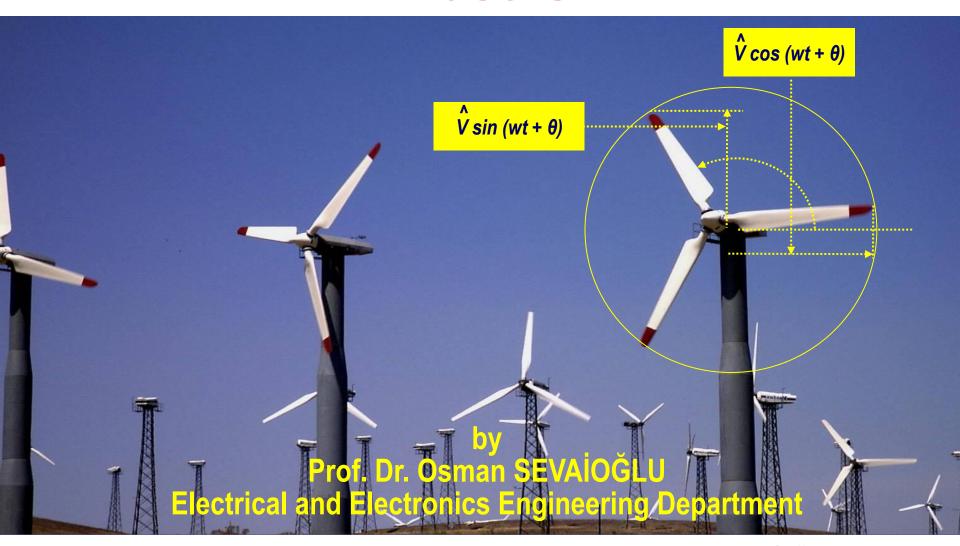


Phasors



EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 1

Vector

Definition

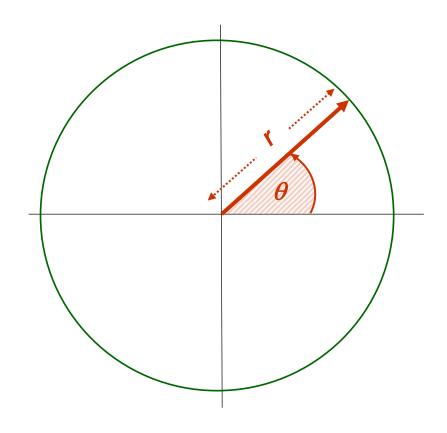
A vector is a magnitude directed in a certain direction (angle)

A vector is shown as

 r/θ

where,
r is the magnitude, known as radius,
θ is the angle

The above representation is known as "the polar representation" of a vector

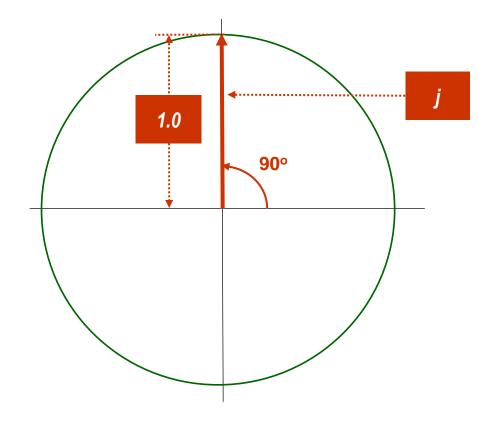


j Operator

Definition

"j operator" is a vector with unity magnitude, directed in vertical direction, i.e. in 90° angle

$$j=1/90^{\circ}$$



Complex Number

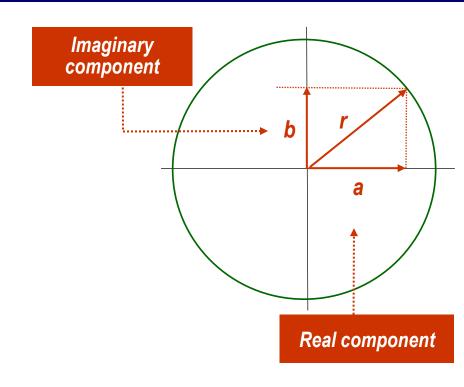
Definition

A complex number is a number with two components;

- Real component (an ordinary number),
- Imaginary component (a number multiplied by the j operator)

$$a + jb$$

The above representation is known as "the rectangular representation"



Polar Representation of Complex Number

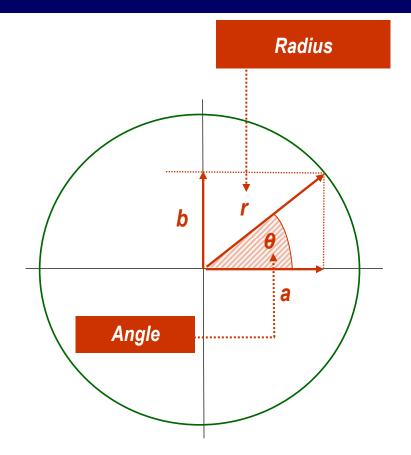
Definition

A complex number may be expressed in "polar representation" by employing the following conversion

$$r = \sqrt{a^2 + b^2}$$

$$\theta = Tan^{-1}(b/a)$$

"Polar representation" of a vector



Conversion from Rectangular Representation to Polar Representation

Rule

A complex number expressed in rectangular coordinates can be converted into a number expressed in polar coordinates as follows;

Let the complex number expressed in rectangular coordinates be

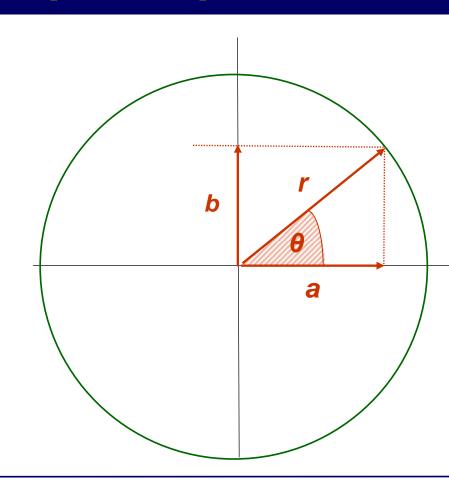
$$a + jb$$

Then

$$a+jb=r/\theta$$

where,

$$r = \sqrt{a^2 + b^2} \qquad \theta = Tan^{-1} (b/a)$$



Conversion from Polar Representation to Rectangular Representation

Rule

A complex number expressed in polar coordinates can be converted into a number expressed in rectangular coordinates as follows;

Let the complex number expressed in polar (phasor) coordinates be

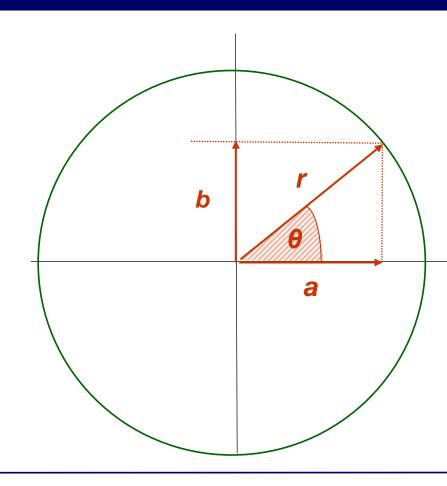
Then

$$r/\theta = a + jb$$

where,

$$a = r \cos \theta$$

$$b = r \sin \theta$$



Polar and Rectangular Representations - Summary

Conversion Rules

Polar Representation

r <u>/θ</u>

$$a = r \cos \theta$$
, $b = r \sin \theta$

$$r = \sqrt{a^2 + b^2}, \ \theta = Tan^{-1}(b/a)$$

b r a

Rectangular Representation

$$a+jb$$

Addition of two Complex Numbers

Method

Isn't there an easier way of doing that?

