The first hardware implementation of the AES is targeted to the 
applications which required a high security with minimum resources such as smart 
cards and we call this implementation optimized area AES. The second hardware 
implementation of the AES is targeted to the applications which required a high 
output throughput such as network routers and we will call this implementation 
optimized speed AES. The optimized area AES design is based on the basic 
architecture of the AES [2] while the optimized speed AES design is based on the 
pipelined architecture [2]. For the two designs we make an algorithmic 
optimization for the internal transformations depend on the goal of the design 
(speed or area).     

AES ALGORITHM 
An AES encryption process for a 128-bit plain text data block and a 128-bit 

secret key is shown in Fig 1. A sequence of four primitive functions: SubBytes, 
ShiftRows, MixColumns and AddRoundKey are executed Nr times. Each loop is 
called a round and the concrete value of Nr is 10, 12 or 14 depending on the key 
length. Prior to this main loop, AddRoundKey is executed for initialization. After 
executing the main loop, a sequence of SubBytes, ShiftRows and AddRoundKey is 
executed as the final round [3, 4]. 



SubBytes is a 16-B (128-bit) input/output nonlinear transformation that uses 1-
B Substitution table (S-Boxes). Each S-Box is a multiplicative inversion over 
Galois field GF (28) followed by an affine transformation. The irreducible 
polynomial used by the field is 

1)( 348 ++++= xxxxxm      (1) 
 
The affine transformation is defined by the following equation 
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    (2) 

 
ShiftRows is a cyclic shift operation in each row of a 4×4-byte data block by 

0-3 B offsets. MixColumns treats the 4-B data in each column as a four-term 
polynomial, and multiplies the data modulo x4 + 1 with a fixed polynomial given 
by 
  3 2( ) {03} +{01} + {01} {02}a x x x x= +    (3) 

 
AddRoundKey is a simple bitewise XOR operation on the 128-bit round sub-

keys and the data. 
In the decryption process, the inverse operations of each primitive function are 

executed. The inverse of AddRoundKey is AddRoundKey itself. 
 InvSubBytes, which is the inverse of SubBytes, executes an affine transformation 
defined by (4) before the multiplicative inversion. 
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InvShiftRows is a cyclic rotation in the reverse direction. InvMixColumns 

uses the following polynomial for the multiplications: 
  -1 3 2( ) {0 } {0 } +{09} {0 }a x b x d x x e= + +    (5) 

 
The complete AES encryption and decryption process are shown in Fig 1. 

 



 
Figure 1: AES Encryption and Decryption 

 
The 128-bit AES key expansion algorithm takes as input a 4-word (16-byte) 

key and produces a linear array of 44 words (176 bytes) as shown in Fig 2. This is 
sufficient to provide a 4-word round key for the initial AddRoundKey stage and 
each of the 10 rounds of the cipher.  
The function g consists of the following sub-functions: 
1. RotWord performs a one-byte circular left shift on a word. This means that an 

input word [b0, b1, b2, b3] is transformed into [b1, b2, b3, b0]. 
2. SubWord performs a byte substitution on each byte of its input word, using 

the S-box (Table  2–2-a). 
3. The result of steps 1 and 2 is XORed with a round constant, Rcon[j]. 

 

 
Figure 2: AES key expansion 

 



Optimized Area AES Encryptor/ Decryptor 
In our Implementation of the AES algorithm with a small area we will select 

the basic reference architecture shown in Fig 3 which needs the implementation of 
one round only and re-use it to complete the ten encryption rounds, we also 
designed the Encryptor/ Decryptor to complete one encryption round in one clock 
cycle so the output of the Encryptor/ Decryptor will be valid after ten clock cycles 
from the data entrance.  
 

 
Figure 3: Optimized area cipher  
 /decipher Architecture 
 

 
Figure 4: Cipher key expansion 

architecture 

 
Figure 5: Decipher key expansion architecture 

 
The key schedule architecture is chosen to generate all the sub-keys on the fly in 

parallel with the encryption module.  For the encryptor we implement the hardware 
required to generate one set of sub-key and re-use it in the calculation of the other 
sub-keys, and at the same time also use one clock cycle for one sub-key generation as 
shown in Fig 4. For the decryptor we must generate the last sub-key first to use it in 
the first decipher round, so we couldn’t use the same key expansion architecture used 
with cipher and we must select one of the other architectures either by generation of 
all sub-keys beforehand and storing them in a RAM as shown in Fig 5.  

