

Basic

Course Syllabus

EE 209 Fundamentals of Electrical and Electronics Engineering (3-0)3

- Basic Principles of Electricity,
- Circuit Analysis,
- AC Circuits,
- AC Power,
- Phasors,
- Three Phase Systems,
- Transformers,
- Magnetic Circuits,
- Electrical Safety

(Offered to non-EE students only)
Prerequisite: PHYS 106 or consent of the department.

Book for the Course

Principles and Applications of Electrical Engineering, 4/e

Giorgio Rizzoni
The Ohio State University

Mc. Graw Hill Book Company,

ISBN: 0072463473

Copyright year: 2003

999 Pages

Available in Reserve Division of the Middle East Technical University Central Library

Course Syllabus

Chapters to be Covered

- Basic Principles of Electricity,
- Circuit Analysis,
- AC Circuits,
- AC Power,
- Phasors,
- Three Phase Systems,
- Transformers,
- Magnetic Circuits,
- Electrical Safety

Atom

Electrical Charge

Definition

Unit of Electrical Charge Coulomb

6.3 x 10¹⁸ electrons = 1 Coulomb or Electrical charge / electron = 1/ (6.3 x 10¹⁸) Coulomb = 1.602 x 10⁻¹⁹ Coulomb

Basic Principle of Circuit

Mechanical Example

Inclined Surface

Water Circuit

Water Current = Volume (m³) / sec

Water Circuit

Electrical Circuit

Electrical Current (I)

Electrical Current = No. of electrons / sec = 1 Coulomb / sec 6.3 x 10¹⁸ electrons / sec = 1 Amper

Electrical Circuit

Voltage Difference

Ground Node (Earth Point)

Ground Node (Earth Point)

Ground Node is the point (junction) at which the voltage is assumed to be zero

All other voltages takes their references with respect to this ground node

Ground Node (Black Terminal)

Measured Node (Red Terminal)

Electrical Current

Current = no. of electrons transferred / time duration $I = \Delta Q / \Delta t$ 1 Amp = 1 Coulomb / 1 Seconds

Charge = Current x Time duration $\triangle Q = I \times \triangle t$

Traffic Current

Cars Flowing in a Highway

Traffic Current = Cars / minute

Water Current

Birecik Dam (672 MW)

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 33

Example: Electrical Current

A cylindrical conductor is 1 m long and 2 mm in diameter and contains 10²⁹ free carriers per cubic meter.

- 1. Find the total charge of the carriers in this wire.
- 2. If the wire is used in a circuit, find the current flowing in the wire if the average velocity of the carriers is 19.9×10^{-6} m/s.

2 mm diameter

Example: Electrical Current

Solution:

 In order to compute the total charge contributed by the electrons, we first need to compute the volume of the conductor.

Volume = Length × Cross-sectional area

$$= \pi r^2 L = \pi \left(\frac{2 \times 10^{-3}}{2}\right)^2 (1)$$

Next we compute the charge by determining the total number of charge carriers in the conductor as follows:

$$Charge = Volume \times \frac{Charge}{Unit \ volume}$$

$$Q = \pi \left(\frac{2 \times 10^{-3}}{2}\right)^{2} (1)(-1.602 \times 10^{-19} \text{ C}) \left(10^{29} \frac{\text{carriers}}{\text{m}^{3}}\right)$$
$$= -50.33 \times 10^{3} \text{ C}$$

2 mm diameter

Electrical Current

2. If the carriers move with an average velocity of 19.9×10^{-6} m/s, the magnitude of the total current flow in the wire can be computed by considering that current is the flow of charge per unit time:

Current = Charge density per unit length $(C/m) \times Carrier$ velocity (m/s)

$$=\frac{50.33\times10^3}{1}\times19.9\times10^{-6}$$

$$= 1 A$$

2 mm diameter

Electrical Current - Basic Principle

Electrical Current DC (Direct Current) Sources

Simple AC Circuit

Kirchoff's Current Law (KCL)

