

NEIL H. E. WESTE DAVID MONEY HARRIS

FOURTH EDITION

CMOS

DESIGN

A CIRCUITS

SYSTEMS

PERSPECTIVE

AND

CMOS VLSI Design

Outline

- □ Introduction
- Wire Resistance
- □ Wire Capacitance
- □ Wire RC Delay
- Crosstalk
- □ Wire Engineering
- Repeaters

CMOS VLSI Design

Introduction

□ Chips are mostly made of wires called *interconnect*

- In stick diagram, wires set size
- Transistors are little things under the wires
- Many layers of wires
- □ Wires are as important as transistors
 - Speed
 - Power
 - Noise
- □ Alternating layers run orthogonally

Wire Geometry

- $\Box \quad \text{Pitch} = w + s$
- Aspect ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2
 - Pack in many skinny wires

W

S

Layer Stack

- AMI 0.6 μm process has 3 metal layers
- □ Modern processes use 6-10+ metal layers
- Layer
 T (nm)

 Intel 180 nm process
 6
 1720

 M1: thin, narrow (< 3λ)
 1000

 High density cells
 5
 1600

 M2-M4: thicker
 4
 1080

 For longer wires
 3
 700

 2
 700
 700
 - ☐ M5-M6: thickest
 - For V_{DD}, GND, clk

ayer	T (nm)	W (nm)	S (nm)	AR	
6	1720	860	860	2.0	
	1000				
5	1600	800	800	2.0	
	1000				
1	1080	540	540	2.0	
`	700 700	220	220	2.2	01 01
)	700	320	320	2.2	
2	700	320	320	2.2	00
1	700 480	250	250	19	מח
	400 800	200	200	1.5	
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Example

Intel 45 nm Stack

[Moon08]

14: Wires

CMOS VLSI Design

Wire Resistance

\Box ρ = *resistivity* (Ω^* m)

R =

CMOS VLSI Design

Wire Resistance

$$\Box \quad \rho = resistivity (\Omega^*m)$$
$$R = \frac{\rho}{t} \frac{l}{w}$$

6: Wires

CMOS VLSI Design

Wire Resistance

CMOS VLSI Design

Choice of Metals

- □ Until 180 nm generation, most wires were aluminum
- Modern processes often use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity ($\mu \Omega^*$ cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Molybdenum (Mo)	5.3

6: Wires

CMOS VLSI Design

Copper Issues

- □ Copper wires diffusion barrier has high resistance
- Copper is also prone to *dishing* during polishing
- Effective resistance is higher

$$R = \frac{\rho}{\left(t - t_{\text{dish}} - t_{\text{barrier}}\right)} \frac{l}{\left(w - 2t_{\text{barrier}}\right)}$$

Example
Compute the sheet resistance of a 0.22 μm thick Cu wire in a 65 nm process. The resistivity of thin film Cu is 2.2 x 10-8 Ω•m. Ignore dishing.
$R_{\Box} = 0$
Find the total resistance if the wire is 0.125 μm wide and 1 mm long. Ignore the barrier layer.

R =

Sheet Resistance

□ Typical sheet resistances in 180 nm process

Layer	Sheet Resistance (Ω/\Box)
Diffusion (silicided)	3-10
Diffusion (no silicide)	50-200
Polysilicon (silicided)	3-10
Polysilicon (no silicide)	50-400
Metal1	0.08
Metal2	0.05
Metal3	0.05
Metal4	0.03
Metal5	0.02
Metal6	0.02

6: Wires

CMOS VLSI Design

Contacts Resistance

- $\hfill\square$ Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Wire Capacitance

Wire has capacitance per unit length

- To neighbors
- To layers above and below

Capacitance Trends

- **D** Parallel plate equation: $C = \varepsilon A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- Dielectric constant

$$-\epsilon = k\epsilon_0$$

- \Box $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
- \Box k = 3.9 for SiO₂
- Processes are starting to use low-k dielectrics
 - $k \approx 3$ (or less) as dielectrics use air pockets

Capacitance Formula

 Capacitance of a conductor above a ground plane can be approximated as

$$C_{tot} = \varepsilon_{ox} l \left[\frac{w}{h} + 0.77 + 1.06 \left(\frac{w}{h} \right)^{0.25} + 1.06 \left(\frac{t}{h} \right)^{0.5} \right]$$

