

NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 7: Power

Outline

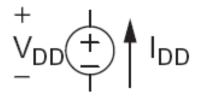
- Power and Energy
- Dynamic Power
- Static Power

CMOS VLSI Design ^{4th Ed.}

Power and Energy

Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.

□ Instantaneous Power: P(t) =


D Energy: E =

Average Power:

$$P_{\rm avg} =$$

Power in Circuit Elements

$$P_{VDD}\left(t\right) = I_{DD}\left(t\right)V_{DD}$$

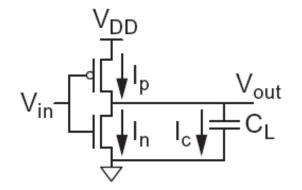
$$P_{R}(t) = \frac{V_{R}^{2}(t)}{R} = I_{R}^{2}(t)R$$

$$E_{C} = \int_{0}^{\infty} I(t)V(t)dt = \int_{0}^{\infty} C \frac{dV}{dt}V(t)dt + \frac{V_{C}}{V_{C}} C \downarrow I_{C} = C dV/dt$$
$$= C \int_{0}^{V_{C}} V(t)dV = \frac{1}{2}CV_{C}^{2}$$

7: Power

CMOS VLSI Design ^{4th Ed.}

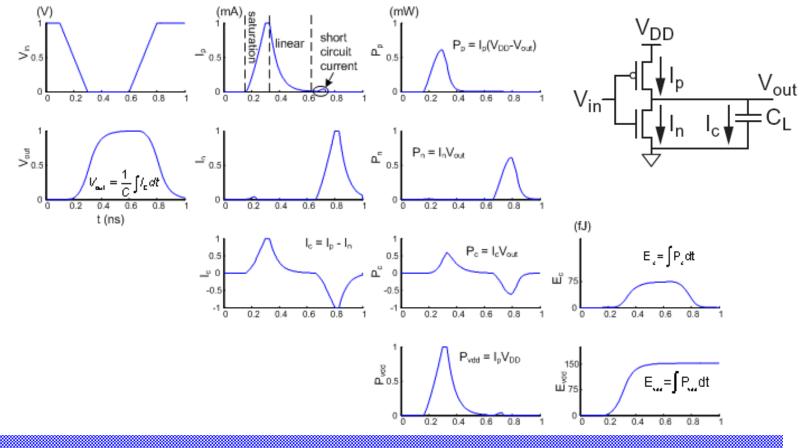
Charging a Capacitor


When the gate output rises

Energy stored in capacitor is

$$E_C = \frac{1}{2}C_L V_{DD}^2$$

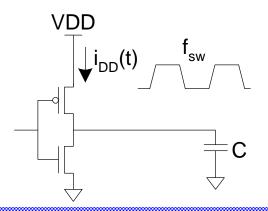
- But energy drawn from the supply is


$$E_{VDD} = \int_{0}^{\infty} I(t) V_{DD} dt = \int_{0}^{\infty} C_L \frac{dV}{dt} V_{DD} dt$$
$$= C_L V_{DD} \int_{0}^{V_{DD}} dV = C_L V_{DD}^2$$

- Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- ❑ When the gate output falls
 - Energy in capacitor is dumped to GND
 - Dissipated as heat in the nMOS transistor

Switching Waveforms

D Example: $V_{DD} = 1.0 \text{ V}, C_{L} = 150 \text{ fF}, f = 1 \text{ GHz}$



7: Power

CMOS VLSI Design 4th Ed.

