

SYSTEMS PERSPECTIVE

NEIL H. E. WESTE DAVID MONEY HARRIS

Lecture 6: Logical Effort

Outline

- **Q** Logical Effort
- Delay in a Logic Gate
- □ Multistage Logic Networks
- □ Choosing the Best Number of Stages
- **Q** Example
- **Q** Summary

Introduction

- Chip designers face a bewildering array of choices
	- What is the best circuit topology for a function?
	- How many stages of logic give least delay?
	- How wide should the transistors be?
- Logical effort is a method to make these decisions
	- Uses a simple model of delay
	- Allows back-of-the-envelope calculations
	- Helps make rapid comparisons between alternatives
	- Emphasizes remarkable symmetries

Example

 \Box Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file. A[3:0] A[3:0] 32 bits

16

Register File

4:16 Decoder

4:16 Decode

- Decoder specifications:
	- 16 word register file
	- Each word is 32 bits wide
	- Each bit presents load of 3 unit-sized transistors
	- True and complementary address inputs A[3:0]
	- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
	- How many stages to use?
	- How large should each gate be?
	- How fast can decoder operate?

CMOS VLSI Design 4 th Ed. **4 4 4 4 4 6:** Logical Effort **4**

16 words

8 words

Delay in a Logic Gate

- Express delays in process-independent unit
- Delay has two components: $d = f + p$
- *f*: *effort delay = gh* (a.k.a. stage effort)
	- Again has two components
- *g*: *logical effort*
	- Measures relative ability of gate to deliver current
	- $-$ g \equiv 1 for inverter
- \Box *h*: *electrical effort* = C_{out} / C_{in}
	- Ratio of output to input capacitance
	- Sometimes called fanout
	- *p*: parasitic delay
		- Represents delay of gate driving no load
		- Set by internal parasitic capacitance

CMOS VLSI Design Design 4th Ed. 6: Logical Effort 5

 3 ps in 65 nm process 60 ps in 0.6 um process

 d_{abs}

 τ

 $d =$

3RC

Delay Plots

 $d = f + p$ $= gh + p$

Computing Logical Effort

- DEF: *Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current*.
- \Box Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

Catalog of Gates

□ Logical effort of common gates

Computing Parasitic Delay

- DEF: The parasitic delay of a gate is the delay of the gate when it drives zero load.
- It can be estimated with Elmore RC delay models.
- An estimate is to count only diffusion capacitance on the output node (ignore internal node delays)

 $C_{\text{out}} = 3$ $p = 3/3$

 $p = 6/3$

$$
C_{\text{out}} = 6
$$

$$
p = 6/3
$$

CMOS VLSI Design 4 th Ed. **9 9**

Catalog of Gates

 \Box Parasitic delay of common gates

– In multiples of p_{inv} (\approx 1)

Gate type	Number of inputs				
		2	3		n
Inverter					
NAND		$\overline{2}$	3		n
NOR		$\overline{2}$	3		n
Tristate / mux	$\overline{2}$	4	6	8	2n
XOR, XNOR			6	8	

Parasitic Delay Note

- \Box This method of estimating parasitic delay is obviously crude.
- \Box More refined estimates use the Elmore delay counting internal parasitics
- \Box However, optimizing transistor size in a particular circuit is weakly dependent on the parasitic delay
- \Box it is important to realize that parasitic delay grows more than linearly with the number of inputs in a real NAND or NOR circuit

Example: NAND Gate

n-input NAND gate parasitic delay

$$
t_{pd} = R(3nC) + \sum_{i=1}^{n-1} \left(\frac{iR}{n}\right)(nC) = \left(\frac{n^2}{2} + \frac{5}{2}n\right)RC\tag{4.23}
$$

 In practice, it is rarely advisable to construct a gate with more than four to five series transistors.

Example: Ring Oscillator

 \Box Estimate the frequency of an N-stage ring oscillator

Logical Effort: $g =$ Electrical Effort: $h =$ Parasitic Delay: $p =$ Stage Delay: $d =$ Frequency: $f_{osc} =$

Example: FO4 Inverter

 \Box Estimate the delay of a fanout-of-4 (FO4) inverter

- Logical Effort: $g =$ Electrical Effort: $h =$ Parasitic Delay: $p =$
- Stage Delay: $d =$

Drive

- \Box A standard cell library contains multiple sizes of each common gate.
- \Box The sizes are typically labeled with their drive.
- \Box For example, a unit inverter may be called inv 1x. An inverter of eight times unit size is called inv 8x. A 2-input NAND that delivers the same current as the inverter is called nand2 1x.
- \Box If we redefine a unit inverter to have one unit of input capacitance, then the drive of an arbitrary gate is:

$$
x = \frac{c_{in}}{g} \qquad \to \qquad d = \frac{c_{out}}{x} + p
$$

Limitations to the Linear Delay Model

- Input and Output Slopes: inputs do not change abruptly
- Input arrival times: not all inputs arrive at the same instance
- Velocity saturation: Series transistors see less velocity saturation and hence have lower resistance than we estimate
- Voltage Dependence: delay will vary if the supply or threshold voltage is changed
- Gate-Source Capacitance: is not zero for internal nodes
- Bootstrapping: gate-drain capacitances couples input/output which increases the delay.

Multistage Logic Networks

 \Box Logical effort generalizes to multistage networks \Box Path Logical Effort $G = \prod g_i$

Path Electrical Effort

$$
H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}
$$

Path Effort

$$
F=\prod f_i=\prod g_ih_i
$$

CMOS VLSI Design 4 th Ed. **17 17**

Multistage Logic Networks

 \Box Logical effort generalizes to multistage networks \Box Path Logical Effort $G = \prod g_i$

- \Box Path Electrical Effort $H = \frac{C_{out-path}}{D}$ *Path Effort in path C* $H = \frac{out-}{}$ *C* $F = \prod f_i = \prod g_i h_i$
	-
- Can we write $F = GH$?

