
Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit Modeling with
Hardware Description Languages

Prof. Hubert Kaeslin
Microelectronics Design Center

ETH Zürich

Morgan Kaufmann “Top-Down Digital VLSI Design” Chapter 4

last update: July 18, 2014

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 1 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Content

You will learn

to write high-quality HDL models for circuit synthesis and simulation.

I Why hardware synthesis?

I Key concepts behind hardware description languages
I What sets HDLs apart from a programming language
I Essential VHDL and/or SystemVerilog language constructs

I Putting HDLs to service for hardware synthesis
I Synthesis subset
I Patterns for registers and finite state machines
I Timing constraints
I How to establish a register transfer level model

I VHDL versus SystemVerilog

Simulation and testbench coding are postponed to chapter 5 “Functional Verification”.

event queue

processes

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 2 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Subject

Motivation and background

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 3 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Why hardware synthesis?

Current situation for VLSI designers:

I Buyers ask for more and more functions on a single chip.

I Technology supports ever higher integration densities (Moore’s law).

I Market pressure vetoes dilation of development times.

Hardware description languages (HDL) and design automation
come to the rescue in four ways:

I Move design entry to higher levels of abstraction.

I Allow designers to focus on functionality as synthesis tools
automate the construction of structural and physical views.

I Facilitate reuse by capturing a circuit description in a parametrized,
technology- and platform-independent form.

I Make functional verification more efficient by supporting stimuli
generation, automatic response checking, assertion-based verification, etc.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 4 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Why hardware synthesis?

Current situation for VLSI designers:

I Buyers ask for more and more functions on a single chip.

I Technology supports ever higher integration densities (Moore’s law).

I Market pressure vetoes dilation of development times.

Hardware description languages (HDL) and design automation
come to the rescue in four ways:

I Move design entry to higher levels of abstraction.

I Allow designers to focus on functionality as synthesis tools
automate the construction of structural and physical views.

I Facilitate reuse by capturing a circuit description in a parametrized,
technology- and platform-independent form.

I Make functional verification more efficient by supporting stimuli
generation, automatic response checking, assertion-based verification, etc.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 4 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Languages for modeling digital hardware I

VHDL An HDL that not only supports structural and behavioral circuit
models but testbench models too. A subset is synthesizable.
Syntactically similar to Ada.

Verilog Conceptually similar to VHDL, no type checking and more limited
capabilities for design abstraction. A subset is synthesizable.
Syntactically similar to C. Superseded by ...

System- A superset of Verilog that includes many advanced features from
Verilog VHDL and from specialized verification languages (OpenVera, PLS).

A subset is synthesizable. Supports object-oriented programming.
SystemC Extends C++ with class libraries and a simulation kernel.

Adds clocking information to C++ functions.
Intended for software/hardware co-design and co-simulation.
Does not support any timing finer than one clock cycle.
Synthesis path is via translation to RTL VHDL or Verilog.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 5 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Languages for modeling digital hardware II

Criterion VHDL Verilog SystemVerilog
Synthesis support yes yes growing
Parametrization & abstract modeling good poor good
Type checking & scoping rules strong none loose
Deterministic event queue mechanism yes not really not really
Modeling of electric phenomena 9-valued 4-valued 4-valued
High-level verification support limited poor excellent

For me, I find VHDL is like swimming with a lifeguard on duty,
whereas Verilog is like swimming with a lifebuoy hanging by the
poolside. (Blogger on EETimes 2011)

I Many companies currently use VHDL for synthesis and SystemVerilog
for system-level verification.

I Will SystemVerilog one day supersede Verilog and VHDL,
and reconcile their user communities?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 6 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Languages for modeling digital hardware II

Criterion VHDL Verilog SystemVerilog
Synthesis support yes yes growing
Parametrization & abstract modeling good poor good
Type checking & scoping rules strong none loose
Deterministic event queue mechanism yes not really not really
Modeling of electric phenomena 9-valued 4-valued 4-valued
High-level verification support limited poor excellent

For me, I find VHDL is like swimming with a lifeguard on duty,
whereas Verilog is like swimming with a lifebuoy hanging by the
poolside. (Blogger on EETimes 2011)

I Many companies currently use VHDL for synthesis and SystemVerilog
for system-level verification.

I Will SystemVerilog one day supersede Verilog and VHDL,
and reconcile their user communities?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 6 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

HDLs shown in the Y-chart

physical
perspective

back-end
design

behavioral
perspective

structural
perspective

front-end
design

physical
perspective

behavioral
perspective

structural
perspective

electrical

logic (aka gate-level)

architecture

system

register transfer

levels of abstraction

FINISH

START

logic synthesis

logic optimization

RTL synthesis

architecture design

transfer
functions

subtasks

truth tables,
state graphs

data moves
and operations

transistors, wires

gates, latches, flip-flops

ALUs, registers, memories

standard cells, 
macrocells

detailed layout
mask polygons,

chip or board

placement
and routing

floorplan,
partitioning

algorithm
and I/O

top blocks

subblocks

physical
perspective

scope of VHDL
and SystemVerilog

scope of SystemC

analog and mixed-
signal extensions

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 7 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

The genesis of VHDL

1983 US DoD commissions IBM, Intermetrics and Texas Instruments to define
a HDL for documentation purposes. Ada is taken as a starting point.
There are no plans for automatic synthesis.

1986 Military restrictions lifted, rights transferred to IEEE.

1987 Language accepted as IEEE 1076 standard.
Event-based simulation tools begin to appear.

1993 Language standard significantly revised to become IEEE 1076-93.
Nine-valued logic system accepted as IEEE 1164 standard.
Though confined to a language subset, synthesis begins to catch on.

1999 A major extension towards modeling of analog and mixed-signal circuits is
accepted as separate a standard IEEE 1076.1.

2002 Standard slightly revised to become IEEE 1076-2002.

2008 IEEE 1076-2008 brings enhanced generics, source code encryption,
embedding of IEEE 1850 Property Specification Language, and more.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 8 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

The genesis of SystemVerilog

1984 Gateway Design Autom. develops Verilog for a proprietary logic simulator.

1989 Gateway acquired by Cadence.

1990 Verilog made an open standard.

1995 Verilog accepted as IEEE 1364 standard. (questionable politics involved)

2001 IEEE 1364-2001 brings major extensions for circuit modeling.

2005 IEEE 1364-2005 is a minor revision.
SystemVerilog, created by the Accellera consortium, is accepted
as a separate standard named IEEE 1800. (more politics involved)

Quiz: “What do Sausage and EDA Standards have in common?”

Answer: “Those who like sausage or EDA standards should never watch
either one be made!” (Stuart Sutherland).

2009 IEEE 1800-2009 standard brings improvements mostly for verification,
Verilog gets absorbed into the SystemVerilog standard.

2013 IEEE 1800-2012 version released.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 9 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

The genesis of SystemVerilog

1984 Gateway Design Autom. develops Verilog for a proprietary logic simulator.

1989 Gateway acquired by Cadence.

1990 Verilog made an open standard.

1995 Verilog accepted as IEEE 1364 standard. (questionable politics involved)

2001 IEEE 1364-2001 brings major extensions for circuit modeling.

2005 IEEE 1364-2005 is a minor revision.
SystemVerilog, created by the Accellera consortium, is accepted
as a separate standard named IEEE 1800. (more politics involved)

Quiz: “What do Sausage and EDA Standards have in common?”
Answer: “Those who like sausage or EDA standards should never watch
either one be made!” (Stuart Sutherland).

2009 IEEE 1800-2009 standard brings improvements mostly for verification,
Verilog gets absorbed into the SystemVerilog standard.

2013 IEEE 1800-2012 version released.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 9 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Why bother learning hardware description languages? I

Idea: View HDLs as nothing more than intermediate formats for exchanging
data between system design tools and VLSI CAE/CAD suites. Have electronic
system-level tools generate code from specs automatically.

4 Software for system design has a focus, there is no universal tool.

◦ Transformatorial systems as found in signal processing and
telecommunications.

◦ Reactive system as found in controllers and interface protocols.
◦ Specific applications such as data networks, image processing,

instruction set computers, etc.
◦ HDL generators typically restricted to few predefined architectural patterns.

4 HDL code generated by most ESL tools is nothing else than a translation
of software code and inadequate for circuit synthesis.

4 HDLs are indispensable for modeling library cells and virtual components.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 10 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Why bother learning hardware description languages? I

Idea: View HDLs as nothing more than intermediate formats for exchanging
data between system design tools and VLSI CAE/CAD suites. Have electronic
system-level tools generate code from specs automatically.

4 Software for system design has a focus, there is no universal tool.

◦ Transformatorial systems as found in signal processing and
telecommunications.

◦ Reactive system as found in controllers and interface protocols.
◦ Specific applications such as data networks, image processing,

instruction set computers, etc.
◦ HDL generators typically restricted to few predefined architectural patterns.

4 HDL code generated by most ESL tools is nothing else than a translation
of software code and inadequate for circuit synthesis.

4 HDLs are indispensable for modeling library cells and virtual components.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 10 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Why bother learning hardware description languages? II

4 HDLs are being used all along digital VLSI design flows.

Design stage Main Level of Predominant
& model purpose abstraction Timing languages

1. Algorithmic system-level behavioral none C, Matlab
model simulation tentative VHDL, SysVer

2. RTL simulation register optional fake delays VHDL, SysVer
model synthesis transfer constraints in Tcl

3. Post-synthesis simulation, gate level estimated with Verilog,
netlist timing analysis, wire load models (VHDL&VITAL)

place & route
4. Post-layout simulation, gate level extracted from Verilog,

netlist timing analysis, layout and (VHDL&VITAL)
sign-off back-annotated

Conclusion

For the foreseeable future, VHDL and SystemVerilog are bound to remain
prominent hubs for all VLSI design activities.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 11 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Why bother learning hardware description languages? II

4 HDLs are being used all along digital VLSI design flows.

Design stage Main Level of Predominant
& model purpose abstraction Timing languages

1. Algorithmic system-level behavioral none C, Matlab
model simulation tentative VHDL, SysVer

2. RTL simulation register optional fake delays VHDL, SysVer
model synthesis transfer constraints in Tcl

3. Post-synthesis simulation, gate level estimated with Verilog,
netlist timing analysis, wire load models (VHDL&VITAL)

place & route
4. Post-layout simulation, gate level extracted from Verilog,

netlist timing analysis, layout and (VHDL&VITAL)
sign-off back-annotated

Conclusion

For the foreseeable future, VHDL and SystemVerilog are bound to remain
prominent hubs for all VLSI design activities.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 11 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Requirements for HDLs

Show around a motherboard or some other mounted PCB.

What features must a formal language have to capture the essence
of electronic circuitry?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 12 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

A first look at VHDL and SystemVerilog

In a nutshell, HDLs can be characterized as follows:
VHDL SysVer

HDL = Structured programming language
+ circuit hierarchy and connectivity X X
+ interacting concurrent processes X X
+ a discrete replacement for electrical signals X X
+ an event-driven scheme of execution X X
+ model parametrization facilities X X
+ verification aids Chapter 5

Limitation:
• No way to express timing constraints

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 13 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

A first look at VHDL and SystemVerilog

In a nutshell, HDLs can be characterized as follows:
VHDL SysVer

HDL = Structured programming language
+ circuit hierarchy and connectivity X X
+ interacting concurrent processes X X
+ a discrete replacement for electrical signals X X
+ an event-driven scheme of execution X X
+ model parametrization facilities X X
+ verification aids Chapter 5

Limitation:
• No way to express timing constraints

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 13 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

Two words of caution ...