Switching Power

$$P_{\text{switching}} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$
$$= \frac{V_{DD}}{T} \int_{0}^{T} i_{DD}(t) dt$$
$$= \frac{V_{DD}}{T} \left[T f_{\text{sw}} C V_{DD} \right]$$
$$= C V_{DD}^{2} f_{\text{sw}}$$

7: Power

CMOS VLSI Design ^{4th Ed.}

Activity Factor

- □ Suppose the system clock frequency = f
- \Box Let $f_{sw} = \alpha f$, where $\alpha = activity factor$
 - If the signal is a clock, α = 1
 - If the signal switches once per cycle, α = $\frac{1}{2}$

Dynamic power:

 $P_{\rm switching} = \alpha C V_{DD}^2 f$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output
- We will generally ignore this component

Power Dissipation Sources

- $\square P_{total} = P_{dynamic} + P_{static}$
- **Dynamic power:** $P_{dynamic} = P_{switching} + P_{shortcircuit}$
 - Switching load capacitances
 - Short-circuit current
- □ Static power: $P_{\text{static}} = (I_{\text{sub}} + I_{\text{gate}} + I_{\text{junct}} + I_{\text{contention}})V_{\text{DD}}$
 - Subthreshold leakage
 - Gate leakage
 - Junction leakage
 - Contention current

Dynamic Power

- Consists of mainly switching power, short circuit power is neglected.
- To calculate dynamic power given V_{DD} and *f*, consider the capacitance of each node of the circuit including gate, diffusion, and wire capacitances.
- The effective capacitance is the true capacitance multiplied by the node activity factor.
- The switching power depends on the sum of the effective capacitances of all nodes.
- □ Activity factor is task-dependent.
- \Box Low-power \rightarrow minimize the power equation terms

Dynamic Power Example

- 1 billion transistor chip
 - 50M logic transistors
 - Average width: 12 λ
 - Activity factor = 0.1
 - 950M memory transistors
 - Average width: 4 λ
 - Activity factor = 0.02
 - 1.0 V 65 nm process
 - $C = 1 \text{ fF}/\mu m \text{ (gate)} + 0.8 \text{ fF}/\mu m \text{ (diffusion)}$
- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Solution

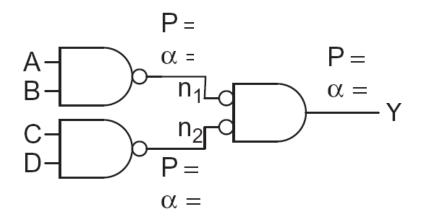
$$C_{\text{logic}} = (50 \times 10^{6})(12\lambda)(0.025\,\mu m \,/\,\lambda)(1.8\,fF \,/\,\mu m) = 27 \text{ nF}$$
$$C_{\text{mem}} = (950 \times 10^{6})(4\lambda)(0.025\,\mu m \,/\,\lambda)(1.8\,fF \,/\,\mu m) = 171 \text{ nF}$$
$$P_{\text{dynamic}} = \left[0.1C_{\text{logic}} + 0.02C_{\text{mem}}\right](1.0)^{2}(1.0 \text{ GHz}) = 6.1 \text{ W}$$

Dynamic Power Reduction

$$\square P_{\text{switching}} = \alpha C V_{DD}^{2} f$$

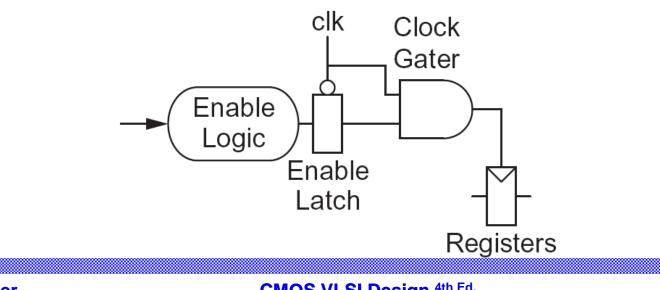
- □ Try to minimize:
 - Activity factor
 - Capacitance
 - Supply voltage
 - Frequency

Activity Factor Estimation


- $\Box \text{ Let } P_i = Prob(node i = 1)$
 - $-\overline{P}_i = 1-P_i$
- $\Box \ \alpha_i = \overline{P}_i * P_i$
- $\hfill\square$ Completely random data has P = 0.5 and α = 0.25
- Data is often not completely random
 - e.g. upper bits of 64-bit words representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
 - Depends on design, but typically $\alpha \approx 0.1$

