

Lecture 6: Logical Effort

NEIL H. E. WESTE DAVID MONEY HARRIS

Outline

- □ Logical Effort
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

Chip designers face a bewildering array of choices

- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?
- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Example

Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

1:16 Decode

16

Register File

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

CMOS VLSI Design 4th Ed.

16 words

Delay in a Logic Gate

- Express delays in process-independent unit
- Delay has two components: d = f + p
 - *f*: *effort delay* = *gh* (a.k.a. stage effort)
 - Again has two components
 - g: logical effort

- Measures relative ability of gate to deliver current
- $g \equiv 1$ for inverter
- $\square \quad h: electrical effort = C_{out} / C_{in}$
 - Ratio of output to input capacitance
 - Sometimes called fanout
 - p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

CMOS VLSI Design 4th Ed.

 $d = \frac{d_{abs}}{d}$

3RC

3 ps in 65 nm process

60 ps in 0.6 µm process

 $\tau =$

 \approx

Delay Plots

$$d = f + p$$
$$= gh + p$$

6: Logical Effort

CMOS VLSI Design ^{4th Ed.}

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

CMOS VLSI Design 4th Ed.

Catalog of Gates

□ Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

6: Logical Effort

Computing Parasitic Delay

- DEF: The parasitic delay of a gate is the delay of the gate when it drives zero load.
- It can be estimated with Elmore RC delay models.
- An estimate is to count only diffusion capacitance on the output node (ignore internal node delays)

 $C_{out} = 3$

p = 3/3

$$C_{out} = 6$$

p = 6/3

6: Logical Effort

CMOS VLSI Design 4th Ed.

Catalog of Gates

Parasitic delay of common gates

- In multiples of p_{inv} (\approx 1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

6: Logical Effort

Parasitic Delay Note

- This method of estimating parasitic delay is obviously crude.
- More refined estimates use the Elmore delay counting internal parasitics
- However, optimizing transistor size in a particular circuit is weakly dependent on the parasitic delay
- it is important to realize that parasitic delay grows more than linearly with the number of inputs in a real NAND or NOR circuit

Example: NAND Gate

n-input NAND gate parasitic delay

$$t_{pd} = R(3nC) + \sum_{i=1}^{n-1} (\frac{iR}{n})(nC) = \left(\frac{n^2}{2} + \frac{5}{2}n\right)RC$$
(4.23)

In practice, it is rarely advisable to construct a gate with more than four to five series transistors.

Example: Ring Oscillator

□ Estimate the frequency of an N-stage ring oscillator

Logical Effort:g =Electrical Effort:h =Parasitic Delay:p =Stage Delay:d =Frequency: $f_{osc} =$

Example: FO4 Inverter

□ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = Electrical Effort: h = Parasitic Delay: p = Stage Delay: d =

Drive

- A standard cell library contains multiple sizes of each common gate.
- □ The sizes are typically labeled with their drive.
- For example, a unit inverter may be called inv_1x. An inverter of eight times unit size is called inv_8x. A 2-input NAND that delivers the same current as the inverter is called nand2_1x.
- If we redefine a unit inverter to have one unit of input capacitance, then the drive of an arbitrary gate is:

$$x = \frac{C_{in}}{g} \rightarrow d = \frac{C_{out}}{x} + p$$

6: Logical Effort

Limitations to the Linear Delay Model

- Input and Output Slopes: inputs do not change abruptly
- Input arrival times: not all inputs arrive at the same instance
- Velocity saturation: Series transistors see less velocity saturation and hence have lower resistance than we estimate
- Voltage Dependence: delay will vary if the supply or threshold voltage is changed
- Gate-Source Capacitance: is not zero for internal nodes
- Bootstrapping: gate-drain capacitances couples input/output which increases the delay.

Multistage Logic Networks

□ Logical effort generalizes to multistage networks □ Path Logical Effort $G = \prod g_i$

Path Electrical Effort

$$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$$

Path Effort

$$F = \prod f_i = \prod g_i h_i$$

6: Logical Effort

CMOS VLSI Design 4th Ed.

Multistage Logic Networks

- □ Logical effort generalizes to multistage networks □ Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$ Path Effort $F = \prod f_i = \prod g_i h_i$
- $\Box \quad Can we write F = GH?$

Paths that Branch

□ No! Consider paths that branch:

-F = GBH

Multistage Delays

Path Effort Delay

$$D_F = \sum f_i$$

Path Parasitic Delay

$$P = \sum p_i$$

Path Delay

$$D = \sum d_i = D_F + P$$

CMOS VLSI Design ^{4th Ed.}

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus minimum delay of N stage path is

□ This is a key result of logical effort

- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

□ How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$
$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

6: Logical Effort

CMOS VLSI Design 4th Ed.

