MALVINO \& BATES

Electronic PRINCIPLES

SEVENTH EDITION

C'rispter

AC Models

Topics covered in Chapter 9

- Base-biased amplifier
- Emitter-biased amplifier
- Small-signal operation
- AC beta
- AC resistance of the emitter diode
- Two transistor models
- Analyzing an amplifier
- AC quantities on the data sheet

Base-biased amplifier

- The reactance of a coupling capacitor is much smaller than the resistance
- AC input into base
- Amplified and inverted output at the collector
- AC output coupled to the load

The coupling capacitor

1. For ac analysis, the capacitor is a short. 2. For dc analysis, the capacitor is open.

A base-biased amplifier with capacitive coupling
A dc analysis reveals $I_{B}=30 \mu A, I_{C}=3 \mathrm{~mA}$ and $V_{C}=15 \mathrm{~V}$.

The base-biased amplifier with voltage waveforms

The voltage gain of an amplifier is the ac output divided by the ac input.

$$
\mathrm{A}_{\mathrm{V}}=\frac{v_{\text {out }}}{v_{\text {in }}}
$$

The bypass capacitor

Note: The bypass capacitor appears open to dc and shorted to ac

VDB and TSEB amplifiers

- Dc voltages and currents are calculated mentally by opening capacitors
- The ac signal is coupled via a coupling capacitor
- The bypass capacitor causes an ac signal to appear across the base-emitter junction and provides higher gain

A VDB amplifier with voltage waveforms

Copyright \odot The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A TSEB amplifier with voltage waveforms

Copyright \odot The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Distortion

- The stretching and compressing of alternate half cycles
- Undesirable in high-fidelity amplifiers
- Can be minimized by keeping the ac input small

Large-signal operation produces distortion

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The 10 percent rule

- Total emitter current consists of dc and ac
- To minimize distortion, i_{e} must be small compared to $I_{E Q}$
- The ac signal is small when the peak-topeak ac emitter current is less than 10 percent of the dc emitter current

Total emitter current: $I_{E}=I_{E Q}+i_{e}$ Small-signal operation: $i_{e(P P)}<0.1 \mathrm{I}_{\mathrm{EQ}}$

The de current gain is given as:

$$
\beta_{\mathrm{dc}}=\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{I}_{\mathrm{B}}}
$$

The ac current gain is given as:

$$
\beta_{\mathrm{ac}}=\frac{\mathbf{i}_{\mathrm{c}}}{\mathbf{i}_{\mathrm{b}}}
$$

Use CAPITAL letters for dc quantities and lowercase letters for ac.

The size of the ac emitter current depends on the \mathbf{Q} point.

Total emitter current: $I_{E}=I_{E Q}+i_{e}$

Total base-emitter voltage: $\mathrm{V}_{\text {BE }}=\mathrm{V}_{\text {BEQ }}+\mathrm{v}_{\text {be }}$

The ac resistance of the emitter diode is defined as:

$$
r_{\mathrm{e}}^{\prime}=\frac{\mathbf{v}_{\mathrm{be}}}{\mathbf{i}_{\mathrm{e}}}
$$

The ac resistance of the emitter diode decreases when the dc emitter current increases

Ac resistance of the emitter diode

- Equals the ac base-emitter voltage divided by the ac emitter current
- The prime (') in r_{e} ' indicates that the resistance is inside the transistor

Note that $\mathrm{r}_{\mathrm{e}}{ }^{\prime}$ varies with the operating point.
This implies that $\mathrm{r}_{\mathrm{e}}{ }^{\text {' is a function of the dc emitter current. }}$

[^0]
Formula for ac emitter resistance

Derived by using solid-state physics and calculus:

$$
r_{e}^{\prime}=\frac{25 m V}{I_{E}}
$$

Widely used in industry because of its simplicity and it applies to almost all commercial transistors

Transistor model

- Ac equivalent circuit for a transistor
- Simulates how a transistor behaves when an ac signal is present
- Ebers-Moll (T model) and π type models are widely used