Linguistic ambiguity in the context of hardware modeling:

Meaning of “sequential” Synonym Antonyms
with reference to

◦ program execution step-by-step concurrent,
during simulation parallel
◦ nature of circuit memorizing combinational,

being modeled memoryless

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 14 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

... before we go into the details
Teaching follows two threads:

Lab hours Become acquainted with software tools and acquire coding skills.

Lectures Understand the underlying concepts and mechanisms.
I modeling of electrical phenomena
I simulation cycle
I testbench design
I synthesis procedure
I handling of macrocells (RAM)
I delay modeling, timing checks, timing constraints
I code portability
I ...

Both are needed! Circuit design is neither pure theory nor ignorant hacking.

A fool with a tool is still a fool.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 15 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Why hardware synthesis?
Alternatives for modeling digital hardware
Why bother learning hardware description languages?
A first look at VHDL and SystemVerilog

... before we go into the details
Teaching follows two threads:

Lab hours Become acquainted with software tools and acquire coding skills.

Lectures Understand the underlying concepts and mechanisms.
I modeling of electrical phenomena
I simulation cycle
I testbench design
I synthesis procedure
I handling of macrocells (RAM)
I delay modeling, timing checks, timing constraints
I code portability
I ...

Both are needed! Circuit design is neither pure theory nor ignorant hacking.

A fool with a tool is still a fool.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 15 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Subject

Key concepts and constructs of VHDL

For a SystemVerilog course, skip the next 95 or so slides.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 16 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Hardware description language requirements

HDL requirement no.1

Means for expressing how circuits are being composed from subcircuits
and how those subcircuits connect to each other.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 17 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

1st HDL capability: Circuit hierarchy and connectivity

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

same subcircuit
instantiated twice

Figure: Hierarchical composition ...
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 18 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Entity declaration

Specifies the external interface of a design entity (small or large).

-- entity declaration

entity lfsr4 is

port (

Clk_CI : in std_logic;

Rst_RBI : in std_logic; -- reset is active low

Ena_SI : in std_logic;

Oup_DO : out std_logic );

end lfsr4;

Oup_DO

Ena_SI

Clk_CI

Rst_RBI

I A port list declares all signals of an entity that are accessible from
outside (i.e. the terminals of a circuit as opposed to its inner nodes).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 19 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Architecture body I: a structural circuit model

n
1
1

Oup_DO

Ena_SI

Clk_CI

Rst_RBI

State_DP(1) State_DP(2) State_DP(3) State_DP(4)

n
2
1

n
3
1

n
4
1

n42

u20 u30 u40u10

CP

CD

D Q

FD2

CP

CD

D Q

FD2

CP

CD

D Q

FD2

CP

SD

D Q

FD4

u21 u31 u41u11

u42

Figure: Linear-feedback shift register circuit to be described.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 20 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Architecture body I: a structural circuit model

Refer to transparency lfsr4struc.vhd for code!

Describes a circuit or netlist assembled from components and wires.

1. Declare all components to be used.

2. Declare all signals that run back and forth
unless they are already known from the port clause.

3. Instantiate components specifying all terminal-to-signal connections.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 21 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to compose a circuit from components

How do you proceed when asked to fit a circuit board with components?

1. Think of a part’s exact name, e.g. GTECH FD2

2. Fetch a copy and assign it some unique identifier it, e.g. u10

3. Solder its terminals to existing metal pads on the board

The component instantiation statement does exactly that. Example:

u10 : GTECH_FD2

port map( D => n11,

CP => Clk_CI,

CD => Rst_RBI,

Q => State_DP(1) );

Note

The association operator => does not indicate an assignment
but an association of two signals that stands for an electrical connection.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 22 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The essence of structural circuit modeling

I VHDL can describe the hierarchical composition of a circuit by

I instantiating components or entities and by
I interconnecting them with the aid of signals.

I Structural HDL models hold the same information as circuit netlists do.

I Manually writing structural HDL models is not particularly attractive.

I Most structural models are in fact obtained from RTL models
by automatic synthesis.

HDL requirement no.2

Means for expressing circuit behavior including the combined effects
of multiple subcircuits that operate jointly and concurrently.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 23 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The essence of structural circuit modeling

I VHDL can describe the hierarchical composition of a circuit by

I instantiating components or entities and by
I interconnecting them with the aid of signals.

I Structural HDL models hold the same information as circuit netlists do.

I Manually writing structural HDL models is not particularly attractive.

I Most structural models are in fact obtained from RTL models
by automatic synthesis.

HDL requirement no.2

Means for expressing circuit behavior including the combined effects
of multiple subcircuits that operate jointly and concurrently.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 23 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

2nd HDL capability: Interacting concurrent processes

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

Figure: ... plus behavior modeled with the aid of concurrent processes ...

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 24 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Constants, variables, and signals

What everyone knows from software languages:

I Constant declaration
Example constant FERMAT_PRIME_4 : integer := 65537;

I Variable declaration
Examples variable Brd : real := 2.48678E5;

variable Ddr : real := 1.08179E5;

I Variable assignment
Example Brd := Brd + Ddr;

... plus a special vehicle for exchanging information between processes:

I Signal declaration
Example signal Error_D, Actual_D, Wanted_D : integer := 0;

I Signal assignment.
Example Error_D <= Actual_D - Wanted_D;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 25 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Constants, variables, and signals

What everyone knows from software languages:

I Constant declaration
Example constant FERMAT_PRIME_4 : integer := 65537;

I Variable declaration
Examples variable Brd : real := 2.48678E5;

variable Ddr : real := 1.08179E5;

I Variable assignment
Example Brd := Brd + Ddr;

... plus a special vehicle for exchanging information between processes:

I Signal declaration
Example signal Error_D, Actual_D, Wanted_D : integer := 0;

I Signal assignment.
Example Error_D <= Actual_D - Wanted_D;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 25 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Practical advice

Hints

I VHDL is case-insensitive, e.g. clk ci = CLK CI (except for extended
identifiers written between backslashes, e.g. \clk ci\ 6= \CLK CI\ ).

I Naming a signal or a port In or Out is all too tempting, yet these are
reserved words in VHDL. We recommend Inp and Oup instead.

I Two distinct symbols are being used for variable assignment :=
and for signal assignment <= .

I Code is easier to read when signals can be told from variables
by their visual appearance. We append an underscore followed by a suffix
of upper-case letters to signals, e.g. Carry DB, AddrCnt SN, Irq AMI.

Details of our naming convention are to follow in chapter 6 “The Case for Synchronous Design”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 26 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally I

1. Concurrent signal assignment:

I Syntactically simplest form of a process.

I Drives one signal.

Example:

signal Aa D, Bb D, Cc D, Oup D : std logic;

.....

Oup_D <= Aa_D xor (Bb_D and not Cc_D)

I Typically used to model some combinational behavior
(such as an arithmetic or logic operation)
when there is no need for branching.

Glimpse ahead: A concurrent/selected/conditional signal assignment
gets activated by any change of any signal on the right-hand side.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 27 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally II

2. Selected signal assignment. Example:

type month is (JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);

signal ThisMonth D : month;

type quarter is (Q1ST, Q2ND, Q3RD, Q4TH);

signal ThisQuarter D : quarter;

.....

with ThisMonth_D select

ThisQuarter_D <= Q1ST when JANUARY | FEBRUARY | MARCH,

Q2ND when APRIL | MAY | JUNE,

Q3RD when JULY | AUGUST | SEPTEMBER,

Q4TH when others;

I This is a form of conditional execution reminiscent of a multiplexer.

Note: The | symbol separates choices, it does not express a logic or operation.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 28 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally III

3. Conditional signal assignment. Example:

subtype day is integer range 1 to 31;

signal ThisDay D is day;

signal Spring D is boolean;

.....

Spring_D <= true when (ThisMonth_D=MARCH and ThisDay_D>=21) or

ThisMonth_D=APRIL or ThisMonth_D=MAY or

(ThisMonth_D=JUNE and ThisDay_D<=20)

else false;

I This is a syntactically different form of conditional execution.

Note: There are two <= symbols here. One stands for a signal assignment,
the other for a comparison operator.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 29 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally IV

4. Process statement.

Example:

memless1: process (all)

begin

Spring_D <= false; -- execution begins here

if ThisMonth_D=MARCH and ThisDay_D>=21 then Spring_D <= true; end if;

if ThisMonth_D=APRIL then Spring_D <= true; end if;

if ThisMonth_D=MAY then Spring_D <= true; end if;

if ThisMonth_D=JUNE and ThisDay_D<=20 then Spring_D <= true; end if;

end process memless1; -- process suspends here

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 30 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Process statement versus signal assignments

When compared to a concurrent/selected/conditional signal assignment,
a process statement

I is capable of updating two or more signals at a time,

I captures the instructions for doing so in a sequence of statements
that may not only include branching but also loops,

I gives the liberty to make use of variables for temporary storage,

I provides more detailed control over the conditions for activation.

Observation

The process statement is best summed up as being concurrent outside
and sequential inside.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 31 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Process statement versus signal assignments

When compared to a concurrent/selected/conditional signal assignment,
a process statement

I is capable of updating two or more signals at a time,

I captures the instructions for doing so in a sequence of statements
that may not only include branching but also loops,

I gives the liberty to make use of variables for temporary storage,

I provides more detailed control over the conditions for activation.

Observation

The process statement is best summed up as being concurrent outside
and sequential inside.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 31 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe a register behaviorally
I Code example of an edge-triggered register that features

1. an asynchronous reset,
2. a synchronous load, and
3. an enable.

p_memzing : process (Clk_C,Rst_RB)

begin

-- activities triggered by asynchronous reset

if Rst_RB=’0’ then

State_DP <= (others => ’0’); -- shorthand for all bits zero

-- activities triggered by rising edge of clock

elsif Clk_C’event and Clk_C=’1’ then

-- when synchronous load is asserted

if Lod_S=’1’ then

State_DP <= (others => ’1’); -- shorthand for all bits one

-- else assume new value iff enable is asserted

elsif Ena_S=’1’ then

State_DP <= State_DN; -- admit next state into state register

end if;

end if;

end process p_memzing;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 32 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Architecture body II: a behavioral circuit model
Describes how concurrent processes interact via signals
and how they alter them.

-- architecture body

architecture behavioral of lfsr4 is

signal State_DP, State_DN : std_logic_vector(1 to 4);

-- for present and next state respectively

begin

-- computation of next state using concatenation of bits

State_DN <= (State_DP(3) xor State_DP(4)) & State_DP(1 to 3);

-- updating of state

process (Clk_CI,Rst_RBI)

begin

-- activities triggered by asynchronous reset

if Rst_RBI=’0’ then

State_DP <= "0001";

-- activities triggered by rising edge of clock

elsif Clk_CI’event and Clk_CI=’1’ then

if Ena_SI=’1’ then

State_DP <= State_DN; -- admit next state into state register

end if;

end if;

end process;

-- updating of output

Oup_DO <= State_DP(4);

end behavioral;

xor

D C B A
(1) (2) (3) (4)State_DP

D C BE

Ena_SI

Clk_CI

Rst_RBI

Oup_DO

memorizing
process

memoryless
process

memoryless process

(1) (2) (3) (4)State_DN

(1) (2) (3) (4)State_DP

(1) (2) (3) (4)State_DN

(4)State_DP

models 
combinational
operations

models 
a register

models a wire

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 33 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The essence of behavioral circuit modeling

In VHDL, the behavior of a digital circuit typically gets described
by a collection of concurrent processes that

I execute simultaneously, that

I communicate via signals, and where

I each such process represents some subfunction.