Suppose that two phasors are to be added

$$r_1 / \theta_1 + r_2 / \theta_2 = r_{tot} / \theta_{tot}$$

- First express the phasors in rectangular coordinates,
- and then perform the addition

Polar Representation $\frac{r_1/\theta_1}{r_2/\theta_2}$

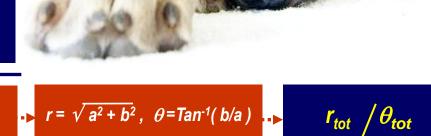
 $a = r \cos \theta$, $b = r \sin \theta$

Rectangular Representation

 $a_1 + j b_1$

 $a_2 + j b_2$

$$a_{tot} + j b_{tot}$$



Subtraction of two Complex Numbers

Method

Suppose that two phasors are to be subtracted

$$r_1 / \theta_1 - r_2 / \theta_2 = r_{tot} / \theta_{tot}$$

- First express the phasors in polar coordinates,
- and then perform the subtraction

Polar Representation $\frac{r_1/\theta_1}{r_2/\theta_2}$

$$r_2 / \theta_2$$

 $a = r \cos \theta$, $b = r \sin \theta$

Rectangular Representation

$$a_1 + j b_1$$

$$a_2 + j b_2$$

$$(a_1.a_2) + j (b_1-b_2)$$

 $r = \sqrt{a^2 + b^2}, \ \theta = Tan^{-1}(b/a)$

I'm afraid NOT!

Multiplication of two Complex Numbers

Method

Suppose that two phasors are to be multiplied

$$(a_1 + j b_1) \times (a_2 + j b_2) = a_{result} + j b_{result}$$

- First express the phasors in polar coordinates,
- and then perform the multiplication

Rectangular Representation	$r = \sqrt{a^2 + b^2}$, $\theta = Tan^{-1}(b/a)$	Polar Representation
a ₁ + j b ₁	•••••	r ₁ / θ ₁
$a_2 + j b_2$	X	r_2 / θ_2

$$r_1 r_2 / \theta_1 + \theta_2$$
 \Rightarrow $a = r \cos \theta, b = r \sin \theta$ \Rightarrow $a_{result} + j b_{result}$

Division of two Complex Numbers

Method

Suppose that two phasors are to be divided

$$(a_1 + j b_1) / (a_2 + j b_2) = a_{result} + j b_{result}$$

- First express the phasors in polar coordinates,
- and then perform the division

Rectangular Representation
$$r = \sqrt{a^2 + b^2}$$
, $\theta = Tan^{-1}(b/a)$ Polar Representation $a_1 + j b_1$ r_1 / θ_1 $a_2 + j b_2$ r_2 / θ_2

$$r_1/r_2 / \theta_1 - \theta_2$$
 $\Rightarrow a = r \cos \theta, b = r \sin \theta \Rightarrow a_{result} + j b_{result}$

Properties of j Operator

Definition

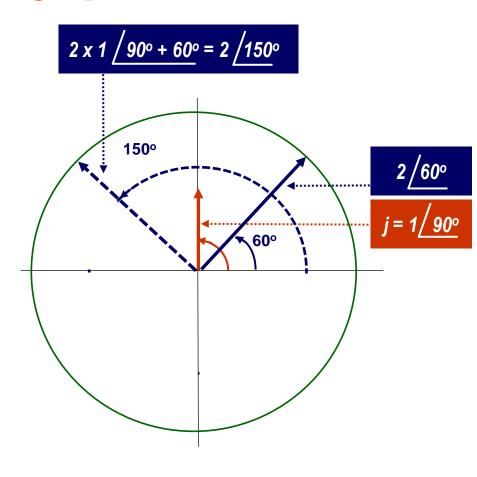
Multiplication of a complex number by j operator shifts (rotates) the angle of vector by 90°, while the magnitude is unchanged

$$j=1 /90^{\circ}$$

Example

Multiply complex number $2/60^{\circ}$ by j

$$2 / 60^{\circ} \times j = 2 / 60^{\circ} \times 1 / 90^{\circ}$$
$$= 2 \times 1 / 60^{\circ} + 90^{\circ}$$
$$= 2 / 150^{\circ}$$



Properties of j Operator

Powers of j

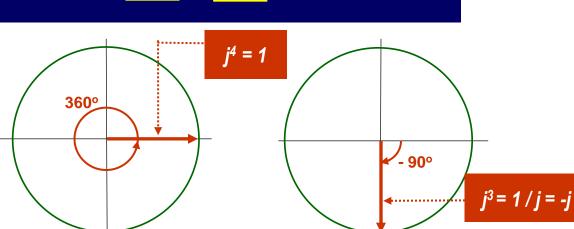
```
j = 1/90^{\circ}

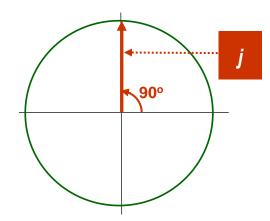
j^{2} = 1/90^{\circ} \times 1/90^{\circ} = 1/180^{\circ} = -1

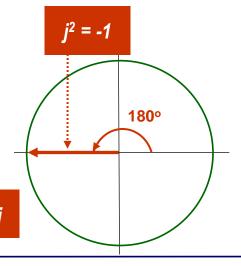
j^{3} = 1/270^{\circ} = 1/-90^{\circ} = -j

j^{4} = 1/4 \times 90^{\circ} = 1/360^{\circ} = 1

1/j = 1/1/90^{\circ} = 1/-90^{\circ} = -j
```







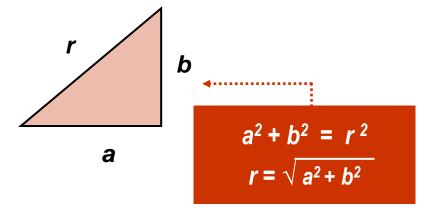
Phasors

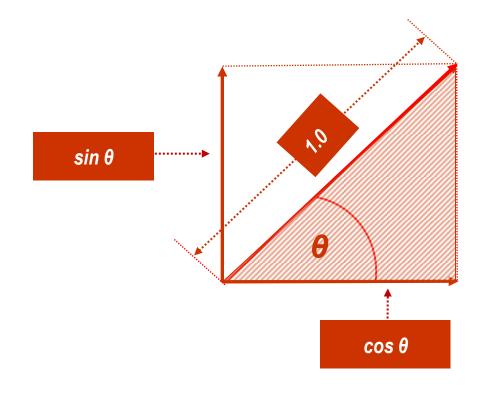
Euler's Identity

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$|e^{j\theta}| = |\cos\theta + j\sin\theta|$$

= $\sqrt{|\cos\theta|^2 + |\sin\theta|^2}$
= 1





Leonhard EULER (1707-1783) Swiss Mathematician

Leonhard Euler was born in Basel, Switzerland, but the family moved to Riehen when he was one year old and it was in Riehen, not far from Basel, that Leonard was brought up. Paul Euler had, as we have mentioned, some mathematical training and he was able to teach his son elementary mathematics along with other subjects.

