MALVINO & BATES

Electronic PRINCIPLES

SEVENTH EDITION

Bipolar Junction Transistors

Topics Covered in Chapter 6

- Unbiased transistor
- Biased transistor
- Transistor currents
- The CE connection
- The base curve

Topics Covered in Chapter 6 (Continued)

- Collector curves
- Transistor approximations
- Reading data sheets
- Surface mount transistors
- Troubleshooting

Unbiased transistor

- <u>Three</u> doped regions: emitter, base, and collector
- <u>Two</u> pn junctions: emitter-base and basecollector
- NPN or PNP
- Silicon or germanium

The bipolar junction transistor has 3 doped regions.

Biased transistor

- Forward bias the emitter diode
- <u>Reverse</u> bias the collector diode

In a properly biased NPN transistor, the <u>emitter</u> electrons diffuse into the base and then go on to the collector.

Transistor currents

- The <u>ratio</u> of collector current to base current is current gain (β_{dc} or h_{FE})
- Current gain is typically 100 to 300

Conventional flow

Electron flow

 $\mathbf{I}_{E} = \mathbf{I}_{C} + \mathbf{I}_{B} \qquad \mathbf{I}_{C} \cong \mathbf{I}_{E} \qquad \mathbf{I}_{B} << \mathbf{I}_{C}$ $\alpha_{dc} = \frac{\mathbf{I}_{C}}{\mathbf{I}_{E}} \qquad \beta_{dc} = \frac{\mathbf{I}_{C}}{\mathbf{I}_{B}}$

The CE connection

- The <u>emitter</u> is grounded or common
- The <u>base-emitter</u> acts like a diode
- The <u>base-collector</u> acts like a current source that is equal to β_{dc} times the base current

The <u>common emitter</u> connection has <u>two</u> loops: the base loop and the collector loop.

Subscript notation

- When the subscripts are the same, the voltage represents a source (V_{CC}) .
- When the subscripts are different, the voltage is between two points (V_{CE}) .
- Single subscripts are used for node voltages with ground serving as the reference (V_C).

Base curve

- Graph similar to that of a diode
- Diode approximations are used for analysis (typically ideal or second)

The base circuit is usually analyzed with the <u>same</u> approximation used for diodes.

A graph of I_C versus V_{CE}

(Note that each new value of I_B presents a <u>new</u> curve.)

This set of curves is also called a <u>family</u> of curves.

Regions of operation

- Active - used for <u>linear</u> amplification
- **Cutoff** - used in <u>switching</u> applications
- **Saturation** - used in <u>switching</u> applications
- **Breakdown** - can <u>destroy</u> the transistor and should be avoided

Transistor circuit approximations

- First: treat the base-emitter diode as ideal and use βI_B to determine I_C . Use for troubleshooting.
- Second: correct for V_{BE} and use βI_B to determine I_C .
- Third (and higher): correct for bulk resistance and other effects. Usually accomplished by computer simulation. Use for design work.

The second approximation:

Reading transistor data sheets

- <u>Maximum</u> ratings on voltage, current, and power
- <u>Power</u> transistors dissipate more than 1 watt
- <u>Temperature</u> can change the value of a transistor's characteristics

Typical Breakdown Ratings

- $V_{CBO} = 60 V$ $V_{CEO} = 40 V$
- $V_{EBO} = 6 V$
- Note: these are reverse breakdown ratings with one transistor leg open (e.g. V_{CBO} is voltage collector to base with emitter open)

A graphic view of collector breakdown

Typical Maximum Ratings

- $I_C = 200 \text{ mA dc}$
- $P_D = 250 \text{ mW}$ (for $T_A = 60 \text{ }^{\circ}\text{C}$)
- $P_D = 350 \text{ mW}$ (for $T_A = 25 \text{ }^{\circ}\text{C}$)
- $P_D = 1 W$ (for $T_C = 60 °C$)

Data sheet h _{FE} "On Characteristics"		
I _C in mA	h _{FE(min)}	h _{FE(max)}
0.1	40	
1	70	
10	100	300
50	60	
100	30	

Surface-mount transistors

- A <u>variety</u> of package styles (threeterminal gull-wing is typical)
- Some SMTs can <u>dissipate</u> 1 watt or more
- Some SMTs house <u>multiple</u> transistors

Troubleshooting

- Look for gross voltage errors.
- First approximation and mental estimates will usually suffice.
- Resistors generally don't short but circuit boards can.
- Circuit boards can and do open.
- Junctions can and do short.
- Junctions can and do open.