Hint for RTL synthesis

I Model each register with a process statement.

I Prefer concurrent, selected, and conditional signal assignments
for describing the combinational logic in between.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 34 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Hardware modeling styles

behavioral physical

design view

dataflowprocedural

may all be combined in one HDL model

concurrent
processesof instructions

sequence

structural

components
interconnected

(netlist)

geometric
shapes
(layout)

neither captured by VHDL 
nor by SystemVerilog,

use GDS II, CIF, or the like

Observation

VHDL allows for procedural, dataflow, and structural modeling styles
to be freely combined in a single model.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 35 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Procedural, dataflow, and structural models compared I

Refer to transparency fulladd.vhd for code!

Compare in terms of

1. number of processes

2. number of internal signals

3. number of variables

4. impact of ordering of statements

5. interaction with event queue

6. portability of source code

Note: Adders are normally synthesized from algebraic expressions,
a full-adder has been chosen here for its simplicity and obviousness.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 36 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Procedural, dataflow, and structural models compared II

Loc1_D

Loc3_D

Loc4_D

Aa_DI

Bb_DI

Cc_DI

Sum_DO

Carry_DO

process

port

entity
design

component
instantiated

(hierarchy)

signal

variable

operation

combi-
national

sensitivity list

nd

xor

nd

Aa_DI

Bb_DI

Cc_DI

Sum_DO

Carry_DO

nd

xor
loc1

loc3

loc4

nd

nd

nd

xor

xor

Loc1_D

Loc3_D

Loc4_D

Aa_DI

Bb_DI

Cc_DI

Sum_DO

Carry_DO

procedural structural

dataflow

Figure: Modeling styles illustrated with a full adder as example.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 37 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: The ones counter

Refer to transparency onescnt.vhd for code!

Observe

1. In spite of its name, this is a memoryless subfunction
that finds applications in large adder circuits.

2. The output is a 3 bit number that indicates
how many of the four input bits are 1 (logic high).

3. The great diversity of modeling styles
to express exactly the same functionality.

Observation

Some code examples are compact and easy to understand,
others are more cryptic or tend to grow exponentially.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 38 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: The ones counter

Refer to transparency onescnt.vhd for code!

Observe

1. In spite of its name, this is a memoryless subfunction
that finds applications in large adder circuits.

2. The output is a 3 bit number that indicates
how many of the four input bits are 1 (logic high).

3. The great diversity of modeling styles
to express exactly the same functionality.

Observation

Some code examples are compact and easy to understand,
others are more cryptic or tend to grow exponentially.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 38 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

3rd capabilitity: A discrete replacement for electrical signals

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Figure: ... plus data types for modeling electrical phenomena ...

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 39 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about bidirectional busses I

SODIMM 1

SODIMM 0

data bus

memory read

memory write

CPU
drives bus

receives
data

must not
interfere

must not
interfere

receives
data

drives
bus

Figure: Memory read and write transfers in a computer.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 40 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about bidirectional busses II

Requirements:

I Each bidirectional line is to be driven from multiple places,
so one needs a multi-driver signal (as opposed to a single-driver signal).

I Driving alternates.

I Buffers must be able to electrically release the line
hence the name “three-state” output
(0, 1, disabled output = high-impedance state).

I Requires some kind of access control mechanism
(centralized or distributed).

Failure modes:

I Stationary drive conflict 7→ functional failure or damage.

I Floating voltage 7→ electrically undesirable condition.

Presentation focusses on HDL modeling,

remedies to be discussed in chapter 10 ”Gate- and Transistor-Level Design”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 41 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about bidirectional busses II

Requirements:

I Each bidirectional line is to be driven from multiple places,
so one needs a multi-driver signal (as opposed to a single-driver signal).

I Driving alternates.

I Buffers must be able to electrically release the line
hence the name “three-state” output
(0, 1, disabled output = high-impedance state).

I Requires some kind of access control mechanism
(centralized or distributed).

Failure modes:

I Stationary drive conflict 7→ functional failure or damage.

I Floating voltage 7→ electrically undesirable condition.

Presentation focusses on HDL modeling,

remedies to be discussed in chapter 10 ”Gate- and Transistor-Level Design”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 41 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why do binary types not suffice to model digital circuits?

Digital circuits exhibit characteristics and phenomena such as

I transients,

I three-state outputs,

I drive conflicts, and

I power-up

that can not be modeled with 0 and 1 alone.

HDL requirement no.3

A multi-valued logic system capable of capturing the effects
of both node voltage and source impedance.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 42 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why do binary types not suffice to model digital circuits?

Digital circuits exhibit characteristics and phenomena such as

I transients,

I three-state outputs,

I drive conflicts, and

I power-up

that can not be modeled with 0 and 1 alone.

HDL requirement no.3

A multi-valued logic system capable of capturing the effects
of both node voltage and source impedance.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 42 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The IEEE 1164 logic system I

Voltage is quantized into three logic states
◦ low logic low, that is below Ul .
◦ high logic high, that is above Uh.
◦ unknown either “low”, “high” or anything in between

e.g. as a result from a short between two drivers.

Source impedance gets mapped onto three drive strengths
◦ strong as exhibited by a driving output
◦ high-impedance as exhibited by a disabled three-state output
◦ weak somewhere between “strong” and “high-impedance”

e.g. as exhibited by a passive pull-up/down resistor.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 43 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The IEEE 1164 logic system I

Voltage is quantized into three logic states
◦ low logic low, that is below Ul .
◦ high logic high, that is above Uh.
◦ unknown either “low”, “high” or anything in between

e.g. as a result from a short between two drivers.

Source impedance gets mapped onto three drive strengths
◦ strong as exhibited by a driving output
◦ high-impedance as exhibited by a disabled three-state output
◦ weak somewhere between “strong” and “high-impedance”

e.g. as exhibited by a passive pull-up/down resistor.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 43 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The IEEE 1164 logic system II

No charge retention in high-impedance state  
• charged low
• charged high
• charged unknown

are all merged into a single value of undetermined state (voltage).

Two extra logic values are added, namely:
◦ uninitialized signal has never been assigned

any value since power-up
(applicable to simulation only).

◦ don’t care don’t care condition for logic minimization,
distinction between “low” or “high” immaterial
(applicable to synthesis only).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 44 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The IEEE 1164 logic system II

No charge retention in high-impedance state  
• charged low
• charged high
• charged unknown

are all merged into a single value of undetermined state (voltage).

Two extra logic values are added, namely:
◦ uninitialized signal has never been assigned

any value since power-up
(applicable to simulation only).

◦ don’t care don’t care condition for logic minimization,
distinction between “low” or “high” immaterial
(applicable to synthesis only).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 44 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The IEEE 1164 logic system III

Uses a total of nine logic values to model electrical signals.

logic value → logic state
↓ low unknown high
uninitialized U

strong 0 X 1
strength weak L W H

high-impedance Z Z Z
don’t care -

Defines two data types that share the above set of values:
◦ std ulogic type Difference to be

◦ std logic subtype explained soon

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 45 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Illustrations

0

1
X

drive conflict 

Z−

0

no drive, 
high-impedance 

W

weak drive 

weak drive 

L

H

strong drive 

10

01

UU

at = 0 t input does 
not matter 

a)

Figure: The IEEE 1164 standard MVL-9 illustrated.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 46 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Collapsing of logic values during synthesis

L and H are not normally honored by synthesis software. Most synthesis tools
collapse “meaningless” (to them) values to more sensible ones, e.g.

I L 7→ 0

I H 7→ 1

I X or W 7→ -

Hint for RTL synthesis

For the sake of clarity and portability, do not use logic values other than
0, 1, Z and - in VHDL source code that is intended for synthesis.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 47 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Collapsing of logic values during synthesis

L and H are not normally honored by synthesis software. Most synthesis tools
collapse “meaningless” (to them) values to more sensible ones, e.g.

I L 7→ 0

I H 7→ 1

I X or W 7→ -

Hint for RTL synthesis

For the sake of clarity and portability, do not use logic values other than
0, 1, Z and - in VHDL source code that is intended for synthesis.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 47 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to model a bidirectional line in VHDL I

Want to model a circuit node that can be driven from multiple subcircuits?
 Use two or more conditional signal assignments.

Example:

signal Com DZ, Aa D, Bb D, SelA S, SelB S : std logic;

.....

Com_DZ <= not Aa_D when SelA_S=’1’ else ’Z’;

.....

Com_DZ <= not Bb_D when SelB_S=’1’ else ’Z’;

.....

Note

Node Com DZ is left floating when neither of the two drivers is enabled.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 48 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to model a bidirectional line in VHDL II

b)

single-driver signals Pp_DZ Qq_DZand 

no difference between
may assume distinct logic values,

std_ulogic std_logicand

if multi-driver signal Com_DZ is of type
then an error message gets issued
then the conflict is resolved to Com_DZ = 1

std_ulogic

std_logic

Z X
0

10
1

SelA_S

SelB_S

X
0

0
1

Aa_D

Qq_DZ

Aa_D

Bb_D

Pp_DZ

Bb_D

SelA_S

SelB_S

Com_DZ

Observation

The distinction between types std ulogic and std logic matters only
when simulating a multi-driver node:
std logic tacitely resolves all conflicts that might occur
std ulogic generates a message in case of conflict

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 49 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to model a bidirectional line in VHDL II

b)

single-driver signals Pp_DZ Qq_DZand 

no difference between
may assume distinct logic values,

std_ulogic std_logicand

if multi-driver signal Com_DZ is of type
then an error message gets issued
then the conflict is resolved to Com_DZ = 1

std_ulogic

std_logic

Z X
0

10
1

SelA_S

SelB_S

X
0

0
1

Aa_D

Qq_DZ

Aa_D

Bb_D

Pp_DZ

Bb_D

SelA_S

SelB_S

Com_DZ

Observation

The distinction between types std ulogic and std logic matters only
when simulating a multi-driver node:
std logic tacitely resolves all conflicts that might occur
std ulogic generates a message in case of conflict

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 49 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The IEEE 1164 standard resolution function

-------------------------------------------------------------------

-- resolution function "resolved"

-------------------------------------------------------------------

constant resolution_table : stdlogic_table := (

-- ---------------------------------------------------------

-- | U X 0 1 Z W L H - | |

-- ---------------------------------------------------------

( ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’ ), -- | U |

( ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ ), -- | X |

( ’U’, ’X’, ’0’, ’X’, ’0’, ’0’, ’0’, ’0’, ’X’ ), -- | 0 |

( ’U’, ’X’, ’X’, ’1’, ’1’, ’1’, ’1’, ’1’, ’X’ ), -- | 1 |

( ’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’X’ ), -- | Z |

( ’U’, ’X’, ’0’, ’1’, ’W’, ’W’, ’W’, ’W’, ’X’ ), -- | W |

( ’U’, ’X’, ’0’, ’1’, ’L’, ’W’, ’L’, ’W’, ’X’ ), -- | L |

( ’U’, ’X’, ’0’, ’1’, ’H’, ’W’, ’W’, ’H’, ’X’ ), -- | H |

( ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ ) -- | - |

);

I This is the default resolution function, others can be added.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 50 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data type std logic versus std ulogic

I Signals of type std logic can accommodate multiple drivers
whereas those of type std ulogic can not.