Kirchoff's Current Law (KCL)

Kirchoff's Current Law (KCL)

Mechanical Force

Definition

 $F = m \times a$

Force needed to accelarate 1 kg of mass to 1 meter / sec² is defined as 1 Newton

1 Newton = 1 kg x 1 meter / sec^2 1000 Newton = 1000 kg x 1 meter / sec^2

Accelaration = 1 m/sec²

Force = 1000 Newton

Mechanical Energy

Definition

1 Joule = 1 Newton x 1 Meter

1 Joule is the energy needed to move a mass 1 meter by using 1 Newton force

Power

Definition

Power is the work done within a certain unit of time, i.e. one second or one hour Power = Energy / Duration

Power = Energy / Duration = 1 Joule / sec Please note that force (and hence power) of the <u>weak horse</u> shown below is half of the first, but the work done (energy spent) is the same, i.e.

Energy = 2 seconds x 0.5 Newton x 1 meter

Energy = 1 Joule, Power = 1 Joule / sec.

Energy = 1 Joule, Power = 1 Joule / 2 sec.

Mechanical Energy vs Electrical Energy

Equivalance

Mechanical Energy = Electrical Energy

Mechanical Work = Electrical Work

The same amount of energy may be spent out by using electricity

Mechanical Energy (Work) = 1 Joule

Electrical Energy (Work) = 1 Joule

Electrical Power

Definition

Similar to mechanical power, electrical power is the work done within a certain unit of time, i.e. one second or one hour

Electrical Power = Electrical Energy / Duration = 1 Joule / sec

Mechanical Power = 1 Joule / sec.

Electrical Power = 1 Joule / sec.

Equivalence of Mechanical and Electrical Powers

Equivalance

Mechanical Power = Electrical Power

Mechanical Power = 1 Joule / sec.

Electrical Power = 1 Joule / sec.

Electrical Power

Definition

1 Joule / second = 1 Watt (1 Joule energy is spent within 1 second) 1 Joule = 1 Watt x second

1 Horse Power = 746 Watts = 0.746 kWatt

1 Joule / sec = 1 Watt

Electrical Power = 1 Joule / sec. = 1 Watt

Electrical Power

Definition

$$P = V \times I$$

(Watt) = (Volt) \times (Amp)

Power = Voltage x Current

Voltage

Definition

Power = Voltage x Current or P = V x I

Voltage = Power / Current or V = P / I

Voltage

Definition

Power = Voltage x Current

or

Voltage = Power / Current or V = P / I

1 Volt = 1 Watt / 1 Amp

Electrical Energy

Definition

Energy = Power x Time (Watt-sec) (Watt) (second)

Unit of Electrical Energy

1 KiloWatt = 1000 Watts 1 Hour = 3600 seconds

Electrical Energy

Example

Calculate the monthly payment for the energy consumed by the lamp shown on the RHS

Source voltage is 220 Volt
Current drawn by the lamp is 5 Amp
Price of electrical energy is 12 Cents / kWh

Power = Voltage x Current

 $P = V \times I$

 $P = 220 \times 5 = 1100 Watts$

Energy = $P \times \Delta t$

= 1100 Watts x (24 hours /day x 30 days/month)

= 792000 Watt hours = 790.2 kWh

Monthly payment = 790.2 x 12 Cents / month

= 90.504 USD = 122 .1 YTL / month

Alternative Definition of Voltage

1 *Volt* = 1 *Watt* / 1 *Amp*

= (1 Joule /sec) / 1 Amp

= 1 Joule / (1 Amp x sec)

= 1 Joule / 1 Coulomb (*)

(*) Remember that 1 Amp = 1 Coulomb / 1 sec

1 Volt is the voltage needed;

- to move 1 Coulomb of electrical charge,
- to spend 1 Joule of energy for this movement in a conductor

