

Lecture 1: Circuits & Layout

Outline

- A Brief History
- \Box CMOS Gate Design
- \Box Pass Transistors
- \Box CMOS Latches & Flip-Flops
- \Box Standard Cell Layouts
- \Box Stick Diagrams

A Brief History

□ 1958: First integrated circuit

- –Flip-flop using two transistors
- Built by Jack Kilby at Texas **Instruments**
- \Box 2010
	- and the state of the Intel Core i7 µprocessor
		- 2.3 billion transistors
	- – 64 Gb Flash memory
		- > 16 billion transistors

Courtesy Texas Instruments

Growth Rate

- □ 53% compound annual growth rate over 50 years
	- –No other technology has grown so fast so long
- \Box Driven by miniaturization of transistors
	- Smaller is cheaper, faster, lower in power!
	- Revolutionary effects on society

[Moore65] Electronics Magazine

Invention of the Transistor

- \Box Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- \Box 1947: first point contact transistor
	- John Bardeen and Walter Brattain at Bell Labs
	- See *Crystal Fire*

by Riordan, Hoddeson

AT&T Archives. Reprinted with permission.

Transistor Types

□ Bipolar transistors

- –npn or pnp silicon structure
- Small current into very thin base layer controls large currents between emitter and collector
- Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
	- and the state of the nMOS and pMOS MOSFETS
	- – Voltage applied to insulated gate controls current between source and drain
	- Low power allows very high integration

MOS Integrated Circuits

\Box 1970's processes usually had only nMOS transistors –Inexpensive, but consume power while idle

Moore's Law: Then

\Box 1965: Gordon Moore plotted transistor on each chip

- –Fit straight line on semilog scale
- Transistor counts have doubled every 26 months

Integration Levels

- **SSI**: 10 gates
- **MSI**: 1000 gates
- **LSI**: 10,000 gates
-

CMOS Gate Design

Q Activity:

–Sketch a 4-input CMOS NOR gate

Series and Parallel

Conduction Complement

- \Box Complementary CMOS gates always produce 0 or 1
- \Box Ex: NAND gate
	- Series nMOS: Y=0 when both inputs are 1
	- Thus Y=1 when either input is 0
	- Requires parallel pMOS

- \Box Rule of *Conduction Complements*
	- Pull-up network is complement of pull-down
	- Parallel -> series, series -> parallel

 Compound gates can do any inverting function \Box Ex: $Y = A\Box B + C\Box D$ (AND-AND-OR-INVERT, AOI22)

Signal Strength

Strength of signal

–How close it approximates ideal voltage source

 \Box V_{DD} and GND rails are strongest 1 and 0

□ nMOS pass strong 0

But degraded or weak 1

 \Box pMOS pass strong 1

But degraded or weak 0

 \Box Thus nMOS are best for pull-down network

 \Box Pass transistors produce degraded outputs \Box *Transmission gates* pass both 0 and 1 well

Nonrestoring Tristate

- \Box Transmission gate acts as tristate buffer
	- –Only two transistors
	- But *nonrestoring*
		- Noise on A is passed on to Y

Tristate Inverter

 \Box Tristate inverter produces restored output

- –Violates conduction complement rule
- Because we want a Z output

Multiplexers

□ 2:1 multiplexer chooses between two inputs

 \Box $Y = SD_1 + SD_0$ (too many transistors)

 \Box How many transistors are needed?

Inverting Mux

- \Box Inverting multiplexer
	- –Use compound AOI22
	- Or pair of tristate inverters
	- Essentially the same thing
- \Box Noninverting multiplexer adds an inverter

□ 4:1 mux chooses one of 4 inputs using two selects

- Two levels of 2:1 muxes
- Or four tristates

Q

Race Condition

 \Box Back-to-back flops can malfunction from clock skew

- –Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called *hold-time failure* or *race condition*

Nonoverlapping Clocks

 \Box Nonoverlapping clocks can prevent races

- –As long as nonoverlap exceeds clock skew
- \Box We will use them in this class for safe design
	- Industry manages skew more carefully instead

Gate Layout

- \Box Layout can be very time consuming
	- –Design gates to fit together nicely
	- Build a library of standard cells
- \Box Standard cell design methodology
	- $\rm V_{\scriptsize DD}$ and GND should abut (standard height)
	- Adjacent gates should satisfy design rules
	- nMOS at bottom and pMOS at top
	- All gates include well and substrate contacts

Example: NAND3

- \Box Horizontal N-diffusion and p-diffusion strips
- \Box Vertical polysilicon gates
- \Box \Box Metal1 V_{DD} rail at top
- \Box Metal1 GND rail at bottom
- \Box 32 λ by 40 λ

Stick Diagrams

 \Box *Stick diagrams* help plan layout quickly

- Need not be to scale
- Draw with color pencils or dry-erase markers

Wiring Tracks

 A *wiring track* is the space required for a wire 4 λ width, 4 λ spacing from neighbor = 8 λ pitch Transistors also consume one wiring track \Box 4λ 4λ ANY 14 x 4 λ (b) 図 4λ 4λ 図 (a) **CMOS VLSI Design 4th Ed. 1: Circuits & Layout 42**

 \Box Wells must surround transistors by 6 λ

- Implies 12 λ between opposite transistor flavors
- Leaves room for one wire track

Area Estimation

Estimate area by counting wiring tracks

–Multiply by 8 to express in λ

 $\overline{}$