No optimization can be performed on ShiftRows/ InvShiftRows and 
AddRoundKey transformations, since no logic gates are needed for the former 
transformation and only one step of XOR operation is needed for the latter. 
However, different methods can be used to implement the SubBytes/ InvSubBytes and 
MixColumns/InvMixColumns transformations. For the SubBytes transformation we use 
the composite field method described in [5, 6] which will save the area but it will 
increase the delay. For the MixColumns transformation we use the method of 



substructure sharing described in [7, 8] in our implementation for this transformation 
which has the advantages of low area and high speed. 

Fig 6 shows the encryptor top level entity and Fig 7 and 8 show encryptor and 
decryptor simulation results. 

 

 
Figure 6: Encryptor top level entity 

 

 
Figure 7: Optimized area AES Encryptor simulation results 

 

 
Figure 8: Optimized area AES Decryptor simulation results 

 
Optimized Speed AES Encryptor/ Decryptor 

In our Implementation of the AES algorithm with a high speed we will select the 
pipelined architecture with (K=Nr=10) ten rounds shown in Fig 9. This design will 
allow to us to update the input data each clock cycle but it will increase the area about 
ten times larger than optimized area AES. The key schedule architecture for the 
encryptor and decryptor is chosen to generate all the sub-keys beforehand and storing 



them in a buffer, or by generation of all sub-keys using pipelined architecture as 
shown in Fig 10. 

We will implement all transformations in the same methods like optimized area 
AES except the SubBytes/ InvSubBytes Transformation which will be implemented 
using the Look Up Table (ROM) method [9] to decrease the delay. 

  

 
Figure 9: Optimized Speed Cipher/ 

Decipher Architecture 

 
Figure 10: Optimized speed Key Expansion 

Architecture 
 

Fig 11 shows the encryptor top level entity and Fig 12 and 13 show encryptor and 
decryptor simulation results. 

 

 
Figure 11: Encryptor/ Decryptor top level entity 

 

 
Figure 12: Optimized speed AES Encryptor simulation results 



 

 
Figure 13: Optimized speed AES Decryptor simulation results 

 
Comparison of some Related Work for FPGAs 

There are many modes of operation of the AES block cipher, and these modes are 
classified into two major classes: feedback and non-feedback modes [], in our design 
we will concern in non feedback mode of operation ECB (Electronic code book)  

Our hardware designs have been encoded in VHDL’93, and targeted on a Xilinx 
Virtex 4 (4vlx60ff668-12) FPGA. We use Xilinx ISE 7.1i and modelsim programs for 
simulation, synthesis, place and route for my designs.  

The architecture of an AES implementation mainly defines the required hardware 
resources on an FPGA. Additionally, the used synthesis tool and the target device 
influence this result. 

Table 1 gives an overview of existing FPGA solutions. Because of the different 
FPGAs, most of the use Xilinx FPGAs, the values have to be seen as a relative 
comparison of resource requirements and data throughput [10]. 
 
Table 1: Comparison between difference FPGA implementations of AES 
Authors  LUTs  Block 

RAMs  
Throughput 

[Gbps]  

Chodowiec  222  3  0.166  
Chodowiec  12,600 80  12.16  
Chodowiec  2,057  8  1.265  
Chodowiec  2,507  0  0.414  
Hodjat  9,446  0  21.64  
Hodjat  5,177  84  21.54  
McLoone  2,222  100  7.0  
Pramstaller  1,125  0  0.215  
Rouvroy  146  3  0.358  
Saggese  446  10  1.0  
Saggese  648  10  1.82  
Saggese  2,778  100  8.9  
Saggese  5,810  100  20.3  
Standaert  1,769  0  2.085  
Standaert  15,112 0  18.560  
Wang  1,857  0  1.604  
Zambreno  387  10  1.41  

Zambreno  1,254  20  4.44  
Zambreno  2,206  50  10.88  
Zambreno  3,766  100  22.93  
Zambreno]  16,938 0  23.57  
Zhang  9,406  0  11.965  
Zhang]  11,022 0  21.556  

Our 
optimized 

area 
encryptor 

1468 0 1.664 

Our 
optimized 

area 
decryptor 

2752 0 1.598 

Our 
optimized 

speed 
encryptor 

18855 200 28.51 

Our 
optimized 

speed 
Decryptor 

20155 200 23.09 



 
AES Crypto Processor 

In this section we will introduce a simple processor that could be used to make the 
interface between the implemented AES encryptor/ decryptor datapaths and other 
external peripheral under the control of an operator. We introduce two modes of 
operation in the AES crypto processor. We called the first mode of operation discrete 
mode in which all the data operations (input, output and processing) could be done 
by orders from the operator. The second mode of operation is called the continuous 
mode in which the operator will only start to get the key and all the consequent 
operation will be done sequentially. We will use the first mode of operation to make 
the timing simulations (post synthesis, post map and post place and route 
simulations) and practical tests to the implemented hardware.  
 
