FOURTH EIIITI()I

CM@S
_./VI\_SI

DESIGN

A CIRCUITS
~>“AND

 USSYSTEMS
=~ "PERSPECTIVE,

Lecture 8:
Wires

CMOS VLSI Design




Outline

Introduction

Wire Resistance
Wire Capacitance
Wire RC Delay
Crosstalk

Wire Engineering
Repeaters

4
4
4
4
4
4
4

6: Wires

CMOS VLSI Design Slide 2




Introduction

 Chips are mostly made of wires called interconnect
— In stick diagram, wires set size
— Transistors are little things under the wires
— Many layers of wires
O Wires are as important as transistors
— Speed
— Power
— Noise
O Alternating layers run orthogonally
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Wire Geometry

d Pitch=w+s
O Aspect ratio: AR = t/w
— Old processes had AR << 1
— Modern processes have AR~ 2 ]
« Pack in many skinny wires « e
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Layer Stack

AMI 0.6 um process has 3 metal layers
Modern processes use 6-10+ metal layers
Example: Layer T(wm) W(nm S(m) AR
Intel 180 nm process °© v® = = 20

O M1: thin, narrow (< 31) o

— High density cells ...

U OO

d M2-M4: thicker R R B
— For longer wires o =2

Q M5-M6: thickest SR /¢
_ForV,, GND,clk @ 7~

Substrate
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M6 L—- \ ) 1 um

M8

s o )
Transistors Transistors

Intel 90 nm Stack Intel 45 nm Stack

[Thompson02] [Moon08]
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Wire Resistance

d p =resistivity (2*m)

R—
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Wire Resistance
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Wire Resistance

d p =resistivity (2*m)

o | |

: tw RD W

d R = sheet resistance (Q/0)
— [ is a dimensionless unit(!)

O Count number of squares

— R = Ry * (# of squares)

ALER

t t

1Rectangular Block 4Rectangular Blocks
R=R(L/W) Q R=R 2L/2W) Q
=R L/W) Q
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Choice of Metals

d Until 180 nm generation, most wires were aluminum
1 Modern processes often use copper
— Cu atoms diffuse into silicon and damage FETs
— Must be surrounded by a diffusion barrier

Metal Bulk resistivity (u€2*cm)
Silver (Ag) 1.6
Copper (Cu) 1.7
Gold (Au) 2.2
Aluminum (Al) 2.8
Tungsten (W) 5.3
Molybdenum (Mo) |5.3
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Copper Issues

O Copper wires diffusion barrier has high resistance
1 Copper is also prone to dishing during polishing

O Effective resistance is higher g

R = P |
(t o tdish o 1:barrier ) (W_ 21:barrier )

—- - t
tbarrier

Cu
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Example

1 Compute the sheet resistance of a 0.22 um thick Cu
wire in a 65 nm process. The resistivity of thin film
Cuis 2.2 x 10-8 Qem. Ignore dishing.

RD:'

O Find the total resistance if the wire is 0.125 um wide
and 1 mm long. Ignore the barrier layer.

R =
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Sheet Resistance

O Typical sheet resistances in 180 nm process

Layer Sheet Resistance (/L)
Diffusion (silicided) 3-10
Diffusion (no silicide) 50-200
Polysilicon (silicided) 3-10
Polysilicon (no silicide) 50-400
Metall 0.08
Metal2 0.05
Metal3 0.05
Metal4 0.03
Metal5 0.02
Metal6 0.02
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Contacts Resistance

1 Contacts and vias also have 2-20 Q
O Use many contacts for lower R
— Many small contacts for current crowding around

periphery
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Wire Capacitance

O Wire has capacitance per unit length
— To neighbors
— To layers above and below

4 Ctotal = Ctop + Cbot + 2Cadj

s w
4>
layer n+1
h, ¢ CtopJ_
t i %&—H— layer n
C._.
hl ¢ Cbot—|— ad)
layer n-1
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Capacitance Trends

O Parallel plate equation: C = ¢A/d

— Wires are not parallel plates, but obey trends

— Increasing area (W, t) increases capacitance

— Increasing distance (s, h) decreases capacitance
 Dielectric constant

— &= kg,

d g, =8.85x10% F/cm

d k=3.9 for SIO,

O Processes are starting to use low-k dielectrics
— k =~ 3 (or less) as dielectrics use air pockets