I An error message will tell should a std ulogic-type signal accidentally
get involved in a naming conflict, so this is the more conservative choice.

I A signal is allowed to be driven from multiple processes
iff a resolution function is defined that determines the outcome.

I There can be no such thing as a resolution function for variables,
neither for bit, bit vector, integer, real, and similar data types.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 51 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for modeling single-bit signals

data type bit std ulogic std logic
defined in VHDL ieee.std logic 1164
value set per binary digit 2 9

for simulation purposes
modeling of power-up phase no yes yes
modeling of weakly driven nodes no yes yes
modeling of multi-driver nodes no yes yes
handling of drive conflicts n.a. reported resolved

for synthesis purposes
three-state drivers no yes yes
don’t care conditions no yes yes

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 52 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for modeling multi-bit signals

data type(s) integer, bit std logic signed, signed,

natural, vector vector unsigned unsigned

positive
defined in VHDL VHDL ieee. ieee. ieee.

std logic numeric numeric

1164 bit std

value set per binary digit 2 2 9 2 9
word width 32 bit at the programmer’s discretion
arithmetic operations yes no no yes yes
logic operations no yes yes yes yes
access to subwords or bits no yes yes yes yes
modeling of electrical effects no no yes no yes

I VHDL is strongly typed = extensive type checking is performed
 must convert before assignment or comparison across types.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 53 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for modeling multi-bit signals

data type(s) integer, bit std logic signed, signed,

natural, vector vector unsigned unsigned

positive
defined in VHDL VHDL ieee. ieee. ieee.

std logic numeric numeric

1164 bit std

value set per binary digit 2 2 9 2 9
word width 32 bit at the programmer’s discretion
arithmetic operations yes no no yes yes
logic operations no yes yes yes yes
access to subwords or bits no yes yes yes yes
modeling of electrical effects no no yes no yes

I VHDL is strongly typed = extensive type checking is performed
 must convert before assignment or comparison across types.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 53 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Converting between data types

Figure: VHDL type conversion paths (chart courtesy of Dr. Jürgen Wassner).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 54 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Orientation of binary vectors

Hint

Any vector that contains a data item coded in some positional number system
should consistently be declared as (iMSB downto iLSB ) where 2i is the weight
of the binary digit with index i .

The MSB so has the highest index assigned to it and appears in the customary
leftmost position because iMSB ≥ iLSB .
Example signal Hour_D : unsigned(4 downto 0) := "10111";

Types unsigned and signed are for integer numbers:

unsigned ii...i�

signed si...i� in 2’s complement format

What about fractional parts �ff...f ?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 55 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Orientation of binary vectors

Hint

Any vector that contains a data item coded in some positional number system
should consistently be declared as (iMSB downto iLSB ) where 2i is the weight
of the binary digit with index i .

The MSB so has the highest index assigned to it and appears in the customary
leftmost position because iMSB ≥ iLSB .
Example signal Hour_D : unsigned(4 downto 0) := "10111";

Types unsigned and signed are for integer numbers:

unsigned ii...i�

signed si...i� in 2’s complement format

What about fractional parts �ff...f ?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 55 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Orientation of binary vectors

Hint

Any vector that contains a data item coded in some positional number system
should consistently be declared as (iMSB downto iLSB ) where 2i is the weight
of the binary digit with index i .

The MSB so has the highest index assigned to it and appears in the customary
leftmost position because iMSB ≥ iLSB .
Example signal Hour_D : unsigned(4 downto 0) := "10111";

Types unsigned and signed are for integer numbers:

unsigned ii...i�

signed si...i� in 2’s complement format

What about fractional parts �ff...f ?

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 55 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for fractional and floating point numbers

Introduced with the IEEE 1076-2008 revision.

type prefix unresolved unresolved
data type ufixed sfixed float resolved
defined in fixed float

generic generic

pkg pkg

arithmetics fixed point floating point
unsigned signed

word width at the programmer’s discretion
arithmetic operations yes
logic operations yes
access to subwords or bits yes
modeling of electrical effects yes (resolved)

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 56 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for fractional numbers
Both signed and unsigned formats exist; 2’C format used for signed numbers.

Unsigned example
signal HourWithQuarter_D : ufixed(4 downto -2) := "1011111";

iiiii � ff ( 7→ range 0 to 11111.112 = 31.7510

in steps of 1
4 , initial value = 10111.112 = 23.7510)

Signed example
signal HourWithQuarter_D : sfixed(4 downto -2) := "1011111";

siiii � ff ( 7→ range 10000.002 = −16.0010 to 01111.112 = 15.7510

in steps of 1
4 , initial value = 10111.112 = −9.7510)

I For maximum versatility, some arithmetic aspects are kept user-adjustable
via generics:

I Rounding behavior. (round ≈ vs. truncate ↓).
I Overflow behavior (saturate � vs. wrap around �|�|�).
I Number of guard bits for division operation

(extra digit positions used to reduce the roundoff error)

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 57 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for fractional numbers
Both signed and unsigned formats exist; 2’C format used for signed numbers.

Unsigned example
signal HourWithQuarter_D : ufixed(4 downto -2) := "1011111";

iiiii � ff ( 7→ range 0 to 11111.112 = 31.7510

in steps of 1
4 , initial value = 10111.112 = 23.7510)

Signed example
signal HourWithQuarter_D : sfixed(4 downto -2) := "1011111";

siiii � ff ( 7→ range 10000.002 = −16.0010 to 01111.112 = 15.7510

in steps of 1
4 , initial value = 10111.112 = −9.7510)

I For maximum versatility, some arithmetic aspects are kept user-adjustable
via generics:

I Rounding behavior. (round ≈ vs. truncate ↓).
I Overflow behavior (saturate � vs. wrap around �|�|�).
I Number of guard bits for division operation

(extra digit positions used to reduce the roundoff error)

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 57 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for fractional numbers
Both signed and unsigned formats exist; 2’C format used for signed numbers.

Unsigned example
signal HourWithQuarter_D : ufixed(4 downto -2) := "1011111";

iiiii � ff ( 7→ range 0 to 11111.112 = 31.7510

in steps of 1
4 , initial value = 10111.112 = 23.7510)

Signed example
signal HourWithQuarter_D : sfixed(4 downto -2) := "1011111";

siiii � ff ( 7→ range 10000.002 = −16.0010 to 01111.112 = 15.7510

in steps of 1
4 , initial value = 10111.112 = −9.7510)

I For maximum versatility, some arithmetic aspects are kept user-adjustable
via generics:

I Rounding behavior. (round ≈ vs. truncate ↓).
I Overflow behavior (saturate � vs. wrap around �|�|�).
I Number of guard bits for division operation

(extra digit positions used to reduce the roundoff error)

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 57 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for floating point numbers

Floating point numbers include a sign bit and an exponent by definition.

I Formats adhere to the principles of the IEEE 754 standard, except
# of bits for exponent and mantissa are defined in type declaration.

I Mantissa is coded as a fractional number in 2’C format.

I Exponent is coded in O-B (offset-binary) format.

Example signal ToyFloat_D : float(5 downto -8);

The number format so specified is seeeee � ffffffff where

I #e = 5 and #f = 8

I s stands for the sign bit (of the mantissa)

I each e stands for one bit of the exponent (with an offset 2#e−1−1 = 15)

I each f stands for one bit of the mantissa (normalized to the interval
[1...2) and with binary weights from 1

2 all the way down to 1
256 )

Online translators available on the Internet!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 58 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for floating point numbers

Floating point numbers include a sign bit and an exponent by definition.

I Formats adhere to the principles of the IEEE 754 standard, except
# of bits for exponent and mantissa are defined in type declaration.

I Mantissa is coded as a fractional number in 2’C format.

I Exponent is coded in O-B (offset-binary) format.

Example signal ToyFloat_D : float(5 downto -8);

The number format so specified is seeeee � ffffffff where

I #e = 5 and #f = 8

I s stands for the sign bit (of the mantissa)

I each e stands for one bit of the exponent (with an offset 2#e−1−1 = 15)

I each f stands for one bit of the mantissa (normalized to the interval
[1...2) and with binary weights from 1

2 all the way down to 1
256 )

Online translators available on the Internet!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 58 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

4th HDL capability: An event-based model of time

current events
invoke

sensitive processes
schedule
future transactions

processes being executed

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

event queue
mechanism

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

event

transaction

queue
event

event

queue
event

scheduled event

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Figure: ... plus an event queue mechanism that governs process activation ...
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 59 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How does VHDL simulation work? I
Please recall:

A signal’s value can be altered by any of ...

I Concurrent signal assignment (simplest)

I Selected signal assignment

I Conditional signal assignment

I process statement (most powerful).

Make sure to understand

I All the above constructs are concurrent processes aka threads of execution
(in the sense of the German “nebenläufiger Prozess”).

I “process statement”, in contrast, refers to a specific VHDL language
construct (identified by the presence of the reserved word process).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 60 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How does VHDL simulation work? II

I A typical circuit model comprises many many processes.

I No more than a few processor cores are normally available
for running the simulation code.

I Yet, simulation is to yield the same result
as if all processes were operating simultaneously.

HDL requirement no.4

A mechanism that schedules processes for sequential execution and
that combines their effects such as to perfectly mimic concurrency.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 61 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How does VHDL simulation work? II

I A typical circuit model comprises many many processes.

I No more than a few processor cores are normally available
for running the simulation code.

I Yet, simulation is to yield the same result
as if all processes were operating simultaneously.

HDL requirement no.4

A mechanism that schedules processes for sequential execution and
that combines their effects such as to perfectly mimic concurrency.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 61 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Notions of time

Simulation time is to an HDL what physical time is to the hardware being
modeled. The simulator can be thought to maintain some kind
of stop watch that registers the progress of simulation time.

Execution time (aka wall clock) refers to the time a computer takes to execute
statements from the program code during simulation.

I In VHDL simulation, the continuum of time gets subdivided by events
each of which occurs at a precise moment of simulation time.

I An event is said to happen whenever the value of a signal changes.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 62 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Notions of time

Simulation time is to an HDL what physical time is to the hardware being
modeled. The simulator can be thought to maintain some kind
of stop watch that registers the progress of simulation time.

Execution time (aka wall clock) refers to the time a computer takes to execute
statements from the program code during simulation.

I In VHDL simulation, the continuum of time gets subdivided by events
each of which occurs at a precise moment of simulation time.

I An event is said to happen whenever the value of a signal changes.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 62 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation I

Event-driven simulation works in cycles where three stages alternate:

1. Advance simulation time to the next transaction
thereby making it the current one.

2. Set all signals that are to be updated at the present moment of time
to the target value associated with the current transaction.

3. Invoke all processes that need to respond to the new situation.
Every signal assignment there supposed to modify a signal’s value
causes a transaction to be entered into the event queue at that point in
the future when the signal is anticipated to take on its new value.