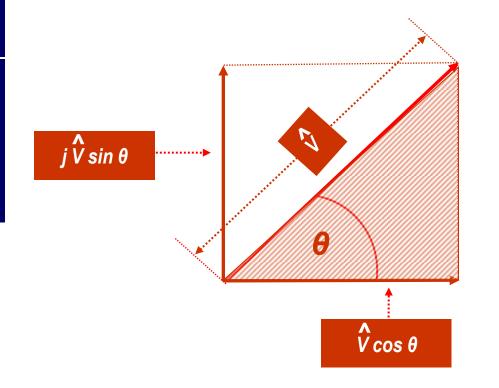
Euler made substantial contributions to <u>differential</u> geometry, investigating the theory of surfaces and curvature of surfaces. Many unpublished results by Euler in this area were rediscovered by <u>Gauss</u>. Other geometric investigations led him to fundamental ideas in <u>topology</u> such as the Euler characteristic of a polyhedron.

In 1736 Euler published Mechanica which provided a major advance in mechanics

Phasors

Euler's Identity

$$\hat{V}e^{j\theta} = \hat{V}(\cos\theta + j\sin\theta)$$



Phasors

Definition of Basic Terms

Now, Let θ be a linear function of time t, i.e. rotate it clockwise

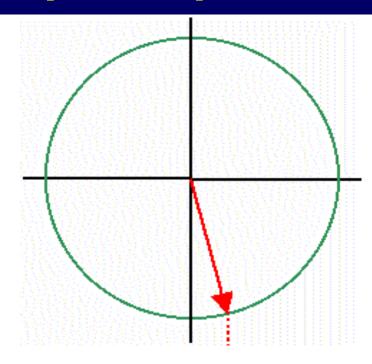
$$\theta = wt$$

$$w = 2 \pi f$$

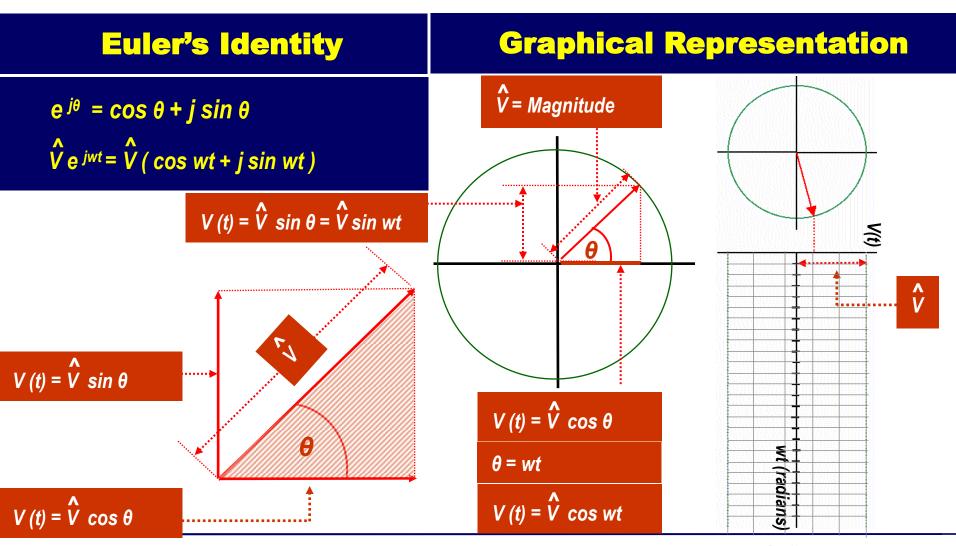
$$= 2 x \pi x 50 = 314 \text{ Radians/sec}$$

$$(f = 50 \text{ Hz})$$

1 Radian = 360 °/(
$$2\pi$$
) = 57.29 °



Phasors



Symbolic Representation

Mathematical Notation

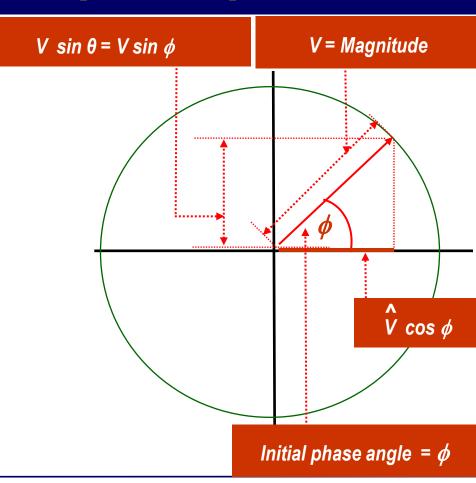
Now let a phasor be located at an angular position ϕ initially, i.e.

$$V(t) = \hat{V}\cos(wt + \phi) \mid t = 0$$

In other words the phasor is at an angular position ϕ at t=0

The phasor on the RHS is then represented mathematically by the following notations;

$$\theta = wt$$
_{|t=0} + $\phi = \phi$



Angular Displacement

Total Angular Displacement

Total angular displacement at time t = t₁ may then be expressed as;

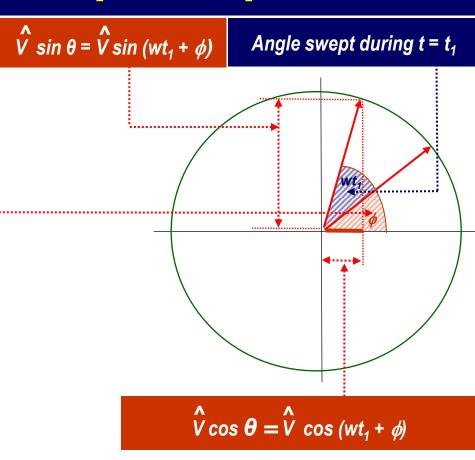
$$\theta(t_1) = w t_1 + \phi$$

Initial phase angle = ϕ

Then the horizontal component becomes;

$$V(t) = \hat{V} \cos (wt + \phi) \mid t = t_1$$
$$= \hat{V} \cos (wt_1 + \phi)$$

In other words, the phasor will be at an angular position $wt_1 + \phi$ at $t = t_1$



Mathematical Notation

Notation

The phasor on the RHS may be represented mathematically as;

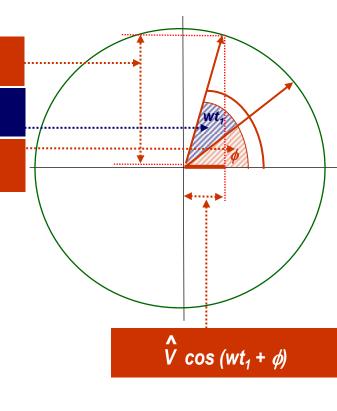
$$\hat{\mathbf{v}} e^{j\theta(t_1)} = \hat{\mathbf{v}} e^{j(\mathbf{w} t_1 + \phi)}$$

