

Course Title and Code Number:

Principles and Applications of Electrical Engineering (05211)

Second Year (Agricultural Engineering)

Time Allowed: Two hours

اسم المقرر والرقم الكودي له: مبادئ الهندسة الكهربية وتطبيقاتها (05211) السنة الدراسية الثانية (هندسة زراعية) الزمن: ساعتين

(180 marks)

Attempt All Questions (Each Question is 25 marks):

1. Determine $i_3(t)$ in the circuit shown in Figure 1, if

$$i_1(t) = 141.4 \cos(\omega t + 2.356) \text{ mA}$$

$$i_2(t) = 50 \sin(\omega t - 0.927) \text{ mA}$$

$$\omega = 377 \text{ rad/s}$$

Figure 1

2. Determine the frequency so that the current I_i and the voltage V_o in the circuit of Figure 2 are in phase

$$Z_s = 13,000 + j\omega 3 \Omega$$

$$R = 120 \Omega$$

$$L = 19 \text{ mH}$$
 $C = 220 \text{ pF}$

Figure 2

3. Using phasor techniques, solve for the voltage v in the circuit shown in Figure 3

Figure 3

4. Determine the Thevenin equivalent circuit as seen by the load shown in Figure 4, if: $v_S(t) = 10\cos(1,000t)$.

Figure 4 $C = 0.1 \mu F$

5. Solve for i(t) in the circuit of Figure 5, using phasor techniques, if $v_S(t) = 2 \cos(2t)$, $R_1 = 4\Omega$, $R_2 = 4\Omega$, L=2H, and C=0.25F.

Figure 5

6. Using mesh current analysis, determine the currents $i_1(t)$ and $i_2(t)$ in the circuit shown in Figure 6.

7. Using node voltage methods, determine the voltages $v_I(t)$ and $v_2(t)$ in the circuit shown in Figure 7.

8. Find the steady-state current waveform flowing in impedance Z_2 in the following circuit by using the Principle of Superposition

Good Luck

Examiner: Dr. Mohammed Morsy