Go to 1. and start a new simulation cycle.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 63 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The event-queue mechanism

past events future transactions

present moment
of time

event queue

δ

transaction can be inserted into the queue
earliest moment of time at which a new

(infinitesimal)

cycles 
simulation 

simulation
time

b)

event queue

processes

signals
current events

invoke
sensitive processes

executed schedule
future transactions

processes being
process

process gets invoked
by events on signal B

and schedules transactions
on signals C and D 

a)

sensitive input

input
signals

output
signals

tpdpropagation delays

C DA B

Figure: Interactions between the event queue and processes in VHDL.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 64 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation II

I Simulation stops when the event queue becomes empty
or when simulation time reaches some predefined final value.

I As nothing happens between transactions, an event-driven simulator
essentially skips from one transaction to the next.
 No computational resources are wasted while models sit idle.

Note the analogy between event queue and agenda

I Events are observable from the past evolution of a signal’s value.

I Transactions reflect future plans that may or may not materialize.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 65 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation II

I Simulation stops when the event queue becomes empty
or when simulation time reaches some predefined final value.

I As nothing happens between transactions, an event-driven simulator
essentially skips from one transaction to the next.
 No computational resources are wasted while models sit idle.

Note the analogy between event queue and agenda

I Events are observable from the past evolution of a signal’s value.

I Transactions reflect future plans that may or may not materialize.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 65 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Delay modeling for simulation I

Delays are captured in an optional after clause in a signal assignment.
Example Oup_D <= InpA_D + InpB_D after TPD;

Contamination delay can be modeled using two after clauses.
Example Oup_D <= ’X’ after TCD, InpA_D + InpB_D after TPD;

I Ramps can not be modeled.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 66 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Delay modeling for simulation II

In the absence of an after clause, delay is assumed to be zero and
the transaction is scheduled for the next simulation cycle (δ delay).
Example Oup_D <= InpA_D + InpB_D;

Example Oup_D <= InpA_D + InpB_D after 0 ns;

Observation

The δ delay serves to maintain a consistent order of transactions
in models that include zero delays.

When simulating models with no delays (other than δ), it becomes difficult
to distinguish between cause and effect from waveform output
as the respective events appear to coincide.

Hint

Fake delays help to visually tell apart cause and effect.

Example Oup_D <= InpA_D + InpB_D after FAKEDELAY;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 67 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Delay modeling for simulation II

In the absence of an after clause, delay is assumed to be zero and
the transaction is scheduled for the next simulation cycle (δ delay).
Example Oup_D <= InpA_D + InpB_D;

Example Oup_D <= InpA_D + InpB_D after 0 ns;

Observation

The δ delay serves to maintain a consistent order of transactions
in models that include zero delays.

When simulating models with no delays (other than δ), it becomes difficult
to distinguish between cause and effect from waveform output
as the respective events appear to coincide.

Hint

Fake delays help to visually tell apart cause and effect.

Example Oup_D <= InpA_D + InpB_D after FAKEDELAY;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 67 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Signal versus variable I

simulation
time

changes scheduled
to occur at later
moments of time

earliest moment of time a signal is allowed to change
in response to an assignment at present moment of time

kept on record

waveforms so far

ob
je

ct
’s

 v
al

ue

signal

ob
je

ct
’s

 v
al

ue

variable

future waveforms

at present moment of time
as planned and foreseen

no plans known

discarded immediately

past
events

future
transactions

changes that
have occurred

δ
minimum
time step

present event

in response to an assignment at present moment of time
only moment of time a variable is allowed to change

(infinitesimal)

Figure: The past, present and future of VHDL variables and signals.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 68 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Signal versus variable II

VHDL property

I VHDL signals convey time-varying information between processes
via the event queue. They are instrumental in process invocation
which is directed by the same mechanism.

I As opposed to this, variables are confined to within a process
statement or a subprogram and do not interact with the event queue
in any way.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 69 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Watch out, frequent misconception!

Effects of variable and signal assignments.

Variable assignment (:=) Effect felt immediately, that is, in the next
statement exactly as in any programming language.

Signal assignment (<=) Does not become effective before the delay
specified in the after clause has expired.

In the absence of an explicit indication, there is a delay of one
simulation cycle, so the effect can never be felt in the next
statement.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 70 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Watch out, frequent misconception!

Effects of variable and signal assignments.

Variable assignment (:=) Effect felt immediately, that is, in the next
statement exactly as in any programming language.

Signal assignment (<=) Does not become effective before the delay
specified in the after clause has expired.

In the absence of an explicit indication, there is a delay of one
simulation cycle, so the effect can never be felt in the next
statement.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 70 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation III

A process is either active or suspended at any time. Simulation time is stopped
while the code of the processes presently active is being carried out.

This implies:

I All active processes are executed concurrently with respect to
simulation time.

I All sequential statements inside a process statement are executed
in zero simulation time.

Note

The order of process invocation with respect to execution time
is undetermined.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 71 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

In software languages:

I Execution strictly follows the order of statements in the source code.

During VHDL simulation:

I No fixed ordering for carrying out processes
(including concurrent signal assignments and assertion statements).

Important observation

When to invoke a process gets determined solely by events on the signals
that run back and forth between processes.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 72 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Further details on process activation

VHDL property

Concurrent, selected or conditional signal assignments have no sensitivity list.
Any signal on the right-hand side of the assignment activates the process.

Spring_D <= true when (ThisMonth_D=MARCH and ThisDay_D>=21) or

ThisMonth_D=APRIL or ThisMonth_D=may or

(ThisMonth_D=JUNE and ThisDay_D<=20)

else false;

I ThisMonth D and ThisDay D act as wake-up signals here.

On to the tricky process statement ...

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 73 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Process statement with sensitivity list

VHDL property

The process statement provides a special clause, termed sensitivity list,
where all wake-up signals must be declared.

memless2: process (ThisMonth_D, ThisDay_D) <-- sensitivity list

begin

Spring_D <= false; -- execution begins here

if ThisMonth_D=MARCH and ThisDay_D>=21 then Spring_D <= true; end if;

if ThisMonth_D=APRIL then Spring_D <= true; end if;

if ThisMonth_D=may then Spring_D <= true; end if;

if ThisMonth_D=JUNE and ThisDay_D<=20 then Spring_D <= true; end if;

end process memless2; -- process suspends here

I Upon activation by a wake-up signal, instructions are executed
one after the other until the end process statement is reached.

I The process then reverts to its suspended state.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 74 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

A process statement may or may not exhibit memory

What happens if signal ThisDay D is omitted from the sensitivity list?

memwhat: process (ThisMonth_D) <-- this sensitivity list is incomplete

begin

Spring_D <= false; -- execution begins here

if ThisMonth_D=MARCH and ThisDay_D>=21 then Spring_D <= true; end if;

if ThisMonth_D=APRIL then Spring_D <= true; end if;

if ThisMonth_D=MAY then Spring_D <= true; end if;

if ThisMonth_D=JUNE and ThisDay_D<=20 then Spring_D <= true; end if;

end process memwhat; -- process suspends here

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 75 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

A process statement may or may not exhibit memory

What happens if signal ThisDay D is omitted from the sensitivity list?

memwhat: process (ThisMonth_D) <-- this sensitivity list is incomplete

begin

Spring_D <= false; -- execution begins here

if ThisMonth_D=MARCH and ThisDay_D>=21 then Spring_D <= true; end if;

if ThisMonth_D=APRIL then Spring_D <= true; end if;

if ThisMonth_D=MAY then Spring_D <= true; end if;

if ThisMonth_D=JUNE and ThisDay_D<=20 then Spring_D <= true; end if;

end process memwhat; -- process suspends here

I Events on ThisDay D are unable to activate the process and, hence,
no longer update signal Spring D. Its current state then depends
on past values of ThisDay D.

The above code implies sequential circuit behavior!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 76 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

A process statement may include wait statements
provided it features no sensitivity list.

I Process execution suspends when a wait statement is reached.

I The wait statement comes in four flavors that differ in the nature
of the condition for process reactivation.

statement wake-up condition
wait on ... an event (value change) on any of the signals listed
wait until ... idem plus the logic conditions specified here
wait for ... a predetermined lapse of time as specified here
wait none, sleep forever as no wake-up condition is given

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 77 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Process statement with a wait
as an alternative syntax for memless2:

memless3: process <-- no sensitivity list here

begin

Spring_D <= false; -- execution begins here

if ThisMonth_D=MARCH and ThisDay_D>=21 then Spring_D <= true end if;

if ThisMonth_D=APRIL then Spring_D <= true end if;

if ThisMonth_D=MAY then Spring_D <= true end if;

if ThisMonth_D=JUNE and ThisDay_D<=20 then Spring_D <= true end if;

wait on ThisMonth_D, ThisDay_D; -- process suspends here until reactivated

-- by an event on any of these signals

end process memless3; -- execution continues with first statement

I Functionally interchangeable with process memless2 shown before.

I Process execution does not terminate with the end process statement
but resumes at the top of the process body.

I wait placed at the end because all processes get activated once
until they suspend during initialization at simulation time zero.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 78 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Not all process statements are amenable to synthesis

I Accepted coding styles for synthesis:

process statement with sensitivity list universally supported
with 1 wait idem

with ≥ 2 waits not normally supported

Reason:
Each wait statement is allowed to carry its own condition as to when
process execution is to resume. Depending on the details, this may
imply synchronous or asynchronous behavior.

More detailed reasons follow in the synthesis section.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 79 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Not all process statements are amenable to synthesis

I Accepted coding styles for synthesis:

process statement with sensitivity list universally supported
with 1 wait idem

with ≥ 2 waits not normally supported

Reason:
Each wait statement is allowed to carry its own condition as to when
process execution is to resume. Depending on the details, this may
imply synchronous or asynchronous behavior.

More detailed reasons follow in the synthesis section.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 79 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What makes a VHDL process statement
exhibit sequential behavior?

A process statement implies memory iff one or more
of the conditions below apply.

I The process includes multiple wait on or wait until statements.

I The process evaluates input signals that have no wake-up capability.

I The process includes variables that get assigned no value
before being used.

I The process fails to assign a value to its output signals
for every possible combination of values of its inputs.

7→ Circuit synthesized will or will not include flip-flops and/or latches.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 80 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Beware of frequent oversights!

If a process statement is to model combinational logic

I Assign to each output for all possible combinations of input values.
If a signal’s value does not matter, assign a don’t care.
Not assigning anything implies memory!

I Enumerate all inputs in the sensitivity list.

A syntax option introduced with the IEEE 1076-2008 revision helps:

memless1: process (all) <-- This is shorthand for a complete sensitivity list

begin

Spring_D <= false; -- execution begins here

if ThisMonth_D=MARCH and ThisDay_D>=21 then Spring_D <= true; end if;

if ThisMonth_D=APRIL then Spring_D <= true; end if;

if ThisMonth_D=MAY then Spring_D <= true; end if;

if ThisMonth_D=JUNE and ThisDay_D<=20 then Spring_D <= true; end if;

end process memless1; -- process suspends here

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 81 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

VHDL knows of no specific language constructs and of no reserved words
that could tell

I a sequential model from a combinational one,

I a synchronous from an asynchronous circuit,

I one type of finite state machine from a different one
(Mealy, Moore and Medvedev).

VHDL property

What makes the difference is the detailed construction of the source code!