Graphical Representation

$$\hat{V} \sin \theta = \hat{V} \sin (wt_1 + \phi)$$

Angle swept during $t = t_1$

Initial phase angle = ϕ



Waveform Representation of Resistive Circuits

Ohm's Law

Consider the resistive circuit shown on the RHS

$$V(t) = \hat{V} \cos wt$$

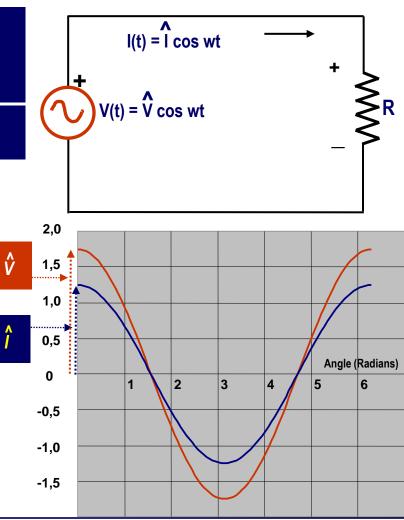
$$I(t) = \hat{V}_{s}(t) / R$$

 $= V \cos wt/R$

 $= \int_{0}^{\infty} \cos wt$

where,

$$\hat{I} = \hat{V}/R$$

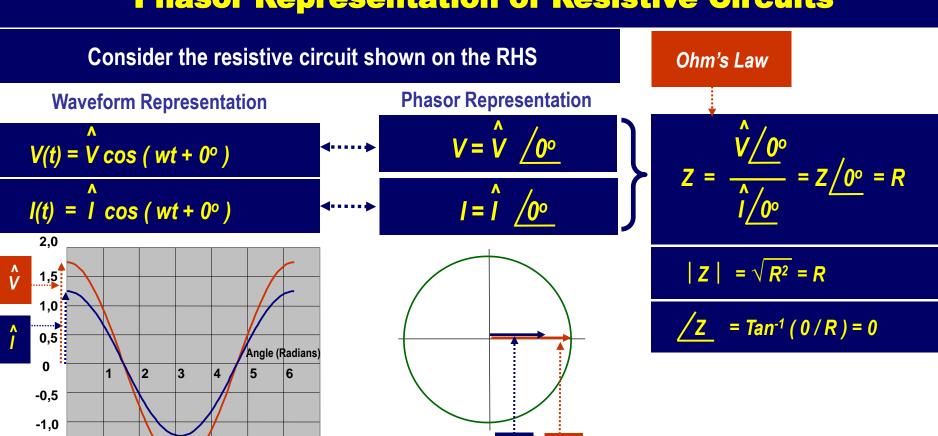


-1,5

Phasors

Phasor Representation of Resistive Circuits

Phasor Representation of Resistive Circuits



EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 24

Waveform Representation of Inductive Circuits

Waveform Representation of Inductive Circuits

Consider the inductive circuit shown on the RHS

Let now,

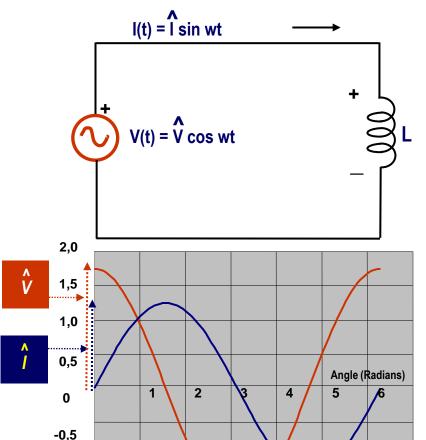
$$I(t) = \hat{I} \sin wt$$

$$V(t) = L dI(t) / dt = L w \hat{I} \cos wt = \hat{V} \cos wt$$

$$\hat{V} = Lw\hat{I}$$

 $cos(wt - 90^\circ) = coswt cos 90^\circ + sin wt sin 90^\circ$

$$I(t) = \int_{0}^{\infty} \sin wt = \int_{0}^{\infty} \cos (wt - 90^{\circ})$$



-1,0

-1,5

Phasor Representation of Inductive Circuits

Phasor Representation of Inductive Circuits

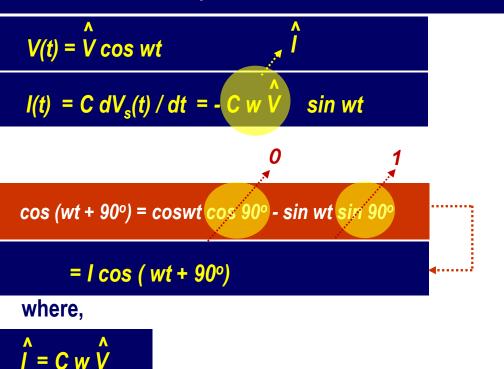


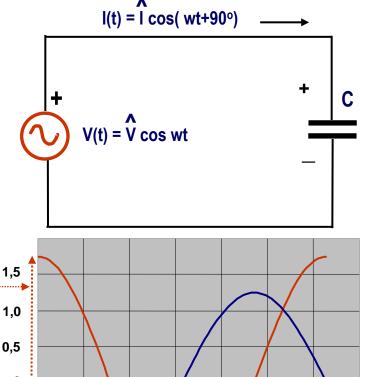
EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 26

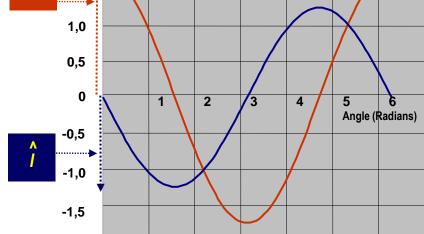
Waveform Representation of Capacitive Circuits

