

Course Syllabus

EE 209 Fundamentals of Electrical and Electronics Engineering (3-0)3

- **Basic Principles of Electricity,**
- **Circuit Analysis,**
- **AC Circuits,**
- **AC Power,**
- **Phasors,**
- **Three Phase Systems,**
- **Transformers,**
- **Magnetic Circuits,**
- **Electrical Safety**
- *(Offered to non-EE students only)*

Prerequisite: **PHYS 106 or consent of the department.**

Book for the Course

$GIDRGIDRIZIONI$

LOURTH COITION

PRINCIPLES AND APPLICATIONS OF ELE(TRICAL ENGINEERING

Principles and Applications of Electrical Engineering, 4/e

Giorgio Rizzoni The Ohio State University

Mc. Graw Hill Book Company,

ISBN: 0072463473 Copyright year: 2003 999 Pages *Available in Reserve Division of the Middle East Technical University Central Library*

Course Syllabus

GIORGIO RIZZONI

FOURTH COITION

PRINCIPLES AND APPLICATIONS OF ELE(TAI(AL ENGINEERING

Chapters to be Covered

- **Basic Principles of Electricity,**
- **Circuit Analysis,**
- **AC Circuits,**
- **AC Power,**
- **Phasors,**
- **Three Phase Systems,**
- **Transformers,**
- **Magnetic Circuits,**
- **Electrical Safety**

Atom

Electrical Charge

Definition

Unit of Electrical Charge Coulomb

6.3 x 10¹⁸ electrons = 1 Coulomb $\boldsymbol{\varDelta}$

or Electrical charge / electron = 1/ (6.3 x 10¹⁸) Coulomb

= 1.602 x 10-19 Coulomb

Basic Principle of Circuit

Mechanical Example Inclined Surface

Water Circuit

Water Current = Volume (m^3) / sec

Water Circuit

Electrical Current = No. of electrons / sec = 1 Coulomb / sec

Electrical Circuit

Voltage Difference

Ground Node (Earth Point)

Ground Node (Earth Point)

Electrical Current

Traffic Current

Water Current

Birecik Dam (672 MW)

1 meter

Example: Electrical Current

- A cylindrical conductor is 1 m long and 2 mm in diameter and contains 10^{29} free carriers per cubic meter.
	- Find the total charge of the carriers in this wire.
- 2. If the wire is used in a circuit, find the current flowing in the wire if the average velocity of the carriers is 19.9×10^{-6} m/s.

2 mm diameter

 \blacksquare

1 meter

Basic Principles of Electricity

Example: Electrical Current

Solution:

In order to compute the total charge contributed by the electrons, we first need to Ι. compute the volume of the conductor.

Volume = Length \times Cross-sectional area

$$
= \pi r^2 L = \pi \left(\frac{2 \times 10^{-3}}{2}\right)^2 (1)
$$

Next we compute the charge by determining the total number of charge carriers in the conductor as follows:

$$
\begin{aligned} \text{Change} &= \text{Volume} \times \frac{\text{Change}}{\text{Unit volume}} \\ Q &= \pi \left(\frac{2 \times 10^{-3}}{2} \right)^2 (1)(-1.602 \times 10^{-19} \text{ C}) \left(10^{29} \frac{\text{carriers}}{\text{m}^3} \right) \\ &= -50.33 \times 10^3 \text{ C} \end{aligned}
$$

2 mm diameter

1 meter

Electrical Current

2. If the carriers move with an average velocity of 19.9×10^{-6} m/s, the magnitude of the total current flow in the wire can be computed by considering that current is the flow of charge per unit time:

Current = Charge density per unit length $(C/m) \times$ Carrier velocity (m/s)

$$
= \frac{50.33 \times 10^3}{1} \times 19.9 \times 10^{-6}
$$

= 1 A

2 mm diameter

Electrical Current - Basic Principle

DC (Direct Current) Sources Electrical Current

Simple AC Circuit

Kirchoff's Current Law (KCL)