The \mathbf{T} model of a transistor:

$$
\begin{aligned}
& z_{i n(\text { base })}=\frac{\mathbf{v}_{\mathrm{be}}}{\mathbf{i}_{\mathrm{b}}} \\
& \mathbf{v}_{\mathrm{be}}=\mathrm{i}_{\mathrm{e}} \mathbf{r}_{\mathrm{e}}^{\prime} \\
& \mathbf{z}_{\mathrm{in}(\text { (base })}=\frac{\mathbf{i}_{\mathbf{e}} \mathbf{r}_{\mathrm{e}}^{\prime}}{\mathbf{i}_{\mathbf{b}}} \\
& \mathbf{z}_{\mathbf{i n}(\text { base })}=\beta \mathbf{r}_{\mathrm{e}}^{\prime}
\end{aligned}
$$

The π model of a transistor is based on $\mathrm{z}_{\mathrm{in}(\text { base })}=\beta \mathrm{r}_{\mathrm{e}}{ }^{\prime}$:

Clearly shows the input impedance of $\mathrm{Br}_{\mathrm{e}}{ }^{\prime}$ will load the ac voltage source driving the base

Amplifier analysis

- Perform a complete dc analysis
- Mentally short all coupling and bypass capacitors for ac signals
- Visualize all de supply voltages as ac grounds
- Replace the transistor by its $\underline{\pi}$ or \underline{T} model
- Draw the ac equivalent circuit

Base-Biased Amplifier and Its ac-Equivalent Circuit

(a)

(b)

VDB Amplifier and Its acEquivalent Circuit

TSEB Amplifier and Its acEquivalent Circuit

(a)

(b)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: VDB DC and AC Equivalents

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: DC Equivalent

- Open all coupling and bypass capacitors.
- Redraw the circuit.
- Solve the dc circuit's Q point:

$$
\begin{aligned}
V_{B} & =1.8 \mathrm{~V} \\
V_{E} & =1.1 \mathrm{~V} \\
I_{E} & =1.1 \mathrm{~mA} \\
V_{C E} & =4.94 \mathrm{~V}
\end{aligned}
$$

Example: AC π Model

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: AC T Model

Voltage Gain: VDB Amplifier

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

AC Equivalent: π and T Models

(b)

(c)

Voltage Gain Calculation

Derived from the π Model

$$
\begin{gathered}
v_{\text {in }}=i_{b} \beta r_{e}^{\prime} \\
v_{\text {out }}=i_{c}\left(R_{C} \| R_{L}\right)=\beta i_{b}\left(R_{C} \| R_{L}\right) \\
A_{V}=\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\beta i_{b}\left(R_{C} \| R_{L}\right)}{i_{b} \beta r_{e}^{\prime}} \\
\boldsymbol{A}_{V}=\frac{\left(\boldsymbol{R}_{\boldsymbol{C}} \| \boldsymbol{R}_{\boldsymbol{L}}\right)}{\boldsymbol{r}_{e}^{\prime}}
\end{gathered}
$$

Derived from the T Model

$$
\begin{aligned}
v_{\mathrm{in}} & =i_{e} r_{e}^{\prime} \\
v_{\mathrm{out}} & =i_{c} r_{c} \\
\boldsymbol{r}_{\boldsymbol{c}} & =\boldsymbol{R}_{\boldsymbol{C}} \| \boldsymbol{R}_{\boldsymbol{L}}
\end{aligned}
$$

$$
A_{V}=\frac{v_{\mathrm{out}}}{v_{\mathrm{in}}}=\frac{i_{c} r_{c}}{i_{e} r_{e}^{\prime}}
$$

Since $i_{c} \approx i_{e}$,

$$
A_{V}=\frac{r_{c}}{r_{e}^{\prime}}
$$

Data sheets

- The four \boldsymbol{h} parameters are a mathematical approach
- h_{fe} is the ac current gain
- h_{ie} is equivalent to input impedance
- $\beta_{\mathrm{ac}}=h_{\mathrm{fe}}$
- $\mathbf{r}_{\mathrm{e}}{ }^{\prime}=h_{\mathrm{ie}} / h_{\mathrm{fe}}$
- h_{re} and h_{oe} are not needed for basic design and troubleshooting
- The h parameters give useful information when translated into r ' parameters

[^0]: Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