Waveform Representation of Capacitive Circuits

Consider the capacitive circuit shown on the RHS

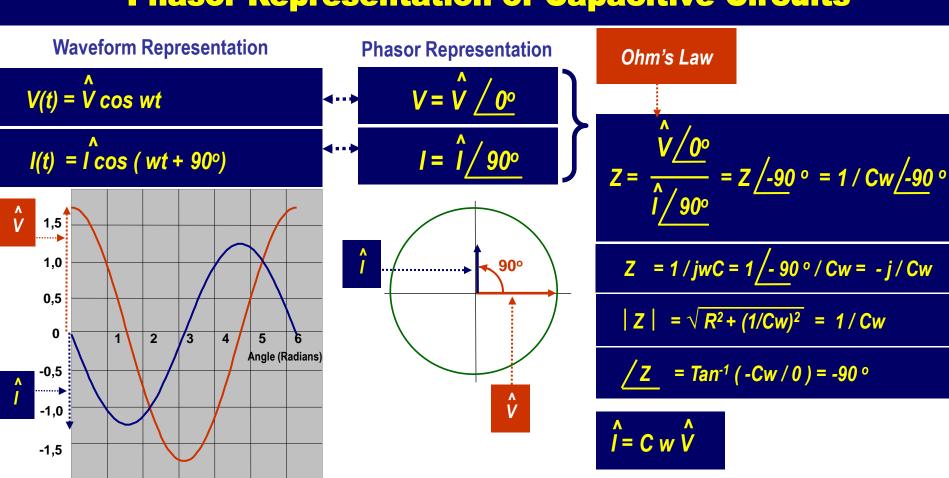






Phasor Representation of Capacitive Circuits

Phasor Representation of Capacitive Circuits



EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 28

Phasor Representation of AC Circuits

Phasor Representation of R-L Circuits

Consider the following R-L circuit

$$V = \hat{V} / O^{\circ}$$

$$Z = R + j wL$$

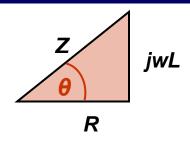
$$|Z| = \sqrt{R^2 + (wL)^2}$$

$$/Z = Tan^{-1} (wL/R) = \theta$$

$$I = \sqrt[h]{0^{\circ}} / (\sqrt{R^2 + (wL)^2} / \frac{\theta}{\theta})$$

$$= \sqrt[h]{-\theta}$$

$$\int_{-\theta}^{\theta} = \sqrt[h]{\sqrt{R^2 + (wL)^2}}$$

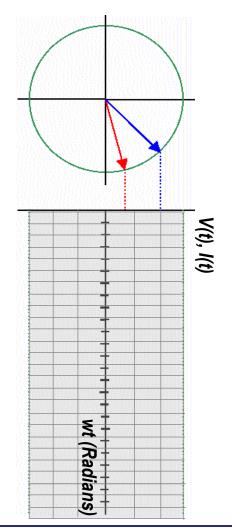


$$R^2 + (wL)^2 = Z^2$$

$$Z = \sqrt{R^2 + (wL)^2} / \theta$$

$$V(t) = \hat{V} \cos(wt - \theta)$$

$$V(t) = \hat{V} \cos wt$$



Phasor Representation of AC Circuits

Phasor Representation of R-C Circuits

Consider the R-C circuit shown below

$$V = \hat{V} / \underline{0}^{\circ}$$

$$Z = R + (1/jwC) = R - j(1/wC)$$

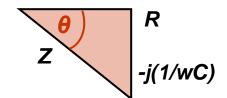
$$|Z| = \sqrt{R^2 + (1/wC)^2}$$

$$\int Z = Tan^{-1} (1 / (wCR)) = \theta < 0$$

$$I = \sqrt[\Lambda]{0^{\circ}} / (\sqrt{R^2 + (1/wC)^2} / -\theta)$$

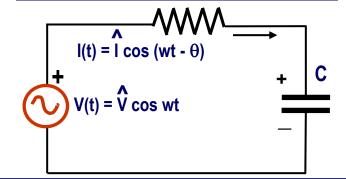
$$= \sqrt[\Lambda]{\theta}$$

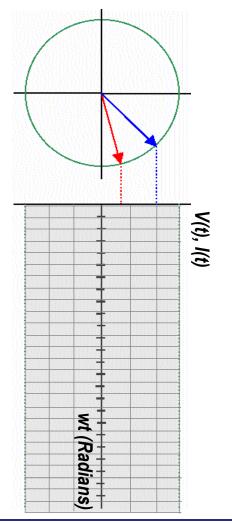
$$\int_{-\infty}^{\infty} = \sqrt[\Lambda]{R^2 + (1/wC)^2}$$



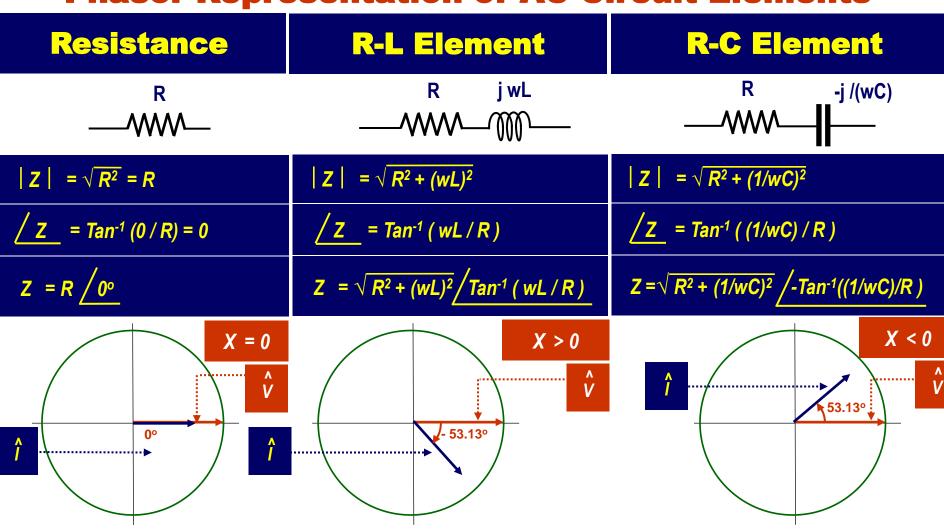
$$R^2 + (1/wC)^2 = Z^2$$

$$Z = \sqrt{R^2 + (1/wC)^2} / \theta$$





Phasor Representation of AC Circuit Elements



EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 31

Phasor Representation of R-L-C Circuits

Phasor Representation of R-L-C Circuits

Consider the R-L-C circuit shown on the RHS

$$V = \hat{V} / O^{\circ}$$

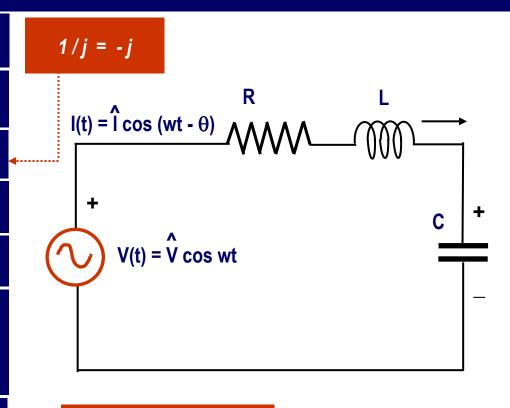
$$Z = R + jwL - j / wC = R + j (wL - 1/wC)$$

$$|Z| = \sqrt{R^2 + (wL - 1/wC)^2}$$

$$/Z = Tan^{-1} ((wL - 1/(wC))/R) = \theta$$

$$I = \sqrt[\Lambda]{0^{\circ}} / (\sqrt{R^2 + (wL - 1/wC)^2} / \theta)$$
$$= \sqrt[\Lambda]{-\theta}$$

$$\int_{1}^{A} = V / \sqrt{R^2 + (wL - 1/wC)^2}$$



Ohm's Law: I = V/Z

Phasor Representation of R-L-C Circuits

R-L-C Circuits

Solve the R-L-C circuit shown on the RHS for current phasor

$$V = \hat{V} / 0^{\circ} = 220 \sqrt{2} / 0^{\circ}$$

$$Z = R + jwL - j/wC = 2 + j(3.14 - 1.59) \Omega$$

= 2 + j 1.55 Ω

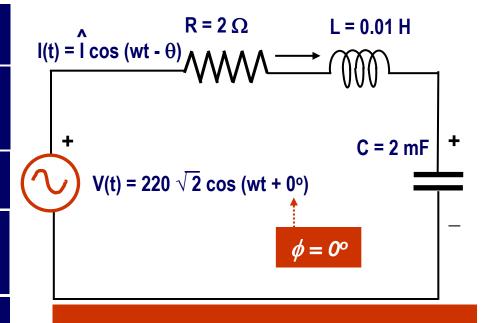
$$|Z| = \sqrt{R^2 + (wL - 1/wC)^2} = \sqrt{2^2 + 1.55^2}$$

= 2.098 Ω

$$Z = Tan^{-1} ((wL - 1/(wC))/R) = Tan^{-1} (1.55/2) = \theta$$

= 17.58°

$$Z = 2.098 / 17.58^{\circ} \Omega$$



$$w = 2 \pi f = 2 \times 3.14 \times 50 = 314 \text{ radians/sec}$$
 $X_L = j \text{ wL} = j 0.01 \times 314 = j 3.14 \Omega$
 $X_C = 1/(j\text{wC}) = -j/\text{wC} = -j/(314 \times 2 \times 10^{-3})$
 $= -j 1.59 \Omega$

 θ > 0 (Inductive)

Phasor Representation of R-L-C Circuits

Example

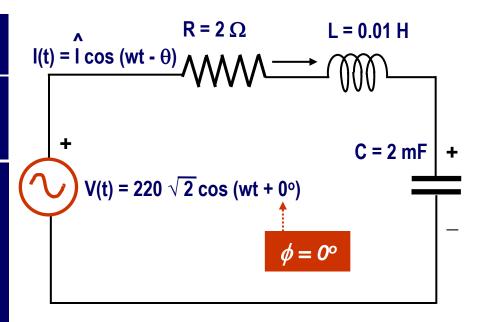
Solve the R-L-C circuit shown on the RHS for current phasor