Kirchoff's Current Law (KCL)

Kirchoff's Current Law (KCL)

Mechanical Force

Mechanical Energy

Power

Definition

Power is the work done within a certain unit of time, i.e. one second or one hour *Power = Energy / Duration = 1 Joule / sec*

Please note that force (and hence power) of the weak horse shown below is half of the first, but the work done (energy spent) is the same, i.e. Energy = 2 seconds x 0.5 Newton x 1 meter

Mechanical Energy vs Electrical Energy

Mechanical Energy (Work) = 1 Joule

Electrical Energy (Work) = 1 Joule

Electrical Power

Definition

Similar to mechanical power, electrical power is the work done within a certain unit of time, i.e. one second or one hour *Elecrical Power = Electrical Energy / Duration*

= 1 Joule / sec

(1 sec)

Equivalence of Mechanical and Electrical Powers

Electrical Power

Electrical Power

Voltage

Electrical Energy

Energy = Power x Time

Unit of Electrical Energy

Electrical Energy

Example

Source voltage is 220 Volt Current drawn by the lamp is 5 Amp Price of electrical energy is 12 Cents / kWh

Power = Voltage x Current P = V x I P = 220 x 5 = 1100 Watts Energy = $P x \Delta t$ *= 1100 Watts x (24 hours /day x 30 days/month) = 792000 Watt hours = 790.2 kWh Monthly payment = 790.2 x 12 Cents / month = 90.504 USD = 122 .1 YTL / month*

Alternative Definition of Voltage

1 Volt = 1 Watt / 1 Amp = (1 Joule /sec) / 1 Amp = 1 Joule / (1 Amp x sec) = 1 Joule / 1 Coulomb ()*

() Remember that 1 Amp = 1 Coulomb / 1 sec*

1 Volt is the voltage needed;

- **to move 1 Coulomb of electrical charge,**
- **to spend 1 Joule of energy for this movement in a conductor**

Alternative Definition of Voltage

1 Volt = 1 Joule / 1 Coulomb

Please note that time parameter does not appear in the above equation, implying that it is arbitrary

Case-1

```
Let t = 1 sec
```
Then, I = 1 Coulomb / 1 sec = 1 Amp P = V x I = 1 Volt x 1 Amp = 1 Watt Energy = P x t = (1 Joule / sec) x sec = 1 Joule

Case-2

Let now t = 2 sec

Then, I = 1 Coulomb / 2 sec = 0.5 Amp P = V x I = 1 Volt x 0.5 Amp = 0.5 Watt = Energy / 2 = 0.5 Joule / sec Energy = P x t = 0.5 x 2 = 1 Joule again

Resistance

Resistance

Resistance is the reaction of a conductor against electrical current

Ohm Law

Ohm Law

Two circuits with different Resistances, identical voltage sources

Ohm Law V-I Characteristics

Ohm Law - Example

Ohm Law Nonlinear V-I Characteristics

*V = R x I (Volt) (Ohm) (Amp***)** *Note that resistance increases with temperature, hence current is reduced*

Resistance Formula

Resistance Formula

Resistance Formula

Resistance of a cable is proportional to the length and inversely proportional to the cross sectional area of the cable

 $R = \rho l / A$

where, R is the resistance of conductor, is the resistivity coefficient, = 1 / 56 Ohm-mm² /m (Copper) 1 / 32 Ohm-mm² /m (Aluminum) l (m) is the length of the conductor A (mm²) is the cross sectional area of the conductor