Alternative Definition of Voltage

1 Volt = 1 Joule / 1 Coulomb

Please note that time parameter does not appear in the above equation, implying that it is arbitrary

```
Case-1
Let t = 1 \sec
Then, I = 1 Coulomb / 1 sec = 1 Amp
          P = V \times I = 1 \text{ Volt } \times 1 \text{ Amp} = 1 \text{ Watt}
          Energy = P \times t = (1 \text{ Joule } / \text{sec}) \times \text{sec} = 1 \text{ Joule}
Case-2
Let now t = 2 sec
Then, I = 1 \text{ Coulomb} / 2 \text{ sec} = 0.5 \text{ Amp}
          P = V \times I = 1 \text{ Volt } \times 0.5 \text{ Amp} = 0.5 \text{ Watt}
             = Energy / 2 = 0.5 Joule / sec
         Energy = P \times t = 0.5 \times 2 = 1 Joule again
```


Resistance

Resistance

Definition

Resistance is the reaction of a conductor against electrical current

Ohm Law

Basic Principles

Current flowing in the circuit is;

- proportional to voltage,
- inversely proportional to resistance

Hence

Unit of resistance is Ohm

1 Ohm is the resistance that allows 1 Amper to pass at 1 Volts voltage; 1 Ohm = 1 Volt / 1 Amper

$$I = V / R$$
(Amp) (Volt) (Ohm)

or

$$V = R \times I$$
(Volt) (Ohm) (Amp)

Ohm Law

Two circuits with different Resistances, identical voltage sources

Resistance R₁

 $R_1 > R_2$

Resistance R₂

 $V/R_1 = I_1$

 $I_1 < I_2$

 $V/R_2 = I_2$

Ohm Law V-I Characteristics

Ohm Law - Example

Question

Calculate the current flowing in the circuit shown on the RHS

$$V = R \times I$$

 $(Volt) = (Ohm) \times (Amp)$

$$I = V/R$$

= 220 / 5 = 44 Amps

Ohm Law Nonlinear V-I Characteristics

 $V = R \times I$ (Volt) (Ohm) (Amp)

$$R = R_0 (1 + \alpha \Delta t)$$

$$\Delta t = T - 23^{\circ} C$$

 R_0 = Resistance at 23 $^{\circ}$ C

 α = The temperature coeff. of the metal

Note that resistance increases with temperature, hence current is reduced

Resistance Formula

Resistance Formula

 $R = \rho \ell / A$ where, R is the resistance of conductor, ρ is the resistivity coefficient, $\rho = 1/56$ Ohm-mm²/m (Copper) 1/32 Ohm-mm²/m (Aluminum)

 (m) is the length of the conductor
 A (mm²) is the cross sectional area of the conductor ACSR Conductor
(Aluminum Conductor Steel Reinforced)

Resistance Formula

Resistance Formula

Resistance of a cable is proportional to the length and inversely proportional to the cross sectional area of the cable

$$R = \rho \ell / A$$

```
where, R is the resistance of conductor, \rho is the resistivity coefficient, \rho = 1/56 Ohm-mm²/m (Copper) 1/32 Ohm-mm²/m (Aluminum) \ell (m) is the length of the conductor A (mm²) is the cross sectional area of the conductor
```


Resistance Formula

Resistance Formula

Example

Calculate the resistance of a copper cable with length 3200 meters and cross section 240 mm²

Solution

R = (1 / 56) 3200 / 240

= 0.238 Ohms

Aluminum Conductors

Resistance Formula

Resistance Formula

Example

Calculate the resistance of a copper cable with length 3200 meters and cross section 240 mm²

Solution

R = (1 / 56) 3200 / 240 = 0.238 Ohms

Resistivity Coefficients of Various Metals

Formula		Resistivity Coefficients		
ho = 1 / 56 Ohms/meter (Copper) = 0.0178571 Ohm-mm ² /m		Material	Resistivity Coefficient	Resistance
			Ohm-mm²/m	Ohms/feet
$R = \rho \ell / A$ where, R is the resistance of condu ρ is the resistivity coeffici $\rho = 1/56$ Ohm-mm ² /m (ℓ) (m) is the length of the conductor	cient, n (Copper) n (Aluminum) conductor	Silver	0.0162	0.00094
		Copper	0.0172	0.00099
		Gold	0.0244	0.00114
		Aluminum	0.0282	0.00164
		Mercury	0.9580	
		Brass	0.0700	0.00406
		Nickel	0.7800	0.00452
		Iron	0.1000	0.00579
		Platinium	0.1000	0.00579
		Steel	0.1180	0.00684
		Lead	0.2200	0.01270

