MALVINO & BATES

Electronic PRINCIPLES

SEVENTH EDITION

Transistor Fundamentals

Topics Covered in Chapter 7

- Variations in current gain
- The load line
- The operating point
- Recognizing saturation
- The transistor switch

Topics Covered in Chapter 7 (Continued)

- Emitter bias
- LED drivers
- The effect of small changes
- Troubleshooting
- More optoelectronic devices

Current gain

• Depends on:

✓ Transistor
✓ Collector current
✓ Temperature

Base bias

- Setting up a <u>fixed</u> value of base current
- Base <u>supply</u> voltage (V_{BB}) divided by base <u>resistor</u> (R_B)

Load line

- Connects <u>saturation</u> current (I_{Csat}) to <u>cutoff</u> voltage $(V_{CEcutoff})$
- A <u>visual</u> summary of all the possible transistor operating points

$$\mathbf{V}_{CE(cutoff)} = \mathbf{V}_{CC}$$

$$\mathbf{I}_{C} \text{ in mA}$$

Load line slope

- <u>Changing the collector supply voltage</u> while keeping the same collector resistance produces <u>two</u> load lines
- <u>These</u> load lines will have the <u>same</u> slope but will have <u>different</u> saturation and cutoff values

<u>Same</u> slope with new I_{Csat} and V_{CEcutoff}

A smaller R_C produces a higher value I_{Csat} and a steeper slope

Operating point

• Determined by:

Finding saturation current and cutoff voltage points

- ✓ Connecting points to produce a load line
 ✓ The operating (O) point is established by
- ✓ The <u>operating</u> (Q) point is established by the value of base current

A circuit can operate at <u>any</u> point on the load line.

The operating point is determined by the <u>base</u> current. $\mathbf{V}_{\mathbf{BB}}$ - $\mathbf{V}_{\mathbf{BE}}$ I_B **R**_R 1 kΩ $\leq R_{c}$ 12 V - 0.7 V $\frac{1}{283 \text{ k}\Omega} = 40 \text{ }\mu\text{A}$ **I**_B - V_{CC} $R_{R} = 283 \text{ k}\Omega$ **12 V** V_{BB}

The operating point is called the Q or quiescent point.

Saturation and cutoff are <u>non-linear</u> operating points.

These Q points are used in switching applications.

Transistor circuits

- Amplifying and switching
- Amplifying Q point is in the active region
- Switching Q point switches between saturation and cutoff

Recognizing saturation

- Assume linear operation.
- Perform calculations for currents and voltages.
- An impossible result means the assumption is false.
- An impossible result indicates saturation.
- If the ratio of base to collector resistance is 10:1, the transistor is saturated.

Base bias

- The <u>base</u> current is established by V_{BB} and R_{B} .
- The <u>collector</u> current is β times larger in linear circuits.
- The transistor <u>current</u> gain will have a large effect on the operating point.
- Transistor current gain is <u>unpredictable</u>.

Transistor switch

- <u>Base</u> bias is used
- The Q point <u>switches</u> between saturation and cutoff
- Switching circuits, also called two-state circuits, are used in <u>digital</u> applications

Emitter bias

- The bias resistor is <u>moved</u> from the base to emitter circuit
- Provides Q points that are <u>immune</u> to current gain changes
- Used for <u>linear</u> amplifiers

Comparing the bias methods

- Base bias is subject to variations in transistor current gain.
- Base bias is subject to temperature effects.
- Emitter bias almost eliminates these effects.
- The transistor current gain is not required when solving circuits with emitter bias.

Linear troubleshooting tips

- The difference between collector and emitter should be more than 1 V but less than $V_{\rm CC}.$
- V_{BE} should be 0.6 to 0.7 V.
- V_{BE} can be 1 V or more in high-current circuits.
- Both open and shorted junctions are possible.

Troubleshooting a transistor

- Ohmmeter <u>resistance</u> tests
- DMM <u>resistance</u> or h_{FE} <u>function</u> tests
- In-circuit <u>voltage</u> measurements

Optoelectronic devices

- A phototransistor has current gain and is <u>more</u> sensitive than a photodiode
- <u>Combined</u> with an LED, a phototransistor provides a more sensitive optocoupler