Resistance Formula

Resistance Formula

Resistivity Coefficients of Various Metals

Color Codes for Resistances

Insulator

Power dissipation in a Resistance

Series Connected Resistances

Series Connected Resistances

Equivalent Resistance Formula

+ R² **Series connected resistances are added**

Ohm Law for Series Resistances

Admittance

Shunt Connected Resistances

Equivalent Resistance Formula

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 78

Shunt Connected Resistances

Equivalent Resistance Formula

Shunt Connected Resistances

Shunt Connected Resistances

Voltages on Series Connected Elements

Voltages on series connected elements are added

Voltages on Series Connected Elements

Voltages on series connected elements are added

Kirchoff's Voltage Law (KVL)

Kirchoff's Voltage Law (KVL)

Kirchoff's Voltage Law (KVL)

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- **Choose a ground node,**
- **Assume that current I flows clockwise,**
- **Starting from the ground node, assign "+" and "-" signs to those passive elements (i.e. those elements other than source) in such a direction that the current enters to "+" side and the leaves from the "-" side,**
- **Assign "+" sign to the that side of the source from which current is leaving**

A Simple Rule for applying Kirchoff's Voltage Law (KVL)

A Simple Rule

- **Then write down the voltages on each element by using Ohm Law on a path in a clockwise direction,**
- **Assign "+" sign to those voltage terms in the equation that you pass from "-" to "+",**
- **Assign "-" sign to those voltage terms in the equation that you pass from "+" to "-",**
- **Stop and equate it to zero when you come again to the ground node that you have started**

Example;

$$
+V_s - V_1 - V_2 = 0
$$
 \longrightarrow $V_s = V_1 + V_2$

Summary of Kirchoff's Laws

Voltage Division Principle

Potentiometer (Voltage Divider)

Potentiometer (Voltage Divider)

Current Division Principle

 $V_T \times g_1 = I_1$ *VT ^x g² = I² ...* $V_T \times g_k = I_k$ *-----------------------------------* $V_T(g_1 + ... g_k) = I_1 + ... I_k$ *or* $V_T(g_1 + ... g_k) = I_s$ *I ^k/ I^s = g^k / (g¹ + ... + gk)* **+**

Voltage Sources

Definition

Voltage source is an element which creates a voltage difference at its terminals

A simple Rule:

Current is assigned such a direction that it always leaves the "+" side of the voltage or current source.

Voltage Source | DC Voltage Source

Ideal Voltage Source

Definition

An ideal voltage source is the one that the terminal voltage does not change with the current drawn

An ideal voltage source has zero internal resistance

V = 24 Volts +

Battery

Non-Ideal (Real) Voltage Sources

Definition

A voltage source always has an internal resistance R connected in series with the source

Writing down KVL for the above cct;

$$
V_s - \Delta V - V_T = 0
$$

or

*V*_{*T*} = *V*_{*s*} – ΔV **where,** $\Delta V = R x I$

is called "internal voltage drop"

Terminal voltage $\boldsymbol{V}_{\mathcal{T}}$ is reduced by $\boldsymbol{\varDelta V}$

Non-Ideal (Real) Voltage Sources

Ideal Current Source

Definition

Ideal Current Source

An ideal current source is an element providing a constant current from its terminals

Non-Ideal (Real) Current Source

Non-Ideal (Real) Current Source

Example

Measuring Devices - Ammeter

An ammeter is a [measuring instrument](http://en.wikipedia.org/wiki/Measuring_instrument) used to measure the flow of [electric](http://en.wikipedia.org/wiki/Electric_current) [current](http://en.wikipedia.org/wiki/Electric_current) in a [circuit](http://en.wikipedia.org/wiki/Electric_circuit). Electric currents are measured in [amperes](http://en.wikipedia.org/wiki/Ampere), hence the name The word "ammeter" is commonly misspelled or mispronounced as "ampmeter" by some The earliest design is the D'Arsonval [galvanometer](http://en.wikipedia.org/wiki/Galvanometer). It uses [magnetic](http://en.wikipedia.org/wiki/Magnetism) deflection, where current passing through a coil causes the coil to move in a [magnetic field](http://en.wikipedia.org/wiki/Magnetic_field) The [voltage](http://en.wikipedia.org/wiki/Voltage) drop across the coil is kept to a minimum to minimize resistance in any circuit into which the meter is inserted