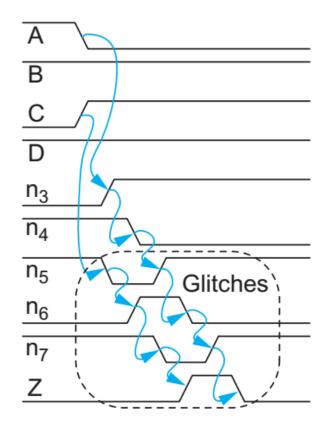
Switching Probability

Gate	P _Y
AND2	$P_A P_B$
AND3	$P_{\mathcal{A}}P_{B}P_{C}$
OR2	$1 - \overline{P}_A \overline{P}_B$
NAND2	$1 - P_A P_B$
NOR2	$\overline{P}_{\mathcal{A}}\overline{P}_B$
XOR2	$P_{\mathcal{A}}\overline{P}_{B}+\overline{P}_{\mathcal{A}}P_{B}$


Example

- □ A 4-input AND is built out of two levels of gates
- Estimate the activity factor at each node if the inputs have P = 0.5
- Construct the truth table and calculate the probabilities

Clock Gating


- The best way to reduce the activity is to turn off the clock to registers in unused blocks
 - Saves clock activity ($\alpha = 1$)
 - Eliminates all switching activity in the block
 - Requires determining if block will be used

CMOS VLSI Design 4th Ed.

Glitches

- gates sometimes make spurious transitions called glitches when inputs do not arrive simultaneously
- The glitches cause extra power dissipation
- Chains of gates are particularly prone to this problem
- Glitching can raise the activity factor of a gate above 1

Capacitance

□ Gate capacitance

- Fewer stages of logic
- Small gate sizes
- Large gates with higher activity factors can be downsized to reduce power (at the expense of increasing logical effort and delay)

□ Wire capacitance

- Good floorplanning to keep communicating blocks close to each other
- Drive long wires with inverters or buffers rather than complex gates

Gate Sizing Under a Delay Constraint

□ To compute energy in a circuit, consider:

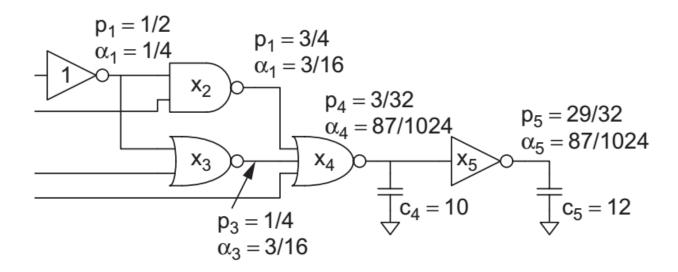
- a unit inverter has gate capacitance 3*C*,
- a gate with logical effort g, parasitic delay p, and drive x has gx times as much gate capacitance and px times as much diffusion capacitance.
- The energy of the entire circuit is the sum of the energies of each gate:

Energy =
$$3CV_{DD}^2 \sum_{i \in \text{nodes}} \alpha_i \left(\frac{C_{\text{wire}_i}}{3C} + p_i x_i + \sum_{j \in \text{fanout}(i)} g_j x_j \right)$$

7: Power

CMOS VLSI Design 4th Ed.

Gate Sizing Under a Delay Constraint (2)


□ By normalizing the equation:

$$E = \sum_{i \in \text{nodes}} \alpha_i \left(c_i + p_i x_i + \sum_{j \in \text{fanout}(i)} g_j x_j \right) = \sum_{i \in \text{nodes}} \alpha_i x_i d_i$$

- □ The problem is formulated as an optimization problem to minimize *E* such that the worst-case arrival time is less than some delay *D*.
- The problem is still a posynomial and has a unique solution that can be found quickly by a good optimizer.

Example

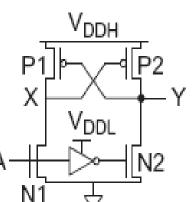
Generate an energy-delay trade-off curve for the following circuit as delay varies from the minimum possible ($D_{min} = 23.44 \tau$ to 50 τ). Assume that the input probabilities are 0.5.

