

Lecture 3: CMOS Transistor Theory

Outline

- □ Introduction
- MOS Capacitor
- nMOS I-V Characteristics
- pMOS I-V Characteristics
- □ Gate and Diffusion Capacitance

Introduction

Terminal Voltages

Mode of operation depends on V_g, V_d, V_s

$$- V_{gs} = V_g - V_s$$

$$- V_{gd} = V_g - V_d$$

$$- V_{ds} = V_d - V_s = V_{gs} - V_{gd}$$

Source and drain are symmetric diffusion terminals

- By convention, source is terminal at lower voltage

- Hence $V_{ds} \ge 0$

□ nMOS body is grounded. First assume source is 0 too.

- **Three regions of operation**
 - Cutoff
 - Linear
 - Saturation

CMOS VLSI Design 4th Ed.

nMOS Cutoff

nMOS Linear

nMOS Saturation

- □ Channel pinches off
- $\Box I_{ds} independent of V_{ds}$
- We say current saturates
- Similar to current source

3: CMOS Transistor Theory

I-V Characteristics

 $\hfill\square$ In Linear region, I_{ds} depends on

- How much charge is in the channel?
- How fast is the charge moving?

Carrier velocity

- □ Charge is carried by e-
- Electrons are propelled by the lateral electric field between source and drain

– E =

□ Carrier velocity *v* proportional to lateral E-field

- *v* =

Time for carrier to cross channel:

- *t* =

nMOS Linear I-V

Now we know

- How much charge $Q_{channel}$ is in the channel
- How much time *t* each carrier takes to cross

pMOS I-V

□ All dopings and voltages are inverted for pMOS

- Source is the more positive terminal

 \Box Mobility μ_{p} is determined by holes

– Typically 2-3x lower than that of electrons μ_n

- 120 cm²/V•s in AMI 0.6 μ m process

- Thus pMOS must be wider to provide same current
 - In this class, assume

$$\mu_n$$
 / μ_p = 2

3: CMOS Transistor Theory

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion
 - These are parasitic capacitances

3: CMOS Transistor Theory

Diffusion Capacitance

- $\Box \ C_{sb}, C_{db}$
 - ❑ Undesirable, called *parasitic* capacitance
 - Capacitance depends on area and perimeter
 - Use small diffusion nodes
 - Comparable to C_g
 for contacted diff
 - $-\frac{1}{2}C_{g}$ for uncontacted ^{Source2}
 - Varies with process

CMOS VLSI Design 4th Ed.

MOS Capacitance Model

- The intrinsic capacitance has 3 components: Cgb, Cgs, and Cgd
- Cut-off: -Accumulation(Vgs<0) :Cgb=Co-Depletion (Vgs<Vt):

1/Cgb=1/Co+1/Cdep (series cap)

- Linear (Inversion Vgs>Vt): channel is connected to S and D→Cgb=0
 - − For Vds=0 \rightarrow Cgs=Cds=Co/2
 - For Vds>0: drain becomes less inverted and Cds decreases
 - Saturation (Vds>Vsat): channel pinches off and all capacitance is to the source.

For ideal transistor Cgs=2/3Co

MOS Diffusion Capacitance

- The p-n junction between the source diffusion and the body contributes parasitic capacitance across the depletion region
- The capacitance depends on both the area AS and sidewall perimeter PS of the source diffusion region
- Parasitic capacitance also depends on the bias conditions and the fabrication technology parameters
- A MOS transistor can be viewed as a four-terminal device with capacitances between each terminal pair