Measuring Devices - Ammeter

Ampere - Volt - Ohm (AVO)Meter An ammeter is always series connected in the circuit measured I load Ammeter + RLLamp Battery

Ideal Ammeter

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

Ideal Ammeter

An ammeter should not influence the current measured

I = V^s / (R + Ramp) $R_{amp} \cong 0$

Hence,

$$
I = V_{s} / (R + R_{amp}) \cong V_{s} / R
$$

Non-Ideal (Real) Ammeter

Definition

No ammeter can ever be ideal, and hence all ammeters have some internal resistance

A real (non-ideal) ammeter has always an internal resistance in series

- **A non ideal ammeter behaves as a series** *resistance with:* $R_{\text{amp}} \neq 0$
- **Hence the the measured current is influenced (reduced)**

$$
I_{load} = V_s / (R + R_{amp})
$$

$$
I_{load} = V_s / R
$$

$$
I_{load} < I_{ideal}
$$

Non-ideal Ammeter

Measuring Devices – Clamp Ammeter

The Need for Clamp Ammeter

Sometimes the electrical service carried out by the circuit may be so vital that it can not be interrupted by breaking the line for a series connection of the ammeter

Ammeter shown on the RHS is a particular design for such circuits to measure current flowing in the circuit as well as resistance without braeaking the circuit

 \widetilde{V} Hz \sim

 \overline{v} Hz π

43

RPM®®

OFF

Measuring Devices - Voltmeter

A voltmeter has a high internal resistance so that it passes only a small current An ideal voltmeter has a very large resistance so that the the circuit in which it has been placed is not disturbed An ideal voltmeter is an open circuit However, no voltmeter can ever be ideal, and therefore all voltmeters draw some small current

Measuring Devices - Voltmeter

Ideal Voltmeter

An ideal voltmeter is the one with infinite internal resistance (Open circuit)

An ideal voltmeter has a very large resistance, $R_m \cong \infty$ **. i.e. it behaves as an open circuit, so that the the measured circuit is not influenced However, no voltmeter can ever be ideal, and therefore all voltmeters draw some current**

A real voltmeter has a certain internal resistance so that it passes a certain current

Ideal Voltmeter

Example

Example

Advanced Measuring Devices

Power Quality Analyzer

GÜC KALITESİ ANALIZÖRÜ

Wheatstone Bridge

The Wheatstone Bridge is an electrical circuit used to determine an unknown resistance R^x by adjusting the values of known resistances, so that the current measured in the line connecting the terminals C and D is zero

Wheatstone Bridge

Principle

Adjust the resistances R¹ , R² and R^b such that the ammeter connected between the terminals C and D reads zero current

Hence, the voltage difference between the terminals C and D is zero

$$
\Delta V_{CD} = 0
$$

or

$$
V_C = V_D
$$

Wheatstone Bridge

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 122

Wheatstone Bridge

Wheatstone Bridge

Example

Calculate the value of unknown resistance R^x in the balanced Wheatstone Bridge shown on the RHS

Cross multiplication of branch resistances must be equal at balance condition:

 $R_x \times R_2 = R_b \times R_1$ R_{x} = R_{b} *x* R_{1} / R_{2} *= 100 x 100 / 20 = 500 Ohm*

Basic Principles of Electricity

Switch or circuit breaker is a

I Load

R1

Switch - Circuit Breaker

Switch or Circuit Breaker

Meaning of "Open" and "Closed" (Highly Important)

Thermal-Magnetic Circuit Breaker

220 Volt, 63 Amp. Thermal-Magnetic (Molded-Case) Breaker

there is no voltage (current) in the circuit !

Basic Principles of Electricity

Medium Voltage (36 kV) Vacuum Circuit Breaker