CMOS VLSI Design 4th Ed.

Solution

□ The Energy of the circuit is:

$$E = \frac{1}{4} \left(1 + \frac{4}{3}x_2 + \frac{5}{3}x_3 \right) + \frac{3}{16} \left(2x_2 + \frac{7}{3}x_4 \right) + \frac{3}{16} \left(2x_3 + \frac{7}{3}x_4 \right) \\ + \frac{87}{1024} \left(10 + 3x_4 + x_5 \right) + \frac{87}{1024} \left(12 + x_5 \right)$$

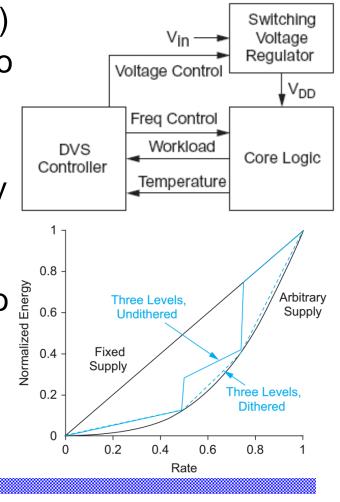

$$\Box \text{ The energy-delay trade-off curve obtained by an automatic Solver is depicted}$$

$$\Box \text{ The delay cannot be minimized unless the input inverter size is increased}$$

CMOS VLSI Design 4th Ed.

Voltage Domains

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Voltage Domains
 - Provide separate supplies to different blocks
 - Level converters required when crossing from low to high V_{DD} domains


- Voltage domains are associated with a large area of the floorplan
- Clustered Voltage Scaling (CVS) is an alternative approach to use two supply voltages in the same block with some constraints

Dynamic Voltage Scaling

- Dynamic Voltage Scaling (DVS)
 - Adjust V_{DD} and f according to workload

DVFS

- reducing the clock frequency to the minimum per task
- reducing the supply voltage to the minimum necessary to operate at that frequency

CMOS VLSI Design 4th Ed.

Short-Circuit Current

- While the input switches, both pullup and pulldown networks are partially ON causing short-circuit current.
- It increases as the input edge rates become slower because both networks are ON for more time, and decreases as load capacitance increases.
- short-circuit current is a small fraction (< 10%) of current to the load and can be ignored for sharp input edges.
- □ Short-circuit power is strongly sensitive to the ratio $v = V_t / V_{DD}$, for v=0.5 short circuit current is zero.

Static Power

- □ Static CMOS gates have no contention current
- Static power is consumed even when chip is quiescent.
 - Leakage draws power from nominally OFF devices
 - Ratioed circuits burn power in flight between ON transistors

Subthreshold Leakage

D For $V_{ds} > 50 \text{ mV}$

$$I_{sub} \approx I_{off} 10^{\frac{V_{gs} + \eta (V_{ds} - V_{DD}) - k_{\gamma} V_{sb}}{S}}$$

- □ I_{off} = leakage at V_{gs} = 0, V_{ds} = V_{DD} η : the DIBL coefficient K_{γ} : The body effect coefficient S: Subthreshold slope
- Typical values in 65 nm $I_{off} = 100 \text{ nA/}\mu\text{m} @ V_t = 0.3 \text{ V}$ $I_{off} = 10 \text{ nA/}\mu\text{m} @ V_t = 0.4 \text{ V}$ $I_{off} = 1 \text{ nA/}\mu\text{m} @ V_t = 0.5 \text{ V}$ $\eta = 0.1$ $k_{\gamma} = 0.1$ S = 100 mV/decade