Hint

Make your intentions explicit in the source code (comments and process
labels) to facilitate code understanding and the interpretation of EDA tool
reports (presence of latches, number of flip-flops, through paths).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 82 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to safely code sequential circuits

Recommendation

To be safe and universally accepted for synthesis, any process statement
that models memorizing behavior must be organized as follows:

process (Clk_C, Rst_R) <--------- sensitivity list, no more signals accepted!
begin

<--------- no other statement allowed here!
-- activities triggered by asynchronous active-high reset
if Rst_R=’1’ then

PresentState_DP <= STARTSTATE;
.....

-- activities triggered by rising edge of clock
elsif Clk_C’event and Clk_C=’1’ then <--------- no more term allowed here!

<--------- extra subconditions, if any, accepted here.
PresentState_DP <= NextState_DN; -- admit next state into state register
.....

<--------- no further elsif or else clause allowed here!
end if;
<--------- no statement allowed here!

end process;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 83 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Granularity of VHDL processes

Whether the subfunction being modeled by a concurrent process is simple or
complex is entirely open. A single process statement can be made to capture
almost anything between

I a humble piece of wire or

I an entire image compression circuit, for instance.

Hint

For the sake of modularity and legibility, do not cram too much functionality
into a concurrent process.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 84 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Signal/variable initialization vs. hardware reset facility

VHDL supports assigning an initial value in a declaration statement.
Example signal Acceleration_D : integer := 0;

Example variable Speed : real := 1.25E2;

I The initial value defines the objects’s state at t = 0,
just before the simulator enters the first simulation cycle.

I A hardware reset mechanism remains ready to reconduct the circuit into
a predetermined start state at any time t ≥ 0 using a dedicated reset
signal distributed to all bistables concerned.

Observation

These are two totally different things. An initialized signal or variable
will neither model a reset facility nor synthesize into one.

A code example for how to model a reset has been given just a few slides back.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 85 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Signal/variable initialization vs. hardware reset facility

VHDL supports assigning an initial value in a declaration statement.
Example signal Acceleration_D : integer := 0;

Example variable Speed : real := 1.25E2;

I The initial value defines the objects’s state at t = 0,
just before the simulator enters the first simulation cycle.

I A hardware reset mechanism remains ready to reconduct the circuit into
a predetermined start state at any time t ≥ 0 using a dedicated reset
signal distributed to all bistables concerned.

Observation

These are two totally different things. An initialized signal or variable
will neither model a reset facility nor synthesize into one.

A code example for how to model a reset has been given just a few slides back.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 85 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Detecting clock edges and other signal events
VHDL provides a signal attribute to detect signal transitions.
Example: if Clk_C’event and Clk_C=’1’ then ... endif;

7→ will synthesize into (edge-triggered) flip-flops.

Alternative syntax: if rising_edge(Clk_C) then ... endif;

(defined in IEEE 1164 std for std logic and std ulogic)

Signal attribute: a named characteristic of a signal, e.g.

I ’event 7→ typically the only one supported for synthesis

I ’transaction

I ’driving

I ’last value

I ’stable 7→ most useful in simulation models

I ...

I user-defined

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 86 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Detecting clock edges and other signal events
VHDL provides a signal attribute to detect signal transitions.
Example: if Clk_C’event and Clk_C=’1’ then ... endif;

7→ will synthesize into (edge-triggered) flip-flops.

Alternative syntax: if rising_edge(Clk_C) then ... endif;

(defined in IEEE 1164 std for std logic and std ulogic)

Signal attribute: a named characteristic of a signal, e.g.

I ’event 7→ typically the only one supported for synthesis

I ’transaction

I ’driving

I ’last value

I ’stable 7→ most useful in simulation models

I ...

I user-defined

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 86 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to check timing conditions

Please recall:

I Latches, flip-flops, RAMs, etc. impose timing requirements that must not
be violated, otherwise circuit behavior becomes unpredictable.

 A simulation model is in charge of two things:

1. Check whether input waveforms indeed conform with timing requirements
(if any).

2. Evaluate input data to update outputs and/or state.

VHDL supports this plan with

I signal attribute ’stable and

I assertion statements.

Concurrent assertion statement A passive process capable of checking
user-defined properties and of generating a message
but not of updating signals.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 87 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to check timing conditions

Please recall:

I Latches, flip-flops, RAMs, etc. impose timing requirements that must not
be violated, otherwise circuit behavior becomes unpredictable.

 A simulation model is in charge of two things:

1. Check whether input waveforms indeed conform with timing requirements
(if any).

2. Evaluate input data to update outputs and/or state.

VHDL supports this plan with

I signal attribute ’stable and

I assertion statements.

Concurrent assertion statement A passive process capable of checking
user-defined properties and of generating a message
but not of updating signals.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 87 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to check timing conditions

Please recall:

I Latches, flip-flops, RAMs, etc. impose timing requirements that must not
be violated, otherwise circuit behavior becomes unpredictable.

 A simulation model is in charge of two things:

1. Check whether input waveforms indeed conform with timing requirements
(if any).

2. Evaluate input data to update outputs and/or state.

VHDL supports this plan with

I signal attribute ’stable and

I assertion statements.

Concurrent assertion statement A passive process capable of checking
user-defined properties and of generating a message
but not of updating signals.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 87 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: Setup and hold time checks
architecture behavioral of setff is

signal State_DP : std_logic; -- state signal

begin

assert (not (Clk_CI’event and Clk_CI=’1’ and not Dd_DI’stable(1.09 ns)))

report "setup time violation" severity warning;

assert (not (Dd_DI’event and Clk_CI=’1’ and not Clk_CI’stable(0.60 ns)))

report "hold time violation" severity warning;

memzing: process (Clk_CI, Rst_RBI)

begin

if Rst_RBI=’0’ then

State_DP <= ’0’;

elsif Clk_CI’event and Clk_CI=’1’ then

State_DP <= Dd_DI;

end if;

end process memzing;

Qq_DO <= State_DP after 0.92 ns;

end behavioral;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 88 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Inspecting the event queue to check for timing violations

Dd_Di

Clk_CI

setup time hold time

active clock edge

check for no event on data

at rising clock edge

Dd_Di

Clk_CI

check for no event on clock

if clock high

at data change

Dd_Di

Clk_CI

Figure: Done by searching the event queue for past events.

Observation

Any inspection of the event queue for compliance with
timing requirements must necessarily look backward in time.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 89 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

5th HDL capability: Facilities for model parametrization

current events
invoke

sensitive processes
schedule
future transactions

processes being executed

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

event queue
mechanism

(parameter)
generic

items
conditional

parameter

items
conditional

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

event

transaction

queue
event

event

queue
event

scheduled event

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Figure: ... plus parametrization with adjustable quantities and conditional items.
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 90 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why it pays to keep HDL models parametrized

1. Imagine you have devised a synthesis model for a datapath unit
I 16 data registers
I 17 arithmetic and logic operations
I 32 bit word width

2. In addition, you need a similar unit for address computations
I 5 data registers
I 8 arithmetic and logic operations
I 24 bit word width

Easy to derive model 2. by modifying the existing HDL code, but

I maintenance effort doubled

I what if you later needed a third and a fourth model?

HDL requirement no.5

Means for accommodating distinct architecture choices and parameter settings
within a single piece of code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 91 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why it pays to keep HDL models parametrized

1. Imagine you have devised a synthesis model for a datapath unit
I 16 data registers
I 17 arithmetic and logic operations
I 32 bit word width

2. In addition, you need a similar unit for address computations
I 5 data registers
I 8 arithmetic and logic operations
I 24 bit word width

Easy to derive model 2. by modifying the existing HDL code, but

I maintenance effort doubled

I what if you later needed a third and a fourth model?

HDL requirement no.5

Means for accommodating distinct architecture choices and parameter settings
within a single piece of code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 91 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why it pays to keep HDL models parametrized

1. Imagine you have devised a synthesis model for a datapath unit
I 16 data registers
I 17 arithmetic and logic operations
I 32 bit word width

2. In addition, you need a similar unit for address computations
I 5 data registers
I 8 arithmetic and logic operations
I 24 bit word width

Easy to derive model 2. by modifying the existing HDL code, but

I maintenance effort doubled

I what if you later needed a third and a fourth model?

HDL requirement no.5

Means for accommodating distinct architecture choices and parameter settings
within a single piece of code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 91 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Generics
component parityoddw -- w-input odd parity gate

generic (

WIDTH : natural range 2 to 32; -- number of inputs with supported range

TCD : time := 0 ns, -- contamination delay with default value

TPD : time := 1.0 ns ); -- propagation delay with default value

port (

Inp_DI : in std_logic_vector(WIDTH-1 downto 0);

Oup_DO : out std_logic );

end component;

.....

constant NUMBITS : natural = 12;

.....

-- component instantiation statement

u173: parityoddw

generic map ( WIDTH => NUMBITS, TCD => 0.05 ns, TPD => (NUMBITS * 0.1 ns) )

port map ( Inp_DI => DataVec_D , Oup_DO => Parbit_D );

Signals carry time-varying info between processes and design entities.
Generics serve to disseminate time-invariant details to design entities,

they do not have any direct hardware counterpart.
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 92 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional spawning of processes I

Consider a cellular automaton: Game of Life by John H. Conway (1970)
Show http://www.bitstorm.org/gameoflife/

2D array of identical cells

alive = 3

alive ≤ 1

alive ≥ 4

birth

isolation

overcrowding

set of rules

..... .....

..... .....

..... .....

.....

.....

..... .....

.....

..... ..... ..... ..... .....

HDL requirement no.5’

Means for varying the number of processes (and of components too)
as a function of parameter settings made after the source code is frozen.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 93 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional spawning of processes I

Consider a cellular automaton: Game of Life by John H. Conway (1970)
Show http://www.bitstorm.org/gameoflife/

2D array of identical cells

alive = 3

alive ≤ 1

alive ≥ 4

birth

isolation

overcrowding

set of rules

..... .....

..... .....

..... .....

.....

.....

..... .....

.....

..... ..... ..... ..... .....

HDL requirement no.5’

Means for varying the number of processes (and of components too)
as a function of parameter settings made after the source code is frozen.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 93 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional spawning of processes II

The generate statement

I allows to decide on the number of concurrent processes immediately
before simulation or synthesis begins with no changes to the basic code

I produces processes under control of constants and generics

I comes in two flavors

if ... generate
to capture the conditional presence or absence
of a process

for ... generate
to capture a number of replications of a process
where the number is subject to change

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 94 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: Game of Life
.....

-- spawn a process for each cell in the array

row : for ih in HEIGHT-1 downto 0 generate -- repetitive generation

cell : for iw in WIDTH-1 downto 0 generate -- repetitive generation

memzing: process(Clk_C)

subtype live_neighbors_type is integer range 0 to 8;

variable live_neighbors : live_neighbors_type;

begin

if Clk_C’event and Clk_C=’1’ then

live_neighbors := live_neighbors_at(ih,iw);

if State_DP(ih,iw)=’0’ and live_neighbors=3 then

State_DP(ih,iw) <= ’1’; -- birth

elsif State_DP(ih,iw)=’1’ and live_neighbors<=1 then

State_DP(ih,iw) <= ’0’; -- death from isolation

elsif State_DP(ih,iw)=’1’ and live_neighbors>=4 then

State_DP(ih,iw) <= ’0’; -- death from overcrowding

end if;

end if;

end process memzing;

end generate cell;

end generate row;

.....

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 95 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional instantiation of components

The generate mechanism also works for component instantiation.

