

Alexandria University Faculty of Engineering

Electrical Engineering Department

EE432: VLSI Modeling and Design Sheet 2: Power

- 1. You are synthesizing a chip composed of random logic with an average activity factor of 0.1. You are using a standard cell process with an average switching capacitance of 450 pF/mm². Estimate the dynamic power consumption of your chip if it has an area of 70 mm² and runs at 450 MHz at VDD=0.9 V.
- 2. You are considering lowering V_{DD} to try to save power in a static CMOS gate. You will also scale V_t proportionally to maintain performance. Will dynamic power consumption go up or down? Will static power consumption go up or down?
- 3. The stack effect causes the current through two series OFF transistors to be an order of magnitude less than I_{off} when DIBL is significant. Show that the current is $I_{off}/2$ when DIBL is insignificant (e.g., $\eta=0$). Assume $\gamma=0$, n=1.
- 4. Determine the activity factor for the signal shown in Figure 5.34. The clock rate is 1 GHz.

- 5. Consider the buffer design problem from Example 4.14. If the delay constraint is 20τ , how many stages will give the lowest energy, and how should the stages be sized?
- 6. Repeat Exercise 5 if the load is 500 rather than 64 and the delay constraint is 30 τ
- 7. Derive the switching probabilities in Table 5.1.

TABLE 5.1 Switching probabilities

Gate	P _Y	
AND2	$P_{\mathcal{A}}P_{\mathcal{B}}$	
AND3	$P_A P_B P_C$	
OR2	$1 - \overline{P}_A \overline{P}_B$	
NAND2	$1 - P_A P_B$	
NOR2	$\overline{P}_{\mathcal{A}}\overline{P}_{\mathcal{B}}$	
XOR2	$P_A \overline{P}_B + \overline{P}_A P_B$	

- 8. Design an 8-input OR gate with a delay of under 4 FO4 inverters. Each input may present at most 1 unit of capacitance. The load capacitance is 16 units. If the input probabilities are 0.5, compute the switching probability at each node and size the circuit for minimum switching energy.
- 9. Construct a table similar to Table 5.2 for a 2-input NOR gate.

Input State (ABC)	I _{sub}	Igate	I _{total}	V _x	V _z
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	$V_{DD} - V_t$
010	0	1.3	1.3	intermediate	intermediate
011	3.8	0	10.1	$V_{DD} - V_t$	$V_{DD} - V_t$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{DD} - V_t$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

10. Design a header switch for a power gating circuit in a 65 nm process. Suppose the PMOS transistor has an ON resistance of about 2.5 k Ω · Rm. The block being gated has an ON current of 100 mA. How wide must the header transistor be to cause less than a 2% increase in delay?