- This empirical formula is accurate to 6% for AR < 3.3</p>
- This formula does not account for neighbors in the same layer or higher layers

M2 Capacitance Data

\Box Typical wires have ~ 0.2 fF/µm

– Compare to 2 fF/ μ m for gate capacitance

6: Wires

CMOS VLSI Design

Diffusion & Polysilicon

- \Box Diffusion capacitance is very high (about 2 fF/µm)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion *runners* for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Lumped Element Models

❑ Wires are a distributed system

- Approximate with lumped element models

- **D** 3-segment π -model is accurate to 3% in simulation
- □ L-model needs 100 segments for same accuracy!
- **D** Use single segment π -model for Elmore delay

CMOS VLSI Design

Example

- □ Metal2 wire in 180 nm process
 - 5 mm long
 - 0.32 μ m wide
- **Construct a 3-segment** π -model

$$-R_{\Box} =$$

 $-C_{permicron} =$

Example

□ Metal2 wire in 180 nm process

- 5 mm long
- 0.32 μ m wide
- **Construct a 3-segment** π -model
 - $-R_{\Box} = 0.05 \ \Omega/\Box$ => R = 781 Ω

 $- C_{permicron} = 0.2 \text{ fF}/\mu m$

=> R = 781 G=> C = 1 pF

6: Wires

CMOS VLSI Design

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - R = 2.5 k $\Omega^*\mu m$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

$$-t_{pd} =$$

6: Wires

Wire RC Delay

- Estimate the delay of a 10x inverter driving a 2x inverter at the end of the 5mm wire from the previous example.
 - $R = 2.5 k\Omega^* \mu m$ for gates
 - Unit inverter: 0.36 μm nMOS, 0.72 μm pMOS

Example 6.5

A gate driving wires to two destinations:

6: Wires

CMOS VLSI Design

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

□ Assume layers above and below on average are quiet

- Second terminal of capacitor can be ignored
- Model as $C_{gnd} = C_{top} + C_{bot}$

Effective C_{adi} depends on behavior of neighbors

– Miller effect: The charge delivered to the coupling capacitor is $Q = C_{adi} \Delta V$

В	ΔV	C _{eff(A)}	MCF
Constant			
Switching with A			
Switching opposite A			

Crosstalk Delay

□ Assume layers above and below on average are quiet

- Second terminal of capacitor can be ignored
- Model as $C_{gnd} = C_{top} + C_{bot}$

 $\hfill\square$ Effective C_{adj} depends on behavior of neighbors

- Miller effect: Miller Coupling Factor

(MCF)

		A		$\left \right $	E	3	
Cg	nd ⁼		-0	' adj		= (2 _{gnd}
7	/				/		_

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C _{gnd}	0
Switching opposite A	$2V_{DD}$	C_{gnd} + 2 C_{adj}	2

Miller Coupling Factor

- The Miller Coupling Factor (MCF) describes how the capacitance to adjacent wires is multiplied to find the effective capacitance
- Some designers use MCF = 1.5 as a statistical compromise when estimating propagation delays before layout information is available.
- A conservative design methodology assumes neighbors are switching to compute propagation and contamination delays (MCF = 2 and 0, respectively).
- A more aggressive methodology tracks the time and direction of switching between neighbor wires.

Example

- □ Two 1 mm lines has capacitance of 0.08 fF/Rm to ground and 0.12 fF/µm to its neighbor
 - Each wire is driven by an inverter of $1K\Omega$ resistance
 - Estimate the contamination and propagation delays of the path.

□ Solution:

 $C_{
m gnd}$ = (0.08 fF/µm)(1000 µm) = 80 fF , $C_{
m adj}$ = 120 fF T_d = $RC_{
m eff}$

Contamination delay (MCF=0) \rightarrow C_{eff} = C_{gnd}

Propagation delay (MCF=2) \rightarrow C_{eff} = C_{gnd}+2 C_{adj}

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- □ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

6: Wires

CMOS VLSI Design

Driven Victims

Usually victim is driven by a gate that fights noise

- Noise depends on relative resistances
- Victim driver is in linear region, agg. in saturation
- If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \frac{1}{1+k} \Delta V_{aggressor}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-v} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