$$I = \sqrt[\Lambda]{0^{\circ}} / (\sqrt{R^{2} + (wL - 1/wC)^{2}} / \theta)$$

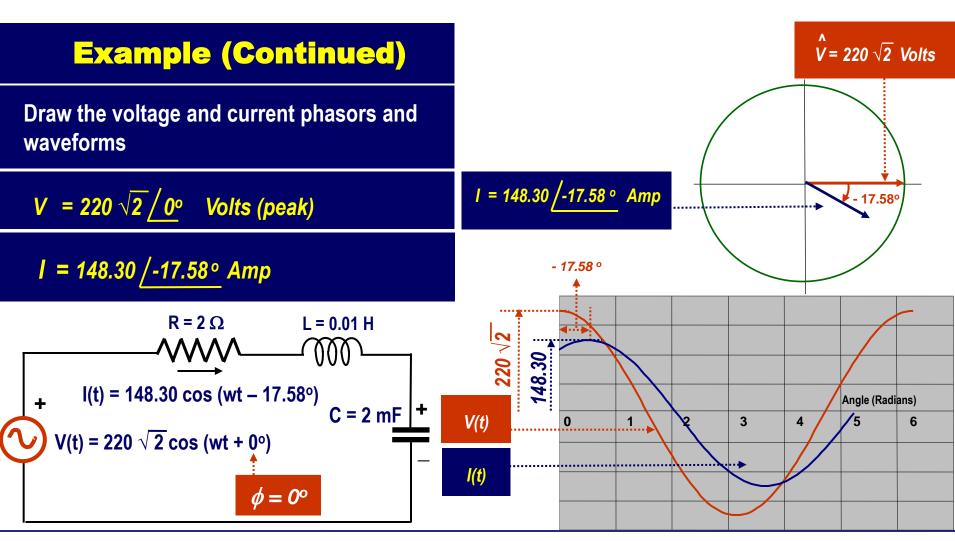
$$= 220 \sqrt{2} / 0^{\circ} / 2.098 / 17.58 ^{\circ}$$

$$= \sqrt[\Lambda]{-\theta}$$

$$= 148.30 / -17.58 ^{\circ} Amp$$



Phasor Representation of R-L-C Circuits



Example

Problem

Solve the circuit on the RHS for current waveform by using the phasor method

Solution

Waveform Representation

$$V(t) = \hat{V} \cos wt$$

= 220 x $\sqrt{2} \cos wt$

$$V = \sqrt[6]{0^{\circ}} = 220 \times \sqrt{2} / 0^{\circ} \text{ Volts}$$

$$|Z| = \sqrt{R^2 + X^2}$$

= $\sqrt{3^2 + 4^2} = 5 \Omega$

$$Z = Tan^{-1} (4/3)$$

= 53.13°

$$R = 3 \Omega$$

$$V(t) = V \cos wt$$

$$= 220 \times \sqrt{2} \cos wt$$

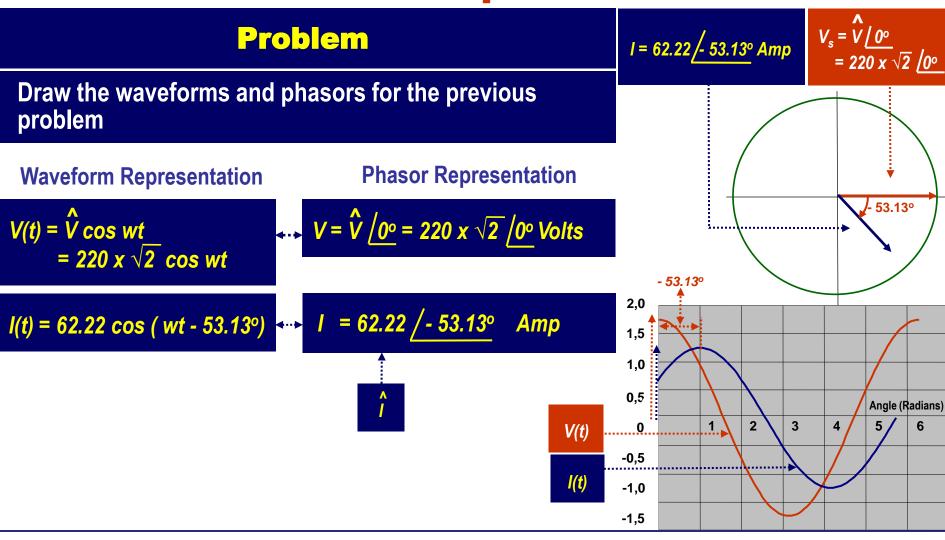
$$= 4 \Omega$$

$$Z = 5 / 53.13^{\circ} \Omega$$

$$I = 220 \times \sqrt{2} / 0^{\circ} / 5 / 53.13^{\circ} Amp$$

$$= 62.22 / -53.13^{\circ} Amp$$

Example



Example

Calculate the equivalent impedance seen between the terminals A and B of the AC circuit given on the RHS (w = 314 rad / sec)

First, let us calculate impedances

$$Z_C = 1/(jwC) = 1/(j314 \times 1 \times 10^{-3})$$

= - j 3.1847 Ω

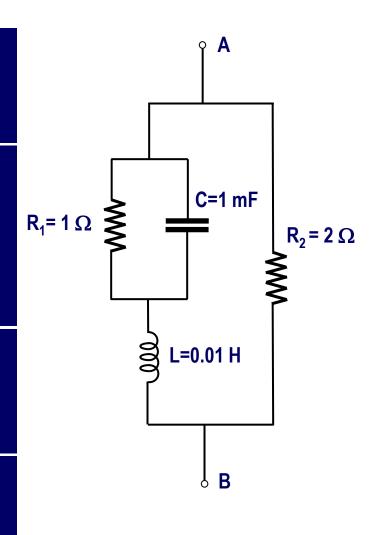
$$Z_L = jwL = j 314 \times 0.01 = j 3.14 \Omega$$

$$Z_{C} // R_{1} = 1 / (1/Z_{c} + 1/R_{1}) = 1 / (1/-j3.1847 + 1/1)$$

= 1 / (1 + j0.314) = 1 / (1.04814 | 17.43°)
= 0.9540 | -17.43° = 0.91019 - j 0.285761 Ω

$$(Z_C//R_1) + Z_L = 0.91019 - j 0.285761 + j 3.14$$

= 0.91019 + j 2.854239 Ω



Example (Continued)

(Continued)

Now, let us calculate: $(R_{eq} + j Z_{Leq}) // R_2$

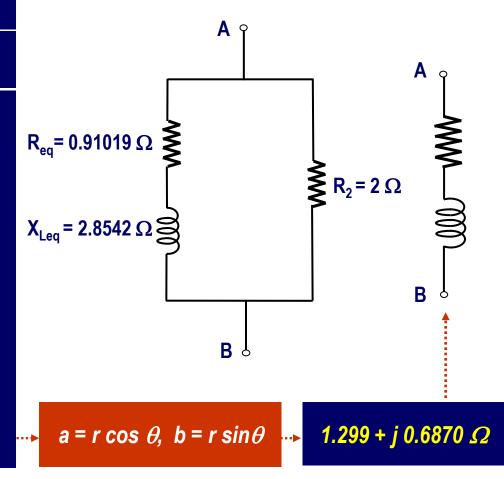
$$(R_{eq} + j Z_{Leq}) // R_2 = (0.91019 + j 2.854239) // 2$$

$$= 2.9958 / 72.31^{\circ} // 2 / 0^{\circ}$$

$$= \frac{2.9958 \times 2 / 72.31^{\circ}}{(0.91019 + 2) + j 2.854239}$$

$$= \frac{5.99160 / 72.31^{\circ}}{4.07685 / 44.44^{\circ}}$$

$$= 1.46966 / 27.87 \Omega$$



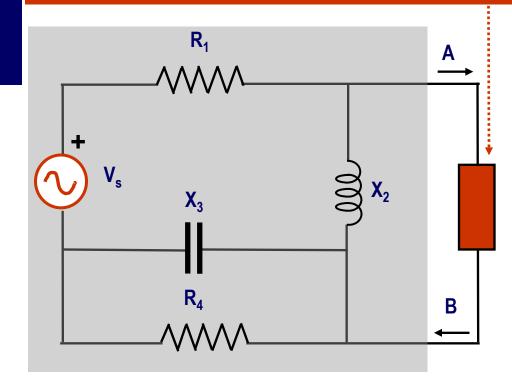
Maximum Power Transfer Condition in AC Circuits

