

Lecture 4: Nonideal Transistor Theory

Outline **Nonideal Transistor Behavior** High Field Effects Mobility Degradation: scattering due to high vertical field (Vgs/tox) Velocity Saturation: due to high lateral field (Vds/L) - Channel Length Modulation: reducing channel length in sat Threshold Voltage Effects Body Effect: Vt increases for (Vsb>0) Drain-Induced Barrier Lowering: Vt lowers for larger Vd Short Channel Effect: Vt raises for larger channel length - Leakage Subthreshold Leakage: current drops off exp for Vgs<Vt Gate Leakage: tunneling due to reduced gate widths Junction Leakage: due to reverse junction current in S&D Process and Environmental Variations: especially temperature **4: Nonideal Transistor Theory** CMOS VLSI Design 4th Ed. 2

Electric Fields Effects

 \Box Vertical electric field: $E_{vert} =$

- Attracts carriers into channel

– Long channel: ${\rm Q}_{\rm channel} \propto {\rm E}_{\rm vert}$

□ Lateral electric field: $E_{lat} =$

- Accelerates carriers from drain to source

– Long channel: v = μE_{lat}

Coffee Cart Analogy

- □ Tired student runs from VLSI lab to coffee cart
- □ Freshmen are pouring out of the physics lecture hall
- \Box V_{ds} is how long you have been up
 - Your velocity = fatigue × mobility
- \Box V_{gs} is a wind blowing you against the glass (SiO₂) wall
- At high V_{gs}, you are buffeted against the wall
 - Mobility degradation
- ☐ At high V_{ds}, you scatter off freshmen, fall down, get up
 - Velocity saturation
 - Don't confuse this with the saturation region

Vel Sat I-V Effects

 $\hfill\square$ Ideal transistor ON current increases with $V_{DD}{}^2$

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{(V_{gs} - V_t)^2}{2} = \frac{\beta}{2} (V_{gs} - V_t)^2$$

Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{\rm ox} W \left(V_{gs} - V_t \right) v_{\rm max}$$

Real transistors are partially velocity saturated

– Approximate with α -power law model

$$-$$
 I_{ds} \propto V_{DD} ^{$lpha$}

 $-1 < \alpha < 2$ determined empirically (≈ 1.3 for 65 nm)

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

11

Chan Length Mod I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

- \Box λ = channel length modulation coefficient
 - not feature size
 - Empirically fit to I-V characteristics

Threshold Voltage Effects

- \Box V_t is V_{gs} for which the channel starts to invert
- ☐ Ideal models assumed V_t is constant
- Really depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

Body Effect

Body is a fourth transistor terminal

- **I** V_{sb} affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

$$\phi_s = 2v_T \ln \frac{N_A}{n_i}$$

- Depends on doping level N_A
- And intrinsic carrier concentration n_i
- $\Box \quad \gamma = body \ effect \ coefficient$

$$\gamma = \frac{t_{\rm ox}}{\varepsilon_{\rm ox}} \sqrt{2q\varepsilon_{\rm si}N_A} = \frac{\sqrt{2q\varepsilon_{\rm si}}N_A}{C_{\rm ox}}$$

4: Nonideal Transistor Theory CMOS VLSI Design ^{4th Ed.}

Body Effect Cont.

□ For small source-to-body voltage, treat as linear

$$V_t = V_{t0} + k_\gamma V_{sb}$$

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\varepsilon_{si}N_A}{v_T \ln \frac{N_A}{n_i}}}}{2C_{ox}}$$

4: Nonideal Transistor Theory CMOS VLSI Design ^{4th Ed.}

DIBL

- Electric field from drain affects channel
- □ More pronounced in small transistors where the drain is closer to the channel
- Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

High drain voltage causes current to _

Short Channel Effect

- In small transistors, source/drain depletion regions extend into the channel
 - Impacts the amount of charge required to invert the channel
 - And thus makes V_t a function of channel length
- \Box Short channel effect: V_t increases with L
 - Some processes exhibit a reverse short channel effect in which V_t decreases with L

Leakage Sources

- □ Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
 - Dominant source in contemporary transistors
- Gate leakage
 - Tunneling through ultrathin gate dielectric
 - ❑ Junction leakage
 - Reverse-biased PN junction diode current

10⁹ -

10⁶

10³

100

10-3

10-6

10-9

V_{DD} trend

0.3

0.6

0.9

1.2 1.5

- Carriers tunnel thorough very thin gate oxides
- Exponentially sensitive to t_{ox} and V_{DD}

$$I_{\text{gate}} = WA \left(\frac{V_{DD}}{t_{\text{ox}}}\right)^2 e^{-B \frac{t_{\text{ox}}}{V_{DD}}}$$

- A and B are tech constants
- Greater for electrons
 - So nMOS gates leak more
- **D** Negligible for older processes $(t_{ox} > 20 \text{ Å})^{V_{DD}}$ From [Song01]
- Critically important at 65 nm and below (t_{ox} ≈ 10.5 Å)

10 Å

12 Â

15 Å 19 Å

1.8

Junction Leakage

□ Reverse-biased p-n junctions have some leakage

- Ordinary diode leakage
- Band-to-band tunneling (BTBT)
- Gate-induced drain leakage (GIDL)

Diode Leakage

Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

At any significant negative diode voltage, $I_D = -I_s$

I_s depends on doping levels

- And area and perimeter of diffusion regions
- Typically < 1 fA/ μ m² (negligible)

Band-to-Band Tunneling

□ Tunneling across heavily doped p-n junctions

 Especially sidewall between drain & channel when *halo doping* is used to increase V_t

Increases junction leakage to significant levels

$$I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} e^{-B \frac{E_g^{1.5}}{E_j}} \qquad \qquad E_j = \sqrt{\frac{2qN_{balo}N_{sd}}{\varepsilon \left(N_{balo} + N_{sd}\right)}} \left(V_{DD} + v_T \ln \frac{N_{balo}N_{sd}}{n_i^2}\right)$$

- X_i: sidewall junction depth
- E_q: bandgap voltage
- A, B: tech constants

Gate-Induced Drain Leakage

Occurs at overlap between gate and drain

- Most pronounced when drain is at $V_{\text{DD}},$ gate is at a negative voltage
- Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

26

So What?

- □ So what if transistors are not ideal?
 - They still behave like switches.
 - But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

Environmental Variation

 $\hfill\square\hfill V_{DD}$ and T also vary in time and space

□ Fast:

Corner	Voltage Temperature	
F		
Т	1.8	70 C
S		

Process Corners

Process corners describe worst case variations

 If a design works in all corners, it will probably work for any variation.

Describe corner with four letters (T, F, S)

- nMOS speed
- pMOS speed
- Voltage
- Temperature

Important Corners

□ Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time				
Power				
Subthreshold				
leakage				