Color Codes for Resistances

Insulator

Insulator

Insulator is a material with almost infinite resistance

Insulators are used to support HV lines and conductors

In practice, all materials have resistances. Hence, they conduct a certain amount of current when a voltage is applied to the terminals.

Insulator are materials that conduct only a very small amount of current, even when an extremely high voltage is applied to the terminals.

HV side

Ground side

Power dissipation in a Resistance

$$V = R \times I$$

(Volt) = (Ohm) (Amp)

On the other hand, it was shown in this lecture that;

Power = Voltage
$$x$$
 Current
or
 $P = V \times I$

Hence, power dissipation in resistance R is

$$Power = R \times I \times I$$
$$= R \times I^2 \quad Watt$$

Series Connected Resistances

$$R_{1} = \rho l_{1}/A_{1}$$

$$R_{2} = \rho l_{2}/A_{2}$$

$$Let A_{1} = A_{2}$$

$$Hence;$$

$$l_{total} = l_{1} + l_{2}$$

$$R_{total} = \rho l_{total}/A$$

$$= \rho (l_{1} + l_{2})/A$$

$$= \rho l_{1}/A + \rho l_{2}/A$$

$$= R_{1} + R_{2}$$

Series Connected Resistances

Equivalent Resistance Formula

Series connected resistances are added

$$R_1$$
 R_2 R_k

$$R_{total} = R_1 + R_2 + ... + R_k$$

Ohm Law for Series Resistances

Ohm Law for Series Resistances

$$V = R_1 \times I + R_2 \times I$$
(Volt) (Volt) (Volt)
$$= V_1 + V_2$$

Aluminum Cables and Conductors

Admittance

Definition

Inverse of resistance is called <u>"Admittance"</u>

$$g = 1/R$$

(Siemens) (1 / Ohm)

Unit of <u>"Admittance</u>" is Siemens

Example

Calculate the admittance of 10 k Ω resistance shown on the RHS

$$g = 1/10^4 = 10^{-4}$$
 Siemens

Shunt Connected Resistances

Equivalent Resistance Formula

Shunt Connected Resistances

Equivalent Resistance Formula

Shunt Connected Resistances

Example

Find the equivalent resistance of the following connection


```
R <sub>equiv</sub> = \frac{1}{1/R_1 + 1/R_2 + ... + 1/R_k}
```

$$R_{equiv} = \frac{1}{1/1 + 1/2 + 1/4}$$
$$= \frac{1}{(7/4)} = \frac{4}{7} = \frac{0.5714 \text{ Ohm}}{1}$$

Shunt Connected Resistances

Example

Find the equivalent admittance of the following connection

R _{equiv} =
$$\frac{1}{1/R_1 + 1/R_2 + ... + 1/R_k}$$

or

$$g_{equiv}$$
 = $g_1 + g_2 + g_3$
= $1/1 + 1/2 + 1/4$
= $7/4$
= 1.75 Siemens

Voltages on Series Connected Elements

Voltages on series connected elements are added

$$V = V_1 + V_2$$
 or $V = V_1 + ... + V_{n-1}$ (Volt) generalizing $V = V_1 + ... + V_{n-1}$ (Volt)

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 82

Voltages on Series Connected Elements

Voltages on series connected elements are added

Kirchoff's Voltage Law (KVL)

Statement

The above result may be expressed as;

Sum of voltages in a closed loop is zero

or

$$\sum_{i=1}^{i=n} V_i = 0$$

Kirchoff's Second Law or Kirchoff's Voltage Law

Kirchoff's Voltage Law (KVL)