Question

Calculate the value of the impedance Z_L of the load in the AC circuit shown on the RHS, in order to transfer maximum power from source to load

Given Circuit

Load Impedance: $Z_L = R_L + j X_L$

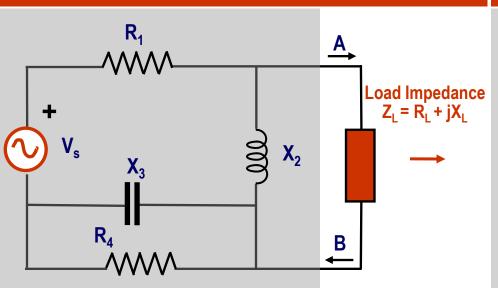


Maximum Power Transfer Condition in AC Circuits

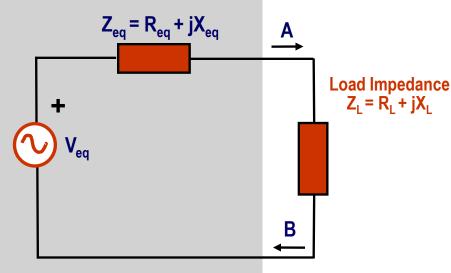
Solution

First simplify the AC circuit to its Thevenin Equivalent Form as shown on the RHS

Given Circuit



Thevenin Equivalent Circuit



Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

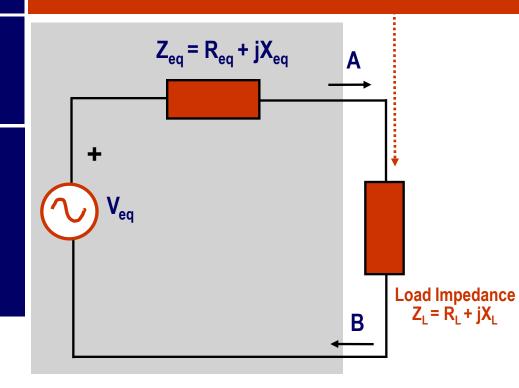
Then the problem reduces to the determination of the load impedance in the simplified circuit shown on the RHS

$$P = R_{L} I^{2}$$

$$I^{2} = (V_{eq.} / Z_{total})^{2} = (V_{eq.} / (Z_{eq.} + Z_{L}))^{2}$$
Hence,
$$P = R_{L} V_{eq.}^{2} / (Z_{eq.} + Z_{L})^{2}$$

$$= V_{eq.}^{2} R_{L} / ((R_{eq.} + R_{L})^{2} + (X_{eq.} + X_{L})^{2})$$

Load Impedance: $Z_L = R_L + jX_L$



Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

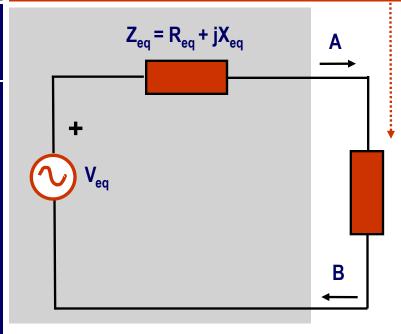
Let us now first maximize P wrt X_L by differentiating P with respect to X_L

$$dP/dX_{L} = 0 \\ d/dX_{L} V_{eq.}^{2} R_{L}/((R_{eq.} + R_{L})^{2} + (X_{eq.} + X_{L})^{2}) = 0 \\ or \\ V_{eq.}^{2} R_{L} (-2 (X_{eq.} + X_{L})/[(R_{eq.} + R_{L})^{2} + (X_{eq.} + X_{L})^{2}]^{2} = 0 \\ or \\ V_{eq.}^{2} R_{L} (-2 (X_{eq.} + X_{L})) = 0 \\ The above expression becomes zero when;$$

above expression becomes zero w

$$X_{eq.} = -X_L$$

Load Impedance: $Z_L = R_L + jX_L$



Maximum Power Transfer Condition in AC Circuits

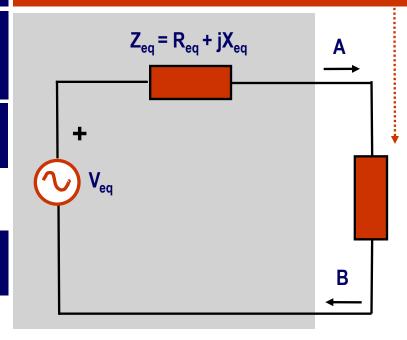
Solution (Continued)

Hence, power becomes the same as that for the DC case;

$$P = V_{eq.}^2 R_L / ((R_{eq.} + R_L)^2 + (X_{eq.} + X_L)^2)$$

$$P = R_L V_{eq.}^2 / (R_{eq.} + R_L)^2$$

Load Impedance: $Z_1 = R_1 + jX_1$



Maximum Power Transfer Condition in AC Circuits

Solution (Continued)

Now, we must maximize P wrt R_L by differentiating P with respect to R_L

$$dP/dR_{L} = 0$$

$$d/dR_{L} V_{eq.}^{2} R_{L} / (R_{eq.} + R_{L})^{2} = 0$$

$$V_{eq.}^{2} [(R_{eq.} + R_{L})^{2} - 2 (R_{eq.} + R_{L}) V_{eq.}^{2} R_{L}] / d^{2} = 0$$

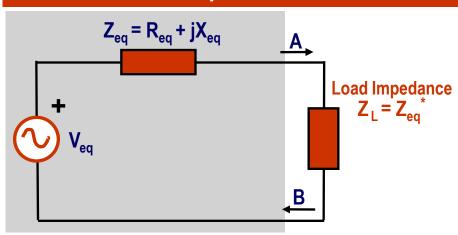
$$where, d = (R_{eq.} + R_{L})^{2}$$
or
$$V_{eq.}^{2} [(R_{eq.} + R_{L})^{2} - 2 (R_{eq.} + R_{L}) R_{L}] = 0$$

$$(R_{eq.} + R_{L})^{2} - 2 (R_{eq.} + R_{L}) R_{L} = 0$$

$$(R_{eq.} + R_{L}) - 2 R_{L} = 0$$

$$R_{eq.} = R_{L}$$

Thevenin Equivalent Circuit



Conclusions:

For maximum power transfer;

- (a) $X_L = -X_{eq}$
- (b) Load resistance must be equal to the Thevenin Equivalent Resistance of the simplified circuit; R_{eq.} = R_L

Oľ

(c)
$$Z_L = Z_{eq}$$

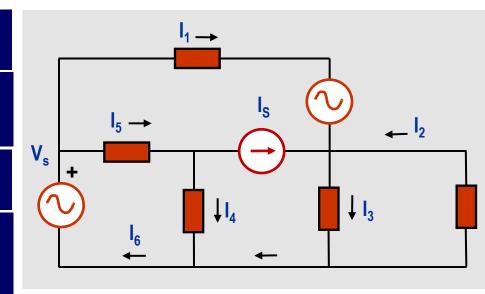
The Principle of Superposition in AC Circuits