6: Wires

CMOS VLSI Design

Coupling Waveforms

 $\Box Simulated coupling for C_{adj} = C_{victim}$

6: Wires

CMOS VLSI Design

Noise Implications

- □ So what if we have noise?
- If the noise is less than the noise margin, nothing happens
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

CMOS VLSI Design

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

CMOS VLSI Design

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

CMOS VLSI Design

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

CMOS VLSI Design

- Goal: achieve delay, area, power goals with acceptable noise
- Degrees of freedom:

6: Wires

CMOS VLSI Design

Width, Spacing, and Layer

- □ The wire width, spacing, and layer usage are selected to trade off delay, bandwidth, energy, and noise.
- Minimum pitch wires are preferred for noncritical wires
- When the load is dominated by wire capacitance, increase spacing to reduce delay is by reducing the capacitance to nearby neighbors which also reduces the energy and coupling noise.
- When the delay is dominated by the gate capacitance and wire resistance, widening the wire reduces resistance and delay, reduces coupling noise, but increases the energy.

Repeaters

- □ R and C are proportional to /
- \Box RC delay is proportional to P
 - Unacceptably great for long wires

Repeaters

- □ R and C are proportional to *I*
- \Box RC delay is proportional to P
 - Unacceptably great for long wires
- Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Slide 41

6: Wires

Repeater Design

- □ How many repeaters should we use?
- □ How large should each one be?
- Equivalent Circuit
 - Wire length I/N
 - Wire Capaitance C_w*I/N, Resistance R_w*//N
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

Repeater Design

- □ How many repeaters should we use?
- □ How large should each one be?
- Equivalent Circuit
 - Wire length /
 - Wire Capacitance C_w**I*, Resistance R_w*I
 - Inverter width W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W

CMOS VLSI Design

Repeater Results

□ Write equation for Elmore Delay

- Differentiate with respect to W and N
- Set equal to 0, solve

$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}}$$

$$\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_wC_w}$$

~60-80 ps/mm in 180 nm process

$$W = \sqrt{\frac{RC_w}{R_w C'}}$$

6: Wires

CMOS VLSI Design

Repeater Energy

- □ Energy / length ≈ $1.87C_wV_{DD}^2$
 - 87% premium over unrepeated wires
 - The extra power is consumed in the large repeaters
- □ If the repeaters are downsized for minimum EDP:
 - Energy premium is only 30%
 - Delay increases by 14% from min delay

Crosstalk Control

- The crosstalk is proportional to the ratio of coupling capacitance to total capacitance.
- □ For modern processes, the coupling capacitance contributes more than ¾ of the total capacitance.
- □ There are several approaches to control crosstalk:
 - Increase spacing to adjacent lines
 - Shield wires: usually clock signal is shielded
 - Ensure neighbors switch at different times: e.g. signals switch at different clock edges
 - Crosstalk cancellation: arrange wires to cancel the effects of crosstalk

Logical Effort with Wires

- □ The branching effort at a wire with capacitance C_{wire} driving a gate load of C_{gate} is $(C_{\text{gate}} + C_{\text{wire}}) / C_{\text{gate}}$
- This branching effort is not constant; it depends on the size of the gate being driven
- □ For short interconnect ($C_{wire} < < C_{gate}$), C_{wire} can be ignored.
- Conversely, when the interconnect is long (Cwire >> Cgate), the gate at the end can be ignored.
- The path can now be partitioned into two parts; the first part drives the wire while the second receives its input from the wire.

Logical Effort with Wires

- □ The most difficult problems occur when $C_{\text{wire}} \approx C_{\text{gate}}$.
- These wires introduce branching efforts that are a function of the size of the gates they drive
- **Example**:

$$d = \frac{x}{10} + \frac{y+50}{x} + \frac{100}{y} + P$$

Diff W.R.T x and y yields:

$$\frac{1}{10} - \frac{y + 50}{x^2} = 0 \implies x^2 = 10y + 500$$

$$\frac{1}{x} - \frac{100}{y^2} = 0 \Longrightarrow y^2 = 100x$$

x=33 fF and y=57fF The stage efforts are (33/10) = 3.3, (57 + 50)/33= 3.2, and (100/57) = 1.8Not equal as usual due to the wire capacitance