Example

$$\sum_{i=1}^{i=n} V_i = 0$$

$$V_s = 220 \text{ Volts}$$

$$V_s - V_1 - V_2 = 0$$

$$220 - 100 - 120 = 0$$

Kirchoff's Voltage Law (KVL)

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- Choose a ground node,
- Assume that current I flows clockwise,
- Starting from the ground node, assign "+" and "-" signs to those passive elements (i.e. those elements other than source) in such a direction that the current enters to "+" side and the leaves from the "-" side,
- Assign "+" sign to the that side of the source from which current is leaving

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- Then write down the voltages on each element by using Ohm Law on a path in a clockwise direction,
- Assign "+" sign to those voltage terms in the equation that you pass from "-" to "+",
- Assign "-" sign to those voltage terms in the equation that you pass from "+" to "-",
- Stop and equate it to zero when you come again to the ground node that you have started

Example;

$$+V_{s}-V_{1}-V_{2}=0 \longrightarrow V_{s}=V_{1}+V_{2}$$

Summary of Kirchoff's Laws

Kirchoff's Current Law (KCL)

Kirchoff's Voltage Law (KVL)

Algebraic sum of currents entering a junction is zero

Algebraic sum of voltages in a closed loop is zero

$$\sum_{i=1}^{i=n} I_i = 0$$

$$\sum_{i=1}^{i=n} V_i = 0$$

Voltage Division Principle

Potentiometer (Voltage Divider)

Potentiometer (Voltage Divider)

Current Division Principle

$$V_T \times g_1 = I_1$$

 $V_T \times g_2 = I_2$
...
 $V_T \times g_k = I_k$
+
 $V_T(g_1 + ... g_k) = I_1 + ... I_k$
or
 $V_T(g_1 + ... g_k) = I_s$
 $I_k/I_s = g_k/(g_1 + ... + g_k)$

$$I_k = \frac{g_k}{I_s + \dots + g_k}$$
 Division Ratio = $\frac{g_k}{g_1 + \dots + g_k}$

Voltage Sources

Definition

Voltage source is an element which creates a voltage difference at its terminals

A simple Rule:

Current is assigned such a direction that it always leaves the '+' side of the voltage or current source.

Voltage Source

DC Voltage Source

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 94

Ideal Voltage Source

Definition

An ideal voltage source is the one that the terminal voltage does not change with the current drawn

An ideal voltage source has zero internal resistance

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 95

Non-Ideal (Real) Voltage Sources

Definition

A voltage source always has an internal resistance R connected in series with the source

Writing down KVL for the above cct;

$$V_s - \Delta V - V_T = 0$$

or

$$V_T = V_s - \Delta V$$

where,

$$\Delta V = R \times I$$

is called "internal voltage drop"

Terminal voltage V_T is reduced by ΔV

Non-Ideal (Real) Voltage Sources

Load Current I (Amp)

Ideal Current Source

Definition

Ideal Current Source

An ideal current source is an element providing a constant current from its terminals

Non-Ideal (Real) Current Source

Non-Ideal Current Source

A non ideal current source is an element with a current depending on terminal voltage

Terminal Current I_T

$$I_T = I_s - \Delta I$$

$$I_T = I_s - g \times V_T$$

Current Source I_s

Non-Ideal (Real) Current Source

Definition: Non-Ideal Current Source

A non ideal current source is an element with a current depending on terminal voltage

Non-Ideal Current Source

Terminal Current I_T

$$I_T = I_s - \Delta I$$

$$I_T = I_s - g \times V_T$$

Controlled (Dependent) Sources

Definition: Controlled Sources

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Current $I_s = A V_x$ A = Amplification coefficient