Stack Effect

Series OFF transistors have less leakage $-V_x$ small, N₁ has low DIBL and small leak 0. $-V_x > 0$, so N2 has negative V_{as} $I_{sub} = \underbrace{I_{off} 10}_{S} \underbrace{\frac{\eta(V_x - V_{DD})}{S}}_{S} = \underbrace{I_{off} 10}_{S} \underbrace{\frac{-V_x + \eta((V_{DD} - V_x) - V_{DD}) - k_y V_x}{S}}_{S}$ $V_x = \frac{\eta V_{DD}}{1 + 2\eta + k_x}$ $I_{sub} = I_{off} 10^{\frac{-\eta V_{DD} \left(\frac{1+\eta+k_{\gamma}}{1+2\eta+k_{\gamma}}\right)}{S}} \approx I_{off} 10^{\frac{-\eta V_{DD}}{S}}$

- Leakage through 2-stack reduces ~10x
- Leakage through 3-stack reduces further

 V_{DD}

Leakage Control

Leakage and delay trade off

- Aim for low leakage in sleep and low delay in active mode
- □ To reduce leakage:
 - Increase V_t : multiple V_t
 - Use low V_t only in critical circuits
 - Increase V_s: *stack effect*
 - Input vector control in sleep
 - Decrease V_b
 - Reverse body bias in sleep
 - Or forward body bias in active mode

Leakage Control (2)

- Other forms of leakage must be considered to reduce Subthreshold leakage.
- □ Raising the doping level to raise V_t by controlling DIBL and short-channel effects increases BTBT.
- □ Applying a reverse body bias to increase V_t also causes BTBT to increase.
- Applying a negative gate voltage to turn the transistor OFF more strongly increases GIDL.
- Silicon on Insulator (SOI) circuits are attractive for low-leakage designs because they have a sharper subthreshold current roll-off.

Gate Leakage

- \Box Extremely strong function of t_{ox} and V_{gs}
 - Negligible for older processes
 - Approaches subthreshold leakage at 65 nm and below in some processes
- □ An order of magnitude less for pMOS than nMOS
- □ Control leakage in the process using t_{ox} > 10.5 Å
 - High-k gate dielectrics help
 - Some processes provide multiple tox
 - e.g. thicker oxide for 3.3 V I/O transistors
- □ Control leakage in circuits by limiting V_{DD}

Gate Leakage (2)

- Gate leakage also depends on the voltage across the gate
- □ For the example in the figure
 - If *N*1 is ON and *N*2 is OFF, *N*1 has $V_{gs} = V_{DD}$ and has full gate leakage.
 - On the other hand, if N1 is OFF and N2 is on, ^(a) N2 has $V_{gs} = V_t$ and experiences negligible gate leakage
 - In both cases, the OFF transistor has no gate leakage.
 - Thus, gate leakage can be alleviated by stacking transistors such that the OFF transistor is closer to the rail

CMOS VLSI Design ^{4th Ed.}

 $V_x = V_{DD} - V_t$

√n

√_{DD}

(b)

NAND3 Leakage Example

□ 100 nm process C- N_2 $I_{gp} = 0$ $I_{gn} = 6.3 \text{ nA}$ B $I_{offn} = 5.63 \text{ nA}$ $I_{offp} = 9.3 \text{ nA}$ A٠ Input State (ABC) ٧., ٧., sub total gate stack effect stack effect 000 0.4 0.4 0 stack effect $V_{DD} - V_t$ 001 0.7 0 0.7 intermediate intermediate 010 0.7 1.3 2.0 011 $V_{DD} - V_t$ $V_{DD} - V_t$ 3.8 3.8 0 stack effect 100 0.7 6.3 7.0 0 101 6.3 10.1 $V_{DD} - V_t$ 0 3.8 110 12.6 18.2 0 5.6 0 111 46.9 28 18.9 0 0 Data from [Lee03]

7: Power

Junction Leakage

- □ From reverse-biased p-n junctions
 - Between diffusion and substrate or well
- Ordinary diode leakage is negligible
- Band-to-band tunneling (BTBT) can be significant
 - Especially in high-V $_{\rm t}$ transistors where other leakage is small
 - Worst at $V_{db} = V_{DD}$
- Gate-induced drain leakage (GIDL) exacerbates
 - Worst for $V_{gd} = -V_{DD}$ (or more negative)

Static Power Estimation

- □ Static CMOS circuits have no contention current.
- Some other families inherently draw current even while quiescent. (e.g. pseudo nMOS logic)
- □ Static current is estimated by:
 - Estimate total width of transistors that are leaking,
 - multiplying by the leakage current per width,
 - and multiplying by the fraction of transistors that are in their leaky state (usually one half).
 - Add the contention current if applicable.
 - The static power is the supply voltage times the static current.