Example: 3-stage path

Example: 3-stage path

Work backward for sizes

y =

X =

6: Logical Effort

CMOS VLSI Design 4th Ed.

Best Number of Stages

□ How many stages should a path use?

- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

6: Logical Effort

CMOS VLSI Design 4th Ed.

Derivation
Consider adding inverters to end of path
- How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

 \Box Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho \left(1 - \ln \rho \right) = 0$$

6: Logical Effort

Best Stage Effort

$$\square p_{inv} + \rho (1 - \ln \rho) = 0$$
 has no closed-form solution

□ Neglecting parasitics ($p_{inv} = 0$), we find $\rho = 2.718$ (e) □ For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

☐ How sensitive is delay to using exactly the best number of stages?

 \Box 2.4 < ρ < 6 gives delay within 15% of optimal

- We can be sloppy!
- I like $\rho = 4$

Example, Revisited

Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

16 Decode

16

Register File

- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

CMOS VLSI Design 4th Ed.

16 words

Number of Stages

Decoder effort is mainly electrical and branching
 Electrical Effort: H =
 Branching Effort: B =

If we neglect logical effort (assume G = 1)
 Path Effort: F =

Number of Stages: N =

□ Try a -stage design

Gate Sizes & Delay

6: Logical Effort

CMOS VLSI Design ^{4th Ed.}

Comparison

Compare many alternatives with a spreadsheet

D = N(76.8 G)^{1/N} + P

Design	Ν	G	Ρ	D
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

6: Logical Effort

Review of Definitions

Term	Stage	Path
number of stages	1	Ν
logical effort	8	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = rac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	р	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

- 1) Compute path effort
- 2) Estimate best number of stages
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort
- 6) Find gate sizes

F = GBH

 $N = \log_4 F$

$$D = NF^{\frac{1}{N}} + P$$
$$\hat{f} = F^{\frac{1}{N}}$$

CMOS VLSI Design ^{4th Ed.}

Limits of Logical Effort

- □ Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- □ Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- □ Maximum speed only
 - Not minimum area/power for constrained delay

Iterative Solutions for Sizing

- Not all logical effort problems can be solved using the systematic steps.
- Example:

For the following circuit, write an expression for the arrival time of the output as a function of the gate drives. Determine the sizes to achieve minimum delay.

6: Logical Effort

CMOS VLSI Design ^{4th Ed.}

Solution

□ The input capacitance of a gate with logical effort g and drive x is $C_{in} = gx$

$d_1 =$	1+	$\frac{4}{3}x_2 +$	$\frac{5}{3}x_3$			
$d_2 =$		2+		$\frac{7}{3}\frac{x_4}{x_2}$		
$d_3 =$			2+	$\frac{7}{3}\frac{x_4}{x_3}$		
$d_4 =$				3+	$\frac{x_5}{x_4}$ +	$\frac{10}{x_4}$
$d_{5} =$					1+	$\frac{12}{x_5}$

6: Logical Effort

CMOS VLSI Design 4th Ed.

□ The arrival time can be expressed as:

$$\begin{aligned} a_1 &= d_1 \\ a_2 &= a_1 + d_2 \\ a_3 &= a_1 + d_3 \\ a_4 &= \max\left\{a_2, a_3\right\} + d_4 \\ a_5 &= a_4 + d_5 = d_1 + \max\left\{d_2, d_3\right\} + d_4 + d_5 \end{aligned}$$

6: Logical Effort

CMOS VLSI Design ^{4th Ed.}

Use an automatic solver to choose the drives to minimize the latest arrival time

Stage (i)	x _i	f _i	c _{in}	d _i	a _i
1: INV	1	4.85	1	5.85	5.85
2: NAND2	1.62	4.85	2.16	6.85	12.70
3: NOR2	1.62	4.85	2.70	6.85	12.70
4: NOR3	3.37	4.85	7.86	7.85	20.55
5: INV	6.35	1.89	6.35	2.89	23.44

Example Observations

- In paths that branch, each fork should contribute equal delay.
- If one fork were faster than the other, it could be downsized to reduce the capacitance it presents to the stage before the branch.
- The stage efforts, f, are equal for each gate in paths with no fixed capacitive loads, but may change after a load.
- To minimize delay, upsize gates on nodes with large fixed capacitances to reduce the effort borne by the gate, while only slightly increasing the effort borne by the predecessor.

Summary

□ Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about log₄F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master