Voltage Controlled Current Source

Controlled (Dependent) Sources

Definition: Controlled Sources

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Current $I_s = A I_r$

Current Controlled Current Source

Controlled (Dependent) Sources

Definition: Controlled Sources

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Voltage $V_s = A V_r$

Voltage Controlled Voltage Source

Controlled (Dependent) Sources

Definition: Controlled Sources

A controlled source is an element with a current or voltage depending on any other voltage or current in the circuit

Controlled Source: Voltage $V_s = A I_r$

Current Controlled Voltage Source

Example

Question

Solve the circuit on the RHS for current I_x

Solution

Write down KVL;

$$V_s - 10 - 2 I_x = 0$$

 $10 I_x - 10 - 2 I_x = 0$
 $8 I_x = 10 \rightarrow I_x = 10 / 8 = 1.25 Amp$

Current Controlled Voltage Source

Measuring Devices - Ammeter

An ammeter is a <u>measuring instrument</u> used to measure the flow of electric current in a circuit. Electric currents are measured in <u>amperes</u>, hence the name The word "ammeter" is commonly misspelled or mispronounced as "ampmeter" by some The earliest design is the D'Arsonval galvanometer. It uses magnetic deflection, where current passing through a coil causes the coil to move in a magnetic field The voltage drop across the coil is kept to a minimum to minimize resistance in any circuit into which the meter is inserted

Measuring Devices - Ammeter

Ampere - Volt - Ohm (AVO) Meter

An ammeter is always series connected in the circuit measured

Measuring Devices - Ammeter

An ammeter is always series connected in the circuit measured

Ideal Ammeter

Definition

An ideal ammeter is the one with zero internal resistance (Short Circuit)

- An ideal ammeter behaves as a short circuit, i.e. $R_{amp} \cong 0$.
- An ideal ammeter has zero resistance so that the measured current is not influenced

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

Ideal Ammeter

$$I = V_s / (R + R_{amp})$$
 $R_{amp} \cong 0$
Hence,

$$I = V_s / (R + R_{amp}) \cong V_s / R$$

Non-Ideal (Real) Ammeter

Definition

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

A real (non-ideal) ammeter has always an internal resistance in series

- A non ideal ammeter behaves as a series resistance with: $R_{amp} \neq 0$
- Hence the the measured current is influenced (reduced)

$$I_{load} = V_s / (R + R_{amp})$$
 $I_{load} = V_s / R$
 $\rightarrow I_{load} < I_{ideal}$

Measuring Devices – Clamp Ammeter

The Need for Clamp Ammeter

Sometimes the electrical service carried out by the circuit may be so vital that it can not be interrupted by breaking the line for a series connection of the ammeter

Ammeter shown on the RHS is a particular design for such circuits to measure current flowing in the circuit as well as resistance without braeaking the circuit

Measuring Devices - Voltmeter

A voltmeter has a high internal resistance so that it passes only a small current

An ideal voltmeter has a very large resistance so that the the circuit in which it has been placed is not disturbed An ideal voltmeter is an open circuit However, no voltmeter can ever be ideal, and therefore all

voltmeters draw some small current

Voltmeter is always parallel connected to the terminals measured

Measuring Devices - Voltmeter

A voltmeter has a high internal resistance so that it passes only a small current

A voltmeter is always shunt (parallel) connected in the circuit that it measures

Measured voltage;

$$\begin{aligned}
R_L \\
V_o &= V_s & ---- \\
R_1 + R_L
\end{aligned}$$

Red lines are not part of the circuit

Voltmeter is always parallel connected to the terminals measured

Ideal Voltmeter

Definition

An ideal voltmeter is the one with infinite internal resistance (Open circuit)

An ideal voltmeter has a very large resistance, $R_m \cong \infty$. i.e. it behaves as an open circuit, so that the measured circuit is not influenced However, no voltmeter can ever be ideal, and therefore all voltmeters draw some current

A real voltmeter has a certain internal resistance so that it passes a certain current

Ideal Voltmeter

No voltmeter can ever be ideal, and therefore all voltmeters draw some current.