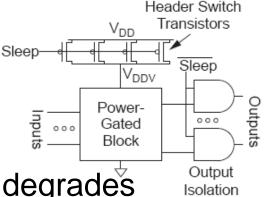
Static Power Example

- Revisit power estimation for 1 billion transistor chip
- Estimate static power consumption
 - Subthreshold leakage
 - Normal V_t: 100 nA/μm
 - High V_t : 10 nA/ μ m
 - High Vt used in all memories and in 95% of logic gates
 - Gate leakage $5 \text{ nA/}\mu\text{m}$
 - Junction leakage negligible

Solution

$$W_{\text{normal-V}_{t}} = (50 \times 10^{6})(12\lambda)(0.025\,\mu\text{m}/\lambda)(0.05) = 0.75 \times 10^{6}\,\mu\text{m}$$

$$W_{\text{high-V}_{t}} = [(50 \times 10^{6})(12\lambda)(0.95) + (950 \times 10^{6})(4\lambda)](0.025\,\mu\text{m}/\lambda) = 109.25 \times 10^{6}\,\mu\text{m}$$


$$I_{sub} = [W_{\text{normal-V}_{t}} \times 100\,\text{nA}/\mu\text{m} + W_{\text{high-V}_{t}} \times 10\,\text{nA}/\mu\text{m}]/2 = 584\,\text{mA}$$

$$I_{gate} = [(W_{\text{normal-V}_{t}} + W_{\text{high-V}_{t}}) \times 5\,\text{nA}/\mu\text{m}]/2 = 275\,\text{mA}$$

$$P_{static} = (584\,\text{mA} + 275\,\text{mA})(1.0\,\text{V}) = 859\,\text{mW}$$

Power Gating

- Turn OFF power to blocks when they are idle to save leakage
 - Use virtual V_{DD} (V_{DDV})
 - Gate outputs to prevent invalid logic levels to next block

- Voltage drop across sleep transistor degrades performance during normal operation
 - Size the transistor wide enough to minimize delay and voltage drop
 - Also, it should have low leakage during sleep
- Switching wide sleep transistor costs dynamic power
 - Only justified when circuit sleeps long enough

Power Gating Design

- It can be done externally with a disable input to a voltage regulator or internally with high-V_t header or footer switches
- On-chip power gating can use pMOS header switch transistors or nMOS footer switch transistors
- Fine-grained power gating can be applied to individual logic gates, but placing a switch in every cell has enormous area overhead
- Practical designs use coarse-grained power gating where the switch is shared across an entire block
- The switch is commonly sized to keep this delay to 5–10%

Multiple Threshold Voltages

- □ Multiple threshold voltages can keep performance on critical paths with low- V_t transistors while reducing leakage on others with high- V_t transistors.
- Good design practice starts with high- V_t devices everywhere and selectively introduces low- V_t devices where necessary.
- Using multiple thresholds requires additional implant masks that add to the cost of a CMOS process.
- Alternatively, designers can increase the channel length, which tends to raise the threshold voltage via the short channel effect.

Variable Threshold Voltage

- $\hfill\square$ V_{sb} controls the threshold voltage via the body effect
- In variable threshold CMOS (VTCMOS), a body bias is applied to achieve high I_{on} and low I_{off}
- For example, low-Vt devices can be used and a reverse body bias (RBB) can be applied during sleep mode to reduce leakage
- Alternatively, higher-Vt devices can be used, and then a forward body bias (FBB) can be applied during active mode to increase performance
- Improper body biasing can increase leakage via BTBT and junction leakage