CMOS VLSI Design Slide 16




Capacitance Formula

d Capacitance of a conductor
above a ground plane can
be approximated as

W W 0.25 ¢ 0.5
Coot = i —+O.77+1.06(—j +1.06(—j
h h h

Half Cylinders

O This empirical formula is
. RN

accurate to 6% for AR < 3.3 \'i_

Q This formula does not <_,/////// I

account for neighbors in the Parallel Plate  |h
same layer or higher layers ————————
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M2 Capacitan

e Data ..........

d Typical wires have ~ 0.2 fF/um
— Compare to 2 fF/um for gate capacitance

400
S: normalized spacing
300 M1, M3 planes
——5s =320
250 —@— s =480
— —A— s =640
% 200 —®—s=%®
5:_“ Isolated
L)‘9 150 R S 320
o E---s 480
cAe-S 640
100 o ©
50
0 T T T T
0 500 1000 1500 2000

w (nm)
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Diffusion & Polysilicon

 Diffusion capacitance is very high (about 2 fF/um)
— Comparable to gate capacitance
— Diffusion also has high resistance
— Avoid using diffusion runners for wires!
 Polysilicon has lower C but high R
— Use for transistor gates
— Occasionally for very short wires between gates
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Lumped Element Models

O Wires are a distributed system
— Approximate with lumped element models

N segments

R R/N R/N R/N R/N
> N —AN— o000

— A 000 — AN AN
EC $C/N —VFC/N $C/N —VFC/N
RI2 R/2

;gc $C/2 ;gc:/z ;Ec

L-model n-model T-model

d 3-segment n-model is accurate to 3% in simulation
d L-model needs 100 segments for same accuracy!
1 Use single segment t-model for EImore delay
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Example

d Metal2 wire in 180 nm process
— 5 mm long
— 0.32 um wide

O Construct a 3-segment t-model
— Ry =

— C =

permicron
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Example

d Metal2 wire in 180 nm process

— 5 mm long
— 0.32 um wide
O Construct a 3-segment t-model
— Ry =0.05 Q/O =>R=781Q
— Coermicron = 0.2 fF/um =>C=1pF
260 Q 260 Q 260 Q
LYV LYV L LYV L
167 fF|167 fF  |167 fF|167 fF 167 fF|167 fF
A% A% A% A% A% A%
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Wire RC Delay

O Estimate the delay of a 10x inverter driving a 2x
Inverter at the end of the 5mm wire from the
previous example.

— R = 2.5 kQ*um for gates
— Unit inverter: 0.36 um nMQOS, 0.72 um pMOS
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Wire RC Delay

O Estimate the delay of a 10x inverter driving a 2x
Inverter at the end of the 5mm wire from the
previous example.

— R = 2.5 kQ*um for gates
— Unit inverter: 0.36 um nMQOS, 0.72 um pMOS

781 Q)
T YW
690 O $500 f@soo = ;E4 i=
Driver Wire Load

—ty=11lns
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Example 6.5

O A gate driving wires to two destinations:

R4
Medium Wire |
R

Node 4

R

L Wi
X ~Dc ong Yare Node 3 o

(a) (b)
T, =R, +(R1 + R2)62 +(R1 +R, +Rg)c3 +R,C,

3

Tp =R,C +R,(C,+C;)+(R, +R,)C,

q_ll
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Crosstalk

A capacitor does not like to change its voltage
Instantaneously.

O Awire has high capacitance to its neighbor.

— When the neighbor switches from 1-> 0 or 0->1,
the wire tends to switch too.