Crypto Processor Hardware Circuit 

The crypto processor is mainly consists of the following components (Fig14):  
1. Encryptor/ decryptor unit: Any one of the previous implemented 

encryptors and decryptors could be used in the crypto processor. 
2. Input interface unit: It is a serial interface with handshaking between the 

processor and external peripheral which is used to get the 128-bit data 
input (plaintext/ ciphertext) to the encryptor/ decryptor and it is mainly 
consists of serial to parallel shift register which takes data each clock cycle 
(it will takes 128 clock cycles to complete the data input to encryptor/ 
decryptor) and it has the start, complete and reset as asynchronous control 
signals. 

3. Key interface unit: This component is similar to the input interface unit 
and it is used to input the 128-bits key used in encryption/ decryption unit. 

4. Output interface unit: It is a 128-bit parallel to serial converter which is 
used to output the data (ciphertext/ plaintext) serially from the encryptor/ 
decryptor unit. Similar to the input and key interface units, the output 
interface unit takes 128 clock cycles to output the data and it has the start, 
complete and reset as asynchronous control signals. 

5. Control Unit: It is a Moore finite state machine FSM (see Figure  6–19) 
which forms the interface between the operator and all another units in the 
processor. The control unit is used to generate all asynchronous control 
signals for all units in the design. From the Figure  6–19, it is clear that we 
will use the same states in the FSM for both of the two modes (continuous 
mode with the dotted arrows and discrete mode with solid arrows).   



   
Figure 14: AES crypto processor 

 

 State 
Signal 

Idle Key Request Input Request Encrypt/ Decrypt Output ready

Request Key 0 1 0 0 0 
Request Input 0 0 1 0 0 
Output Ready 0 0 0 0 1 
Input Key Done 0 0 1 1 1 
Input Data Done 0 0 0 1 1 
Encryption Done 0 0 0 0 1 
Output data done 0 0 0 0 1 
 

 
Figure 15: Control Unit FSM 

 
Crypto Processor Functional Simulation Results  

Fig 16 shows the functional simulation for the AES crypto processor with the 
optimized area AES encryptor in the discrete mode of operation. 



 
Figure 16: Behavioral simulation of AES crypto processor 

 
Crypto Processor Timing Simulation Results 

Fig 17 shows the post place and route simulation results which agrees with the 
functional simulation results and the following message appears on the modelsim 
simulator screen: 

 

 

 
Figure 17: post place and route simulation of AES crypto processor 

 
Similarly we have made the timing simulation for the optimized area decryptor 

and optimized speed encryptor and decryptor and we got results as same as the above 
simulation. 

 
Conclusion 

Cryptography plays an important role in the security of data transmission. 
Different applications of the AES algorithm may require different speed/area trade-
offs. Our work aims to implement a low area and a high speed AES encryptor and 
decryptor using various optimization techniques and to implement AES crypto 
processor with serial interface with external peripherals on FPGA. These goals have 
been met. Optimized area and optimized speed AES encryptor and decryptor and 
AES crypto processor are completed, simulated and verified. The code was written in 

** Warning: /X_LATCHE RECOVERY  Low VIOLATION ON SET WITH RESPECT TO CLK; 
#   Expected := 0.606 ns; Observed := 0.072 ns; At : 1.686 ns 
#    Time: 1686 ps  Iteration: 5  Instance: /proc_test/uut/c7_dout_ok_4027 
# ** Failure: Simulation successful (not a failure).  No problems detected. 
#    Time: 50100 ns  Iteration: 0  Process: /proc_test/line__115 File: proc_test.timesim_vhw 



VHDL’93 and synthesized and verified using the Xilinx ISE 7.1 program and 
simulated using the Modelsim program.  

Optimized area AES (encryptor, decryptor) have been implemented based on the 
basic architecture and it consumes (1468, 2752 Xilinx slices) and operates at (1.664, 
1.558 Gbps). Optimized speed AES (encryptor, decryptor) have been implemented 
based on the basic architecture and it consumes (18855, 20155 Xilinx slices) and 
operates at (28.51, 23.09 Gbps), which was greater than other works cited in this 
article. 
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