$$R_m \cong \infty$$
 i.e. $R_m >> R_L$
 $I_m << I_{Load}$
 $I_{Source} = I_{Load} + I_m \cong I_{Load}$

$$V_{o} = R_{L} (I_{source} - I_{m})$$

$$= R_{L} I_{source} - R_{L} I_{m}$$

$$\cong R_{L} I_{source}$$
Negligible

Example

Problem

Calculate the internal admittance g_m of a voltmeter, if it reads 11.81 Volts when connected to a 0.48 mA current source with an internal admittance of $g_s = 4 \times 10^{-5}$ Siemens

Siemens = $1/\Omega$

Ideal Voltmeter

 $I_m \cong 0$

Example

Problem

$R_s = 1/g_s = 1/(4 \times 10^{-5})$ Siemens = $10^5/4 = 25 \text{ k}\Omega$

$$I_s \times R_{eq} = V_{read} = 11.81 \text{ Volts}$$

Hence,

$$R_{eq} = V_{read} / I_{s} = 11.81 / (0.48 \times 10^{-3})$$

= 24607.17 Ω

$$R_{eq} = R_s // R_m$$

Hence,
 $R_{eq} = (R_s \times R_m) / (R_s + R_m) = 24607.17 \Omega$

 $Rm = 155.39 M \Omega$

Ideal Voltmeter

 $I_m \cong 0$

Advanced Measuring Devices

GÜÇ KALİTESİ ANALİZÖRÜ

Fluke 43Basic Fluke 43B

Fluke 43Kit

Power Quality Analyzer Power Quality Analyzer Power Quality Analyzer

Wheatstone Bridge

The Wheatstone Bridge is an electrical circuit used to determine an unknown resistance R_x by adjusting the values of known resistances, so that the current measured in the line connecting the terminals C and D is zero

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 120

Wheatstone Bridge

Principle

Adjust the resistances R₁, R₂ and R_b such that the ammeter connected between the terminals C and D reads zero current

Hence, the voltage difference between the terminals C and D is zero

$$\Delta V_{CD} = 0$$
or
$$V_C = V_D$$

Wheatstone Bridge

Principle

$$V_{C} = V_{D}$$

$$V_{C} = V_{s} R_{b} / (R_{x} + R_{b})$$

$$V_{D} = V_{s} R_{2} / (R_{1} + R_{2})$$

$$V_{s} R_{b} / (R_{x} + R_{b}) = V_{s} R_{2} / (R_{1} + R_{2})$$
or
$$R_{b} / (R_{x} + R_{b}) = R_{2} / (R_{1} + R_{2})$$

$$R_{b} (R_{1} + R_{2}) = R_{2} (R_{x} + R_{b})$$

$$R_{b} R_{1} + R_{b} R_{2}^{*} = R_{2} R_{x} + R_{2} R_{b}^{*}$$

or

$$R_x = R_b \times R_1 / R_2$$

Wheatstone Bridge

Basic Rule

Cross multiplication branch resistances must be equal at balance condition

$$R_x \times R_2 = R_b \times R_1$$

Please note that voltage V_s is neither used, nor needed in the above equation, i.e. its value is arbitrary

Wheatstone Bridge

Example

Calculate the value of unknown resistance R_x in the balanced Wheatstone Bridge shown on the RHS

Cross multiplication of branch resistances must be equal at balance condition:

$$R_x \times R_2 = R_b \times R_1$$

 $R_x = R_b \times R_1 / R_2$
= 100 x 100 / 20 = 500 Ohm

Switch - Circuit Breaker

Switch or Circuit Breaker

Open "Off"

Switch or circuit breaker is a device used to open an electrical circuit manually or automatically by an electronic relay system

Closed

"On"

Meaning of "Open" and "Closed" (Highly Important)

Thermal-Magnetic Circuit Breaker

220 Volt, 63 Amp. Thermal-Magnetic (Molded-Case) Breaker

"Closed Switch (On)" does NOT mean that there is no voltage (current) in the circuit!

Medium Voltage (36 kV) Vacuum Circuit Breaker