Question

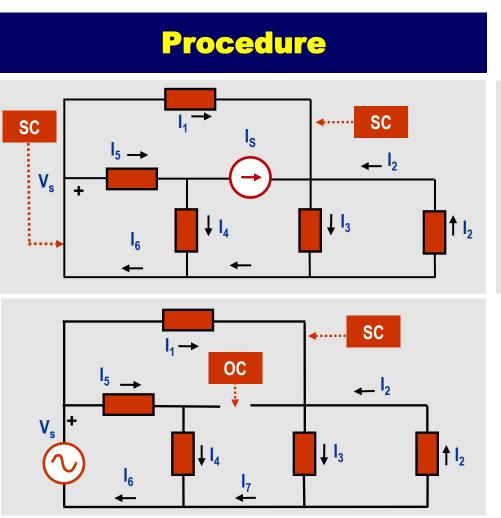
Solve the AC circuit shown on the RHS by using The Principle of Superposition

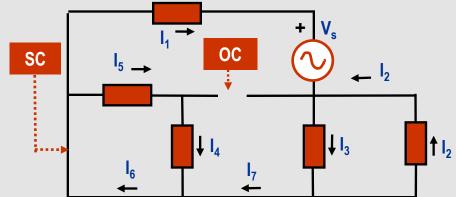
Solution

- a) Kill all sources, except one,
- b) Solve the resulting circuit,
- c) Restore back the killed source and kill all sources, except another one,
- d) Repeat the solution procedure (a) (c) for all sources,
- e) Then, sum up algebraically all the solutions found



The Principle of Superposition in AC Circuits

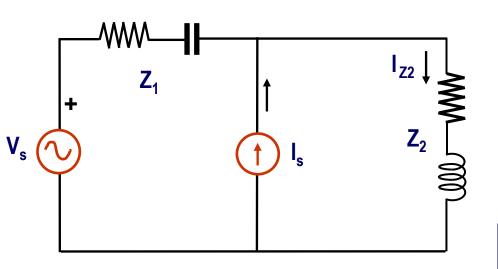




Example 1 - The Principle of Superposition in AC Circuits

Question

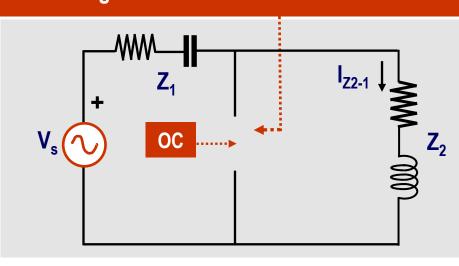
Find the current I_{22} flowing in impedance I_{22} in the following circuit by using the Principle of Superposition



This method is particularly useful when there are sources with different frequencies

Solution

Kill all sources except one and solve the resulting circuit

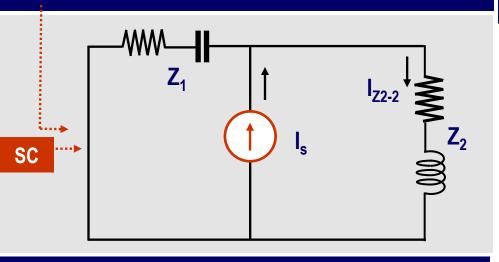


$$I_{Z2-1} = V_s / (Z_1 + Z_2)$$

Example 1 - The Principle of Superposition in AC Circuits

Solution

Kill all sources except one, sequentially and solve the resulting circuits



$$I_{Z2-2} = (I_S/Z_2)/[(1/Z_1)+(1/Z_2)]$$

= $I_S g_2/(g_1+g_2)$

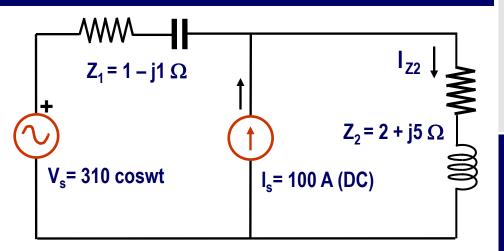
Sum up the resulting currents

$$I_{Z2} = I_{Z2-1} + I_{Z2-2}$$

Example 2 - Sources with Mixed Frequencies

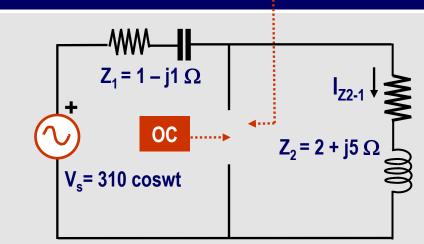
Question

Now, find the steady-state current waveform flowing in impedance Z_2 in the following circuit by using the Principle of Superposition



This method is particularly useful when there are sources with different frequencies

Kill all sources except one, sequentially and solve the resulting circuits



$$I_{Z2-1} = V_s / 0^{\circ} / (Z_1 + Z_2)$$

$$= V_s / 0^{\circ} / (1 - j1 + 2 + j5)$$

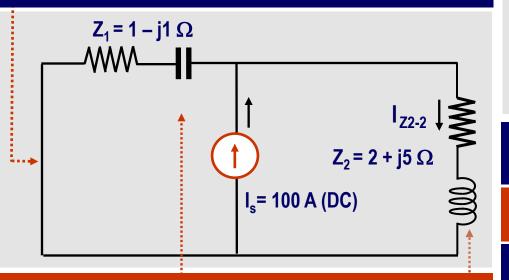
$$= V_s / 0^{\circ} / (3 + j4) = V_s / 0^{\circ} / 5 / 53.13^{\circ}$$

$$= 310 / 5 / -53.13^{\circ} = 62 / -53.13^{\circ} Amp$$

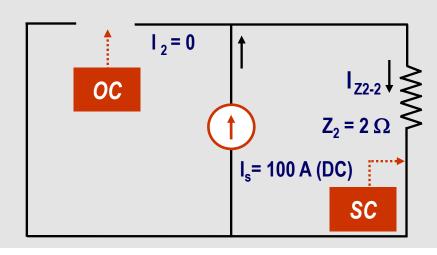
Example 2 - Sources with Mixed Frequencies

Solution

Kill all the sources except one, sequentially and solve the resulting circuits



Please note that the capacitor and inductor in the above circuit respond to DC current source as OC and SC, respectively



$$I_2 = 100 Amp (DC)$$

Sum up the resulting currents

$$I_{Z2} = I_{Z2-1} + I_{Z2-2}$$

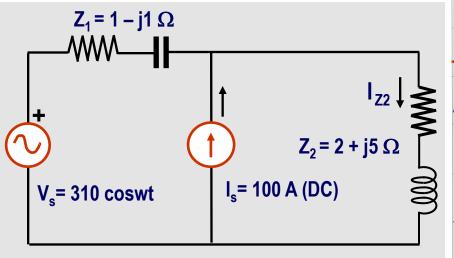
$$I_{Z2} = 62/-53.13^{\circ} + 100 \text{ Amp (DC)}$$

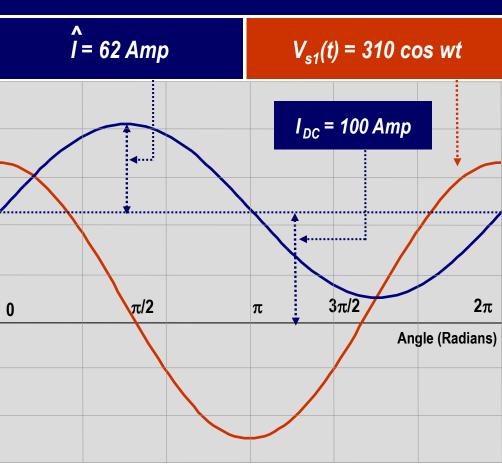
Example 2 - Sources with Mixed Frequencies

Waveforms

 $I_{Z2} = 62/-53.13^{\circ} + 100 Amp (DC)$

Let us now draw the resulting current and voltage waveforms





Any questions please ...

