

Lecture 5: DC & Transient Response

Outline

- Pass Transistors
- DC Response
- □ Logic Levels and Noise Margins
- Transient Response
- □ RC Delay Models
- Delay Estimation

Pass Transistors

- ❑ What if source > 0?
 - e.g. pass transistor passing V_{DD}
- $\Box V_g = V_{DD}$
 - If V_s > V_{DD}-V_t, V_{gs} < V_t

- Hence transistor would turn itself off
- \Box nMOS pass transistors pull no higher than V_{DD}-V_{tn}
 - Called a degraded "1"
 - Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}
 - ❑ Transmission gates are needed to pass both 0 and 1

DC Response

- Ex: Inverter
 - When $V_{in} = 0$ -> $V_{out} = V_{DD}$ When $V_{in} = V_{DD}$ -> $V_{out} = 0$

 - In between, V_{out} depends on transistor size and current
 - By KCL, must settle such that
 - $|I_{dsn} = |I_{dsp}|$
 - We could solve equations
 - But graphical solution gives more insight

 $V_{\underline{D}}$

 ${\rm V}_{\rm in}$

dsp

Transistor Operation

- Current depends on region of transistor behavior
- $\hfill\square$ For what V_{in} and V_{out} are nMOS and pMOS in
 - Cutoff?
 - Linear?
 - Saturation?

nMOS Operation

pMOS Operation

Beta Ratio

- \Box If β_p / $\beta_n \neq$ 1, switching point will move from $V_{DD}/2$
- □ Called *skewed* gate
- □ Other gates: collapse into equivalent inverter

Transient Response

- \Box *DC analysis* tells us V_{out} if V_{in} is constant
- **D** Transient analysis tells us $V_{out}(t)$ if $V_{in}(t)$ changes
 - Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From 0 to V_{DD} or vice versa

Delay Definitions

Delay Definitions

- □ **t**_{cdr}: *rising contamination delay*
 - From input to rising output crossing $V_{\text{DD}}/2$
- □ **t**_{cdf}: falling contamination delay
 - From input to falling output crossing $V_{\text{DD}}/2$
- □ **t**_{cd}: average contamination delay

$$- t_{pd} = (t_{cdr} + t_{cdf})/2$$

Simulated Inverter Delay

- ❑ Solving differential equations by hand is too hard
- □ SPICE simulator solves the equations numerically
 - Uses more accurate I-V models too!
- But simulations take time to write, may hide insight

Delay Estimation

- We would like to be able to easily estimate delay
 - Not as accurate as simulation
 - But easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Use RC delay models to estimate delay
 - C = total capacitance on output node
 - Use effective resistance R
 - So that $t_{pd} = RC$
 - **Characterize transistors by finding their effective R**
 - Depends on average current as gate switches

Effective Resistance

□ Shockley models have limited value

- Not accurate enough for modern transistors
- Too complicated for much hand analysis

□ Simplification: treat transistor as resistor

– Replace $I_{ds}(V_{ds},\,V_{gs})$ with effective resistance R

• $I_{ds} = V_{ds}/R$

– R averaged across switching of digital gate

- □ Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

RC Delay Model

Use equivalent circuits for MOS transistors

- Ideal switch + capacitance and ON resistance
- Unit nMOS has resistance R, capacitance C
- Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width

1 Resistance inversely proportional to width

Inverter Delay Estimate

□ Estimate the delay of a fanout-of-1 inverter

d = 6RC

Example: 3-input NAND

Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R).

5: DC and Transient Response

CMOS VLSI Design 4th Ed.

32

Delay Components

- Delay has two parts
 - Parasitic delay
 - 9 or 12 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Diffusion Capacitance

- ❑ We assumed contacted diffusion on every s / d.
- Good layout minimizes diffusion area
- ❑ Ex: NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
 - Merged uncontacted diffusion might help too