Paths that Branch

□ No! Consider paths that branch:

Branching Effort

Introduce *branching effort*

– Accounts for branching between stages in path

$$
b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}
$$

$$
B = \prod b_i
$$

 Note:
Now we compute the path effect

 \Box Now we compute the path effort $- F = GBH$

Multistage Delays

 \Box Path Effort Delay

$$
D_F = \sum f_i
$$

 \Box Path Parasitic Delay

$$
P = \sum p_i
$$

□ Path Delay

$$
D = \sum d_i = D_F + P
$$

Designing Fast Circuits

$$
D = \sum d_i = D_F + P
$$

Delay is smallest when each stage bears same effort

$$
\hat{f}=g_i h_i = F^{\frac{1}{N}}
$$

 \Box Thus minimum delay of N stage path is

 \Box This is a key result of logical effort

- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

 \Box How wide should the gates be for least delay?

$$
\hat{f} = gh = g \frac{C_{out}}{C_{in}}\n\n\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}
$$

- □ Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- \Box Check work by verifying input cap spec is met.

Example: 3-stage path

Delay $D =$

Example: 3-stage path

Work backward for sizes

 $V =$

 $x =$

CMOS VLSI Design 4 th Ed. **19. 26 26 26 26 26 26 26**

Best Number of Stages

 \Box How many stages should a path use?

- Minimizing number of stages is not always fastest
- **T** Example: drive 64-bit datapath with unit inverter

 $D =$

1 $\left\langle 1 / \right\rangle$ 1 $\left\langle 1 / \right\rangle$ 1

Derivation

 \Box Define best stage effort 1 ρ = F $^{\scriptscriptstyle N}$

$$
p_{\text{inv}} + \rho (1 - \ln \rho) = 0
$$

Best Stage Effort

$$
p_{\text{inv}} + \rho \left(1 - \ln \rho \right) = 0
$$
 has no closed-form solution

Neglecting parasitics ($p_{inv} = 0$), we find $p = 2.718$ (e) \Box For $p_{inv} = 1$, solve numerically for $p = 3.59$

Sensitivity Analysis

Example, Revisited

- \Box Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file. A[3:0] A[3:0] 32 bits
	- Decoder specifications:
		- 16 word register file
		- Each word is 32 bits wide
		- Each bit presents load of 3 unit-sized transistors
		- True and complementary address inputs A[3:0]
		- Each input may drive 10 unit-sized transistors
	- Ben needs to decide:
		- How many stages to use?
		- How large should each gate be?
		- How fast can decoder operate?

Number of Stages

 \Box Decoder effort is mainly electrical and branching Electrical Effort: $H =$ Branching Effort: $B =$

 \Box If we neglect logical effort (assume $G = 1$) Path Effort: $F =$

Number of Stages: $N =$

 \Box Try a -stage design

Gate Sizes & Delay

Comparison

 \Box Compare many alternatives with a spreadsheet $D = N(76.8 \text{ G})^{1/N} + P$

Review of Definitions

Method of Logical Effort

- 1) Compute path effort
- 2) Estimate best number of stages
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort
- 6) Find gate sizes

 $F = GBH$

 $N = \log_4 F$

$$
D = NF^{\frac{1}{N}} + P
$$

$$
\hat{f} = F^{\frac{1}{N}}
$$

Limits of Logical Effort

- □ Chicken and egg problem
	- Need path to compute G
	- But don't know number of stages without G
- □ Simplistic delay model
	- Neglects input rise time effects
- Interconnect
	- Iteration required in designs with wire
- **Q** Maximum speed only
	- Not minimum area/power for constrained delay

Iterative Solutions for Sizing

- \Box Not all logical effort problems can be solved using the systematic steps.
- Example:

For the following circuit, write an expression for the arrival time of the output as a function of the gate drives. Determine the sizes to achieve minimum delay.

Solution

□ The input capacitance of a gate with logical effort *g* and drive *x* is $C_{\text{in}} = g x$

> $d_1 = 1 + \frac{4}{3}x_2 + \frac{5}{3}x_3$ $rac{7}{3} \frac{x_4}{x_2}$ $d_2 = 2 +$ $2 + \frac{7}{3} \frac{x_4}{x_3}$ $d_3 =$ 3+ $\frac{x_5}{x_4}$ + $\frac{10}{x_4}$ $d_4 =$ 1+ $\frac{12}{x_5}$ $d_5 =$

\Box The arrival time can be expressed as:

$$
a_1 = d_1
$$

\n
$$
a_2 = a_1 + d_2
$$

\n
$$
a_3 = a_1 + d_3
$$

\n
$$
a_4 = \max\{a_2, a_3\} + d_4
$$

\n
$$
a_5 = a_4 + d_5 = d_1 + \max\{d_2, d_3\} + d_4 + d_5
$$

\Box Use an automatic solver to choose the drives to minimize the latest arrival time

Example Observations

- In paths that branch, each fork should contribute equal delay.
- \Box If one fork were faster than the other, it could be downsized to reduce the capacitance it presents to the stage before the branch.
- \Box The stage efforts, *f*, are equal for each gate in paths with no fixed capacitive loads, but may change after a load.
- \Box To minimize delay, upsize gates on nodes with large fixed capacitances to reduce the effort borne by the gate, while only slightly increasing the effort borne by the predecessor.

Summary

 \Box Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are \sim 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $log_{4}F$ FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- \Box Provides language for discussing fast circuits
	- But requires practice to master