MALVINO & BATES

Electronic PRINCIPLES

SEVENTH EDITION

Transistor Biasing

Topics Covered in Chapter 8

- Voltage-divider bias
- Accurate VDB analysis
- VDB load line and Q point
- Two-supply emitter bias
- Other types of bias
- Troubleshooting
- **PNP transistors**

Voltage divider bias

- <u>Base</u> circuit contains a voltage divider
- Most widely used
- Known as VDB

Now the circuit can be viewed this way:

To complete the analysis:

$$I_{E} = \frac{V_{BB} - V_{BE}}{R_{E}}$$
$$I_{C} @ I_{E}$$
$$V_{C} = V_{CC} - I_{C}R_{C}$$
$$V_{CE} = V_{C} - V_{E}$$

The six-step process

- **1.** <u>Calculate</u> the base voltage using the voltage divider equation.
- 2. <u>Subtract</u> 0.7 V to get the emitter voltage.
- 3. <u>Divide</u> by emitter resistance to get the emitter current.
- 4. <u>Determine</u> the drop across the collector resistor.

The six-step process (Continued)

- 5. <u>Calculate</u> the collector voltage by subtracting the voltage across the collector resistor from V_{CC} .
- 6. <u>Calculate</u> the collector-emitter voltage by subtracting the emitter voltage from the collector voltage.

VDB analysis

- The base current must be <u>much smaller</u> than current through the divider
- With the <u>base voltage constant</u>, the circuit <u>produces</u> a stable Q point under varying operational conditions

A Thevenin model of the bias circuit:

The 100:1 rule applied to the bias circuit:

Firm voltage divider

- Used because divider resistors (e.g. R₁ and R₂) in a stiff design would be too small
- The <u>collector</u> current will be about 10% <u>lower</u> than the stiff value

VDB load line and Q point

- VDB is <u>derived</u> from emitter bias
- The Q point is <u>immune</u> to changes in current gain
- The Q point is <u>moved</u> by varying the emitter resistor

Base bias:

 $+V_{CC}$

 $\mathbf{R}_{\mathbf{R}}$

R_C

- •The least predictable
- •Q point moves with replacement
- •Q point moves with temperature•Not practical

Emitter-feedback bias:

Better than base bias
Q point still moves
Not popular

Two-supply emitter bias:

Very stableRequires 2 supplies

Note: Also called TSEB

Voltage divider bias:

+V_{CC}

R₁

 \mathbf{R}_2

R_C

R_E

- •Very stable
- •Requires 1 supply
- The most popular

Note: Also called VDB

Troubleshooting

- Voltage measurements
- Use 10 M Ω input voltmeter
- Troubles <u>include</u>:

- ü **Opens**
- ü Shorts
- ü Faulty transistors

PNP transistor

- The <u>base</u> is n-type material
- The <u>collector and emitter</u> are p-type material
- The emitter arrow points in
- Can be used with a <u>negative</u> power supply

PNP transistor <u>symbol</u> and <u>current</u> flow

Conventional flow

PNP Biasing with a <u>negative</u> supply

PNP Biasing with a positive supply