Refer to transparency binary2gray.vhd(structural) for code!

As usual:

1. Declare all components to be used.

2. Declare all signals that run back and forth
unless they are already known from the port clause.

3. Instantiate components specifying all terminal-to-signal connections.

New:

4. Use if ... generate and for ... generate statements
to make instantiation conditional.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 96 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Multiple models for one circuit block

VHDL accepts multiple architecture bodies for the same entity declaration.

Why would you want that?

I Because over a design cycle the same functionality needs to be modeled
at distinct levels of detail.

1. Algorithmic model (purely behavioral)
2. RTL model (for simulation and synthesis)
3. Post synthesis gate-level netlist (timing estimated)
4. Post layout gate-level netlist (timing back-annotated)

I To evaluate different circuit implementations for one block
(in terms of A, tlp, E , etc.).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 97 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Multiple models for one circuit block

VHDL accepts multiple architecture bodies for the same entity declaration.

Why would you want that?

I Because over a design cycle the same functionality needs to be modeled
at distinct levels of detail.

1. Algorithmic model (purely behavioral)
2. RTL model (for simulation and synthesis)
3. Post synthesis gate-level netlist (timing estimated)
4. Post layout gate-level netlist (timing back-annotated)

I To evaluate different circuit implementations for one block
(in terms of A, tlp, E , etc.).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 97 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Entity declaration versus architecture body

one entity declaration

one or more
architecture bodies

behavioral structural

architecture behavioral of binary2gray is

begin

end behavioral;

Oup_DO <= bintogray(Inp_DI) after TPD;

begin

if scrapa(i+1)=’1’ then

end if;

end bintogray;

variable scrapa : bit_vector(arg’length-1 downto 0);

end loop;

scrapa(i) := not scrapa(i);

for i in 0 to arg’length-2 loop
scrapa := arg;

function bintogray (arg : bit_vector) return bit_vector is

return scrapa;

external view

internal view

higher level of abstraction

next lower level of abstraction

binary2gray

Oup_DO(WIDTH-1 downto 0)

bit_vector

TPDtime

natural WIDTH

Inp_DI(WIDTH-1 downto 0)

bit_vector

time-invariant information
generics convey static i.e.

type of information conveyeditalic

ports convey dynamic i.e.
time-varying information

identifier, i.e. name of
entity or architecturebold

as the design 
progresses 

typically used for synthesis typically used for place & route

Inp_DI(WIDTH-1)

.....

.....

.....

.....

.....

Oup_DO(WIDTH-1)

Inp_DI(WIDTH-2)

Oup_DO(WIDTH-2)

Inp_DI(1) Inp_DI(0)

Oup_DO(1) Oup_DO(0)

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 98 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Configuration specification and binding

With multiple architecture bodies, there must be a way to indicate
which one to use for simulation and synthesis
 configuration specification statement.

for u113: binary2gray use entity binary2gray(behavioral);

for u188: binary2gray use entity binary2gray(structural);

The mechanism is more general. A component instantiated under one name
can be bound to an entity with a different name, and this binding does not
need to be the same for all instances of that component.

for all: xnor2_gate use entity GTECH_XNOR2(behavioral);

for all: inverter_gate use entity GTECH_NOT(behavioral);

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 99 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Configuration specification and binding

With multiple architecture bodies, there must be a way to indicate
which one to use for simulation and synthesis
 configuration specification statement.

for u113: binary2gray use entity binary2gray(behavioral);

for u188: binary2gray use entity binary2gray(structural);

The mechanism is more general. A component instantiated under one name
can be bound to an entity with a different name, and this binding does not
need to be the same for all instances of that component.

for all: xnor2_gate use entity GTECH_XNOR2(behavioral);

for all: inverter_gate use entity GTECH_NOT(behavioral);

Warning

Do not pack two functionally distinct behaviors into two architecture bodies
that belong to the same entity declaration as this is extremely confusing!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 100 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

VHDL provides a range of constructs for writing parametrized circuit models:

I generic quantities

I for...generate and if...generate statements

I multiple architecture bodies for a single entity

I configurations along with the pertaining declaration and
specification statements

VHDL property

It is possible to establish a model without committing the code
to any specific number of processes and/or instantiated components.

 A preparatory step must take place before simulation or synthesis
can begin 7→ elaboration and binding.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 101 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

VHDL provides a range of constructs for writing parametrized circuit models:

I generic quantities

I for...generate and if...generate statements

I multiple architecture bodies for a single entity

I configurations along with the pertaining declaration and
specification statements

VHDL property

It is possible to establish a model without committing the code
to any specific number of processes and/or instantiated components.

 A preparatory step must take place before simulation or synthesis
can begin 7→ elaboration and binding.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 101 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

(every component instantiated
must have a behavioral model)

all signals (variables) initialized,
all processes executed until
suspended for the first time

simulation time set to zero,

initialization

simulation time set
to next transaction

sensitive processes executed 

new transactions scheduled
until they suspended again,

actual or estimated
delay data (SDF)

progress
in time

executable program

delay
calculation

cells and interconnect
timing models for 

PTV
situation

of target library
inventory and data

SynopsysDC commands

analyze elaborate compile / design optimization

HDL simulation flow

• full language supported
• circuit models plus testbench

RTL synthesis flow

• subset of language only
• circuit models exclusively

default

overwritten
delay values

code
generation

(every component instantiated

be available from target library)
but not detailed any further must

gate-level netlist
for target library

functionally correct
network of generic
logic components

minimized
logic network

state encoding

state reduction
and

combinat. logic

synthesis of
registers and

state machines specified
with minimum states and
near-optimum encoding

Boolean
optimization

technology
mapping

constraints
timing

&

circuit
layout gate-level netlist

layout
extraction

source
code

all generate statements unrolled,  
all instantiation statements honored,

all processes and signals (variables) known
all components bound,

elaboration
and binding

parsed model 

syntax analysis

actual capacitance
and resistance values

Delay calculation from layout
• outside the scope of VHDL or SystemVerilog

back-annotation
(optional)

signal
updating

process
execution

signal
waveforms

 updated accordingly
signals (variables)

pending trans-
actions carried out,

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 102 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about programming

Proven concepts from safe and modular programming include

I Structured flow control statements (no goto)

I Typing and type checking

I Data structures (enumerated types, arrays, records)

I Subprograms

I Packages (collections of type declarations and subprograms)

I Information hiding (declaration module vs. implementation module)

HDL requirement no.6

Make those ideas available to HDL model developers too.

No graphic illustration at this point.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 103 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about programming

Proven concepts from safe and modular programming include

I Structured flow control statements (no goto)

I Typing and type checking

I Data structures (enumerated types, arrays, records)

I Subprograms

I Packages (collections of type declarations and subprograms)

I Information hiding (declaration module vs. implementation module)

HDL requirement no.6

Make those ideas available to HDL model developers too.

No graphic illustration at this point.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 103 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Concepts borrowed from programming languages

I Structured flow control statements
I if...then...elsif...else, case
I loop, exit, next

I Strong typing (type, subtype, type checking at compile time)

I Enumerated types

I Composite data types (array, record)

I Subprograms (function, procedure)

I Packages (package)

I Information hiding
I declaration module (entity declaration, package declaration)
I implementation module (architecture body, package body)

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 104 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types and subtypes

A data type defines a set of values and a set of operations. Users may declare
their own data types or use predefined ones. Type declaration.
Example type month is (JANUARY, FEBRUARY, ... , DECEMBER);

VHDL property

VHDL is strongly typed. Extensive type checking is performed.
Types must be made to match prior to assignment or comparison.

A subtype shares the operations with its parent type, but differs in that it
takes on a subset of data values only. Subtype declaration.
Example subtype day is integer range 1 to 31;

Hint

It is good practice to indicate an upper and a lower bound when using
integers for hardware modeling. On-line range checking (simulation)
and economic sizing of circuits (synthesis) otherwise remain elusive.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 105 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types and subtypes

A data type defines a set of values and a set of operations. Users may declare
their own data types or use predefined ones. Type declaration.
Example type month is (JANUARY, FEBRUARY, ... , DECEMBER);

VHDL property

VHDL is strongly typed. Extensive type checking is performed.
Types must be made to match prior to assignment or comparison.

A subtype shares the operations with its parent type, but differs in that it
takes on a subset of data values only. Subtype declaration.
Example subtype day is integer range 1 to 31;

Hint

It is good practice to indicate an upper and a lower bound when using
integers for hardware modeling. On-line range checking (simulation)
and economic sizing of circuits (synthesis) otherwise remain elusive.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 105 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Package declaration and package body

A package is a named collection of types and/or subprograms
that is made visible by referring to it in a use clause. Example:

-- package declaration

package calendar is

type month is (JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER);

subtype day is integer range 1 to 31;

function nextmonth (given_month : month) return month;

function nextday (given_day : day) return day;

end calendar;

-- package body

package body calendar is

function nextmonth (given_month : month) return month is

begin

if given_month=month’right then return month’left;

else return month’rightof(given_month);

end if;

end nextmonth;

function nextday (given_day : day) return day is

.....

end nextday;

end calendar;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 106 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Predefined packages

standard package defines data types and subtypes of VHDL
along with the pertaining logic and arithmetic operations
and a few more features.
Always gets precompiled into design library std.
Users do not normally need to care much about it.

textio package defines subprograms related to the reading and writing
of ASCII files (obviously not intended for synthesis).
Always gets precompiled into design library std.
Source code must include the line use std.textio.all;
to make definitions immediately available.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 107 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Design unit, design file and design library

VHDL property

VHDL supports information hiding and incremental compilation.

Design unit a language construct amenable to compilation on its own.
• package declaration,
• package body,
• entity declaration,
• architecture body, and
• configuration declaration.

Design file a file that holds one or more design units.

Design library a named repository for a collection of design units
after compilation on a host computer.
Specific for a platform (host computer and software product).
Can accommodate many design files and design units.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 108 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

VHDL source
code and
intermediate
data

package body grayconv

package body textio

package body standard

compile step

VHDL source code

platform-specific descriptions

compile step

compile step

compile step

design file

entity declaration graycnt

design units

architecture body
behavioral of graycnt

design file

entity graycnt_tb

design units

architecture body
behavioral of graycnt_tb

design file

package declaration standard

design units

design file

package declaration textio

design units

architecture body
structural of graycnt

design unit

design file

compile step

simulation run

results from synthesis

design file

package declaration grayconv

design units

design libraries

compile step

design library

this library
default destination

for compiler
and visible
by default

work

design library

this library
visible

by default

std

design library testbench

report file

results from simulation

signal waveforms

synthesis step

[re]optimization step

design database

gate-level netlist

conversion
step

final

design library 
established 
by the user

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 109 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Subject

Key concepts and constructs of SystemVerilog

For a VHDL course, skip the next 75 or so slides.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 110 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Hardware description language requirements

HDL requirement no.1

Means for expressing how circuits are being composed from subcircuits
and how those subcircuits connect to each other.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 111 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

1st HDL capability: Circuit hierarchy and connectivity

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

same subcircuit
instantiated twice

Figure: Hierarchical composition ...
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 112 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Module header

Specifies the external interface of a (sub)circuit (small or large).

// module header with external interface

module lfsr4

( output logic Oup_DO,

input logic Clk_CI, Rst_RBI, Ena_SI ) ;

...

endmodule

Oup_DO

Ena_SI

Clk_CI

Rst_RBI

I The port list declares all signals of a module that are accessible from
outside (i.e. the terminals of a circuit as opposed to its inner nodes).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 113 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Module body I: a structural circuit model

n
1
1

Oup_DO

Ena_SI

Clk_CI

Rst_RBI

State_DP(1) State_DP(2) State_DP(3) State_DP(4)

n
2
1

n
3
1

n
4
1

n42

u20 u30 u40u10

CP

CD

D Q

FD2

CP

CD

D Q

FD2

CP

CD

D Q

FD2

CP

SD

D Q

FD4

u21 u31 u41u11

u42

Figure: Linear-feedback shift register circuit to be described.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 114 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Module body I: a structural circuit model

Refer to transparency lfsr4struc.sv for code!

Describes a circuit or netlist assembled from components and wires.

1. Declare all modules to be used.

2. Declare all variables that run back and forth
unless they are already known from the port list.

3. Instantiate modules specifying all terminal-to-signal connections.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 115 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Practical advice

Hints

I SystemVerilog is case-sensitive, e.g. clk ci 6= CLK CI.

I Naming a variable input or output is all too tempting, yet these are
reserved words in SystemVerilog. We recommend Inp and Oup instead.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 116 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Practical advice

Hints

I SystemVerilog is case-sensitive, e.g. clk ci 6= CLK CI.

I Naming a variable input or output is all too tempting, yet these are
reserved words in SystemVerilog. We recommend Inp and Oup instead.

No rule without exceptions. Case-insensitive are

I the letters d, h, o and b that indicate the base
in decimal, hexadecimal, octal and binary numbers,

I the hex digits A through F, and

I the logic values X and Z.

Example:

16’hFE39 // casing of a 16-bit hexadecimal number for max. legibility

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 117 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to compose a circuit from components

How do you proceed when asked to fit a circuit board with components?

1. Think of a part’s exact name, e.g. GTECH FD2

2. Fetch a copy and assign it some unique identifier it, e.g. u10

3. Solder its terminals to existing metal pads on the board

The module instantiation statement does exactly that. Example:

GTECH_FD2 u10

( .D(n11), // port map begins here

.CP(Clk_C),

.CD(Rst_RB),

.Q(State_DP[1]) ); // port map ends here

Note

Each .instance terminal(circuit node) item stands for an electrical connection.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 118 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The essence of structural circuit modeling

I SystemVerilog can describe the hierarchical composition of a circuit by

I instantiating modules and by
I interconnecting them with the aid of wires normally modeled as variables.

I Structural HDL models hold the same information as circuit netlists do.

I Manually writing structural HDL models is not particularly attractive.

I Most structural models are in fact obtained from RTL models
by automatic synthesis.

HDL requirement no.2

Means for expressing circuit behavior including the combined effects
of multiple subcircuits that operate jointly and concurrently.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 119 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The essence of structural circuit modeling

I SystemVerilog can describe the hierarchical composition of a circuit by

I instantiating modules and by
I interconnecting them with the aid of wires normally modeled as variables.

I Structural HDL models hold the same information as circuit netlists do.

I Manually writing structural HDL models is not particularly attractive.

I Most structural models are in fact obtained from RTL models
by automatic synthesis.

HDL requirement no.2

Means for expressing circuit behavior including the combined effects
of multiple subcircuits that operate jointly and concurrently.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 119 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

2nd HDL capability: Interacting concurrent processes

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

Figure: ... plus behavior modeled with the aid of concurrent processes ...

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 120 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Constants and variables

What everyone knows from software languages:

I Constant declaration
Example const integer FERMAT_PRIME_4 = 65537;

I Variable declaration
Examples var real Brd = 2.48678E5;

(keyword var is optional) real Ddr := 1.08179E5;

I Variable assignment (procedural assignment)
Example Brd = Brd + Ddr;

... plus an HDL particularity:

I Variable assignment (continuous assignment)
Example assign Brd = Brd + Ddr;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 121 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Constants and variables

What everyone knows from software languages:

I Constant declaration
Example const integer FERMAT_PRIME_4 = 65537;

I Variable declaration
Examples var real Brd = 2.48678E5;

(keyword var is optional) real Ddr := 1.08179E5;

I Variable assignment (procedural assignment)
Example Brd = Brd + Ddr;

... plus an HDL particularity:

I Variable assignment (continuous assignment)
Example assign Brd = Brd + Ddr;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 121 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally I

Continuous assignment

I Syntactically simplest form of a process.
I Drives one variable.

Example:

logic Aa D, Bb D, Cc D, Oup D;

.....

assign Oup_D = Aa_D ^ (Bb_D & ~Cc_D);

I Typically used to model some combinational behavior
(such as an arithmetic or logic operation)
when there is no need for branching.

0Logic operators: ^=XOR, &=AND, |=OR, ~=NOT

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 122 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally II

Continuous assignment with a condition operator included

Example:

logic Add S, Aa D, Bb D, Oup D;

.....

assign Oup_D = Add_S ? (Aa_D + Bb_D) : (Aa_D - Bb_D);

Syntax: conditional expression ? then expression : else expression

Glimpse ahead: A continuous assignment gets activated by any change
of any signal on the right-hand side.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 123 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally III

Procedural blocks

I always comb, always ff, always latch 7→ for circuit modeling.

I always, initial, final 7→ for testbench design.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 124 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe combinational logic behaviorally III

Procedural blocks

I always comb, always ff, always latch 7→ for circuit modeling.

I always, initial, final 7→ for testbench design.

I There is a special construct for combinational circuitry.

Example:

always_comb

begin

Spring_D = 0; // execution begins here

if (ThisMonth_D==MARCH & ThisDay>=21) Spring_D = 1;

if (ThisMonth_D==APRIL) Spring_D = 1;

if (ThisMonth_D==MAY) Spring_D = 1;

if (ThisMonth_D==JUNE & ThisDay<=20) Spring_D = 1;

end // process suspends here

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 125 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Procedural block versus continuous assignment

When compared to a continuous assignment, a procedural block

I is capable of updating two or more variables at a time,

I captures the instructions for doing so in a sequence of statements
that are going to be executed one after the other,

I gives the liberty to make use of variables for temporary storage,

I provides more detailed control over the conditions for activation.

Observation

Procedural blocks are best summed up as being concurrent outside
and sequential inside.

I They are indispensable to model memorizing circuit behavior.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 126 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Procedural block versus continuous assignment

When compared to a continuous assignment, a procedural block

I is capable of updating two or more variables at a time,

I captures the instructions for doing so in a sequence of statements
that are going to be executed one after the other,

I gives the liberty to make use of variables for temporary storage,

I provides more detailed control over the conditions for activation.

Observation

Procedural blocks are best summed up as being concurrent outside
and sequential inside.

I They are indispensable to model memorizing circuit behavior.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 126 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe a register behaviorally I

Procedural blocks (revisited)

I always comb, always ff, always latch 7→ for circuit modeling.

I always, initial, final 7→ for testbench design.

I There is a special construct for edge-triggered circuitry and
a separate one for level-sensitive circuitry.

7→ A net progress over Verilog and VHDL.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 127 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to describe a register behaviorally II

Example of an edge-triggered register that features

1. an asynchronous reset,

2. a synchronous load, and

3. an enable.

always_ff @(posedge Clk_C, negedge Rst_RB) // sensitivity list

// activities triggered by asynchronous reset

if (~Rst_RB)

State_DP <= ’0; // shorthand for all bits zero

// activities triggered by rising edge of clock

else

// when synchronous load is asserted

if (Lod_S)

State_DP <= ’1; // shorthand for all bits one

// otherwise assume new value iff enable is asserted

else if (Ena_S)

State_DP <= State_DN; // admit next state into state register

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 128 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

More than
just VHDL
nostalgia

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Suggestion

Code is easier to read when when “signals” can be told from local variables.
We append an underscore followed by a suffix of upper-case letters to those
variables that convey information between concurrent processes, e.g.
Carry DB, AddrCnt SN, Irq AMI.

Details of our naming convention are to follow in chapter 6 “The Case for Synchronous Design”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 129 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Module body II: a behavioral circuit model
Describes how concurrent processes interact via signals
and how they alter them.

// external interface of module

module lfsr4 (

input logic Clk_CI, Rst_RBI, Ena_SI, // reset is active low

output logic Oup_DO );

// behavioral model for module

// declare internal variables

logic [1:4] State_DP, State_DN; // for present and next state

// computation of next state using concatenation of bits

assign State_DN = {(State_DP[3] ^ State_DP[4]), State_DP[1:3]};

// updating of state

always_ff @(posedge Clk_CI, negedge Rst_RBI)

// activities triggered by asynchronous reset

if (~Rst_RBI)

State_DP <= 4’b0001;

// activities triggered by rising edge of clock

else

if (Ena_SI)

State_DP <= State_DN; // admit next state into state register

// updating of output

assign Oup_DO = State_DP[4];

endmodule

xor

D C B A
(1) (2) (3) (4)State_DP

D C BE

Ena_SI

Clk_CI

Rst_RBI

Oup_DO

memorizing
process

memoryless
process

memoryless process

(1) (2) (3) (4)State_DN

(1) (2) (3) (4)State_DP

(1) (2) (3) (4)State_DN

(4)State_DP

models 
combinational
operations

models 
a register

models a wire

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 130 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The essence of behavioral circuit modeling

In SystemVerilog, the behavior of a digital circuit typically gets described
by a collection of concurrent processes that

I execute simultaneously, that

I communicate via variables, and where

I each such process represents some subfunction.

Hint for RTL synthesis

I Model each register with an always ff statement
(or an always latch if level-sensitive rather than edge-triggered).

I Prefer continuous assignments for describing the combinational logic
in between.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 131 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Hardware modeling styles

behavioral physical

design view

dataflowprocedural

may all be combined in one HDL model

concurrent
processesof instructions

sequence

structural

components
interconnected

(netlist)

geometric
shapes
(layout)

neither captured by VHDL 
nor by SystemVerilog,

use GDS II, CIF, or the like

Observation

SystemVerilog allows for procedural, dataflow, and structural modeling styles
to be freely combined in a single model.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 132 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Procedural, dataflow, and structural models compared I

Refer to transparency fulladd.sv for code!

Compare in terms of

1. number of processes

2. number of variables that communicate between processes

3. number of variables confined to within one process

4. impact of ordering of statements

5. interaction with event queue

6. portability of source code

Note: Adders are normally synthesized from algebraic expressions,
a full-adder has been chosen here for its simplicity and conciseness.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 133 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Procedural, dataflow, and structural models compared II

nd

nd

nd

xor

xor

nd

xor

nd
nd

xor
loc1

loc3

loc4

process

port

module

instance
module

(hierarchy) or wire

variable

operation

combi-
national

sensitivity list

variable

Loc1_D

Loc3_D

Loc4_D

Loc1_D

Loc3_D

Loc4_D

Aa_DI

Bb_DI

Cc_DI

Sum_DO

Carry_DO

Aa_DI

Bb_DI

Cc_DI

Sum_DO

Carry_DO

Aa_DI

Bb_DI

Cc_DI

Sum_DO

Carry_DO

procedural structural

dataflow

Figure: Modeling styles illustrated with a full adder as example.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 134 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: The ones counter

Refer to transparency onescnt.sv for code!

Observe

1. In spite of its name, this is a