— Called capacitive coupling or crosstalk.
O Crosstalk effects

— Noise on nonswitching wires
— Increased delay on switching wires
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Crosstalk Delay

d Assume layers above and below on average are quiet
— Second terminal of capacitor can be ignored
— Model as C,y = Cyp + Cpq,

1 Effective C,y depends on behavior of neighbors
— Miller effect: The charge deliveredto |A{H B

. _ _ andL Cadj chnd
the coupling capacitor is Q= C 4 AV L ——F

B AV | Cera MCF
Constant

Switching with A
Switching opposite A
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Crosstalk Delay

d Assume layers above and below on average are quiet
— Second terminal of capacitor can be ignored
— Model as C,y = Cyp + Cpq,

4 Effective Cyy; depends on behavior of neighbors

— Miller effect: Miller Coupling Factor A HH B

C_o
C L adj % and

(MCF) L
Constant Voo [Cgna T Cagp |1
Switching with A 0 and 0
Switching opposite A | 2V, | Cg +2 Cyyi | 2

VLSI Design




Miller Coupling Factor

d The Miller Coupling Factor (MCF) describes how the
capacitance to adjacent wires is multiplied to find the
effective capacitance

1 Some designers use MCF = 1.5 as a statistical
compromise when estimating propagation delays
before layout information is available.

A conservative design methodology assumes
neighbors are switching to compute propagation and
contamination delays (MCF = 2 and O, respectively).

1 A more aggressive methodology tracks the time and
direction of switching between neighbor wires.
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Example

d Two 1 mm lines has capacitance of 0.08 fF/Rm to
ground and 0.12 fF/um to its neighbor

— Each wire is driven by an inverter of 1KQ
resistance

— Estimate the contamination and propagation
delays of the path.

d Solution:
Cgng = (0.08 fF/um)(1000 um) =80 fF , C 4 = 120 fF
T, =RC

Contamination delay (MCF=0) > C_«+=C
Propagation delay (MCF=2) > C_4=C

gnd
+2 C

gnd

adj
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Crosstalk Noise

O Crosstalk causes noise on nonswitching wires
4 If victim is floating:
— model as capacitive voltage divider

C..
_ ad
AVvictim o C 1 C AVaggressor
gnd—v adj
Aggressor
AV
aggressor €L Cadj
Victim

g Cgnd-v A%\;victim
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Driven Victims

O Usually victim is driven by a gate that fights noise
— Noise depends on relative resistances
— Victim driver is in linear region, agg. in saturation
— If sizes are same, R,ygessor = 2-4 X R

victim
Ca 1
_ ad
AVViCtim N C +C . 1+k AVaggressor Raggressor Aggressor
j T
gnd—v adj AV QE Conda
R p— Cadj
victim Victim

a —FC AV, .

k J— Taggressor _ RaggreSSOr (and —a + Cadj ) g gnd-v €7V|ct|m

Tvictim Rvictim (and v Cadj )
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Coupling Waveforms

4 Simulated coupling for C,4 = Cicim
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Noise Implications

d So what if we have noise?

O If the noise is less than the noise margin, nothing
happens

O Static CMOS logic will eventually settle to correct
output even If disturbed by large noise spikes

— But glitches cause extra delay
— Also cause extra power from false transitions
1 Dynamic logic never recovers from glitches

O Memories and other sensitive circuits also can
produce the wrong answer
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Wire Engineering

O Goal: achieve delay, area, power goals with
acceptable noise

O Degrees of freedom:
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Wire Engineering

O Goal: achieve delay, area, power goals with

acceptable noise

O Degrees of freedom:

— Width
— Spacing

1.8
1.6
14
12
;g' 1.0
%/ 0.8

g 0.6

0.4
0.2

RC/2

0

.

|
C A

n

<
n A
0 500 1000 1500 2000
Pitch (nm)

(o4
i
Fos
= " WireSpacing
A (nm)
A L_|
: .3
[ ]
4 A 640
0 500 1000 1500 2000
Pitch (nm)
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Wire Engineering

O Goal: achieve delay, area, power goals with

acceptable noise

O Degrees of freedom:

— Width
— Spacing
— Layer

1.8
1.6
14
12
;g' 1.0
%/ 0.8

g 0.6

0.4
0.2

RC/2

0

.

|
C A

n

<
n A
0 500 1000 1500 2000
Pitch (nm)

(o4
i
Fos
= " WireSpacing
A (nm)
A L_|
: .3
[ ]
4 A 640
0 500 1000 1500 2000
Pitch (nm)
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Wire Engineering

O Goal: achieve delay, area, power goals with

acceptable noise

O Degrees of freedom:

— Width 8
— Spacing ; :-

— Layer 30

— Shielding -

vdd a, a, gnd a, a, vdd v

.

|
<

A
n
<
n A
0 500 1000 1500 2000
Pitch (nm)

dd a, gnd &,

vdd

a, gnd

<

—~ 0.7 >
om

0.6 <&
+‘§ = " WireSpacing
Q 05 - m (nm)
= A © 320
§04 vy m 480
& A 640
= 0.3
£
S 02
S

0.1

0 T r r
0 500 1000 1500 2000
Pitch (nm)

aaaaaaa

CMOS VLSI Design

Slide 38




Width, Spacing, and Layer

d The wire width, spacing, and layer usage are selected
to trade off delay, bandwidth, energy, and noise.

O Minimum pitch wires are preferred for noncritical wires

O When the load is dominated by wire capacitance,
Increase spacing to reduce delay is by reducing the
capacitance to nearby neighbors which also reduces
the energy and coupling noise.

O When the delay is dominated by the gate capacitance
and wire resistance, widening the wire reduces
resistance and delay, reduces coupling noise, but
Increases the energy.
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Repeaters

d R and C are proportional to |
d RC delay is proportional to I
— Unacceptably great for long wires
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Repeaters

d R and C are proportional to |

d RC delay is proportional to I
— Unacceptably great for long wires

1 Break long wires into N shorter segments
— Drive each one with an inverter or buffer

Wire Length: |
Driver —Vl_ Receiver
N Segments
! Segment '
1
I: I/N I: I/N I: I: I/N I:
L A4 4
Driver Repeater Repeater Repeater Receiver
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Repeater Design

d How many repeaters should we use?
O How large should each one be?
O Equivalent Circuit
— Wire length I/N
* Wire Capaitance C *I/N, Resistance R *I/N
— Inverter width W (nMOS =W, pMOS = 2W)
« Gate Capacitance C™*W, Resistance R/W
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Repeater Design

d How many repeaters should we use?
O How large should each one be?
O Equivalent Circuit
— Wire length |
* Wire Capacitance C, *l, Resistance R *l
— Inverter width W (nMOS =W, pMOS = 2W)
« Gate Capacitance C™*W, Resistance R/W

RwIN

- T YW T
/ ;@ N $CWI N ;gcw
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Repeater Results

d Write equation for EImore Delay
— Differentiate with respect to W and N
— Set equal to O, solve

1 [2RC
N \R,.C,

t%d:(Z+x/§)\/RC’RWCW

~60-80 ps/mm

In 180 nm process

w_ [RC,
R,C’
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Repeater Energy

O Energy /length = 1.87C,,Vp?
— 87% premium over unrepeated wires

— The extra power is consumed in the large
repeaters

O If the repeaters are downsized for minimum EDP:
— Energy premium is only 30%
— Delay increases by 14% from min delay
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Crosstalk Control

O The crosstalk is proportional to the ratio of coupling
capacitance to total capacitance.

O For modern processes, the coupling capacitance
contributes more than %4 of the total capacitance.

O There are several approaches to control crosstalk:
— Increase spacing to adjacent lines
— Shield wires: usually clock signal is shielded

— Ensure neighbors switch at different times: e.qg.
signals switch at different clock edges

— Crosstalk cancellation: arrange wires to cancel
the effects of crosstalk

Slide 46
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Logical Effort with Wires

O The branching effort at a wire with capacitance
Cuire driving a gate load of C i IS (Cype + Cyire) / Coate
O This branching effort is not constant; it depends on
the size of the gate being driven

4 For short interconnect (C,;;e<<Cgye): Cyire Can be
ignored.

O Conversely, when the interconnect is long (Cwire >>
Cgate), the gate at the end can be ignored.

O The path can now be partitioned into two parts; the
first part drives the wire while the second receives its
iInput from the wire.
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Logical Effort with Wires

1 The most difficult problems occur when C, ;. = C .

L These wires introduce branching efforts that are a
function of the size of the gates they drive

: 10 fF X y
d Example: - > - A
g_x  y+50 100 —-50fF$100fF
10 x Y \4

x=33 fF and y=57fF

The stage efforts are
=0=x"=10y+500 (33/10) = 3.3, (57 + 50)/33
= 3.2, and (100/57) = 1.8
Not equal as usual due to
the wire capacitance

Diff W.R.T x and y yields:
1 _y+50
10«2

l—@=0=‘}_y2=100:,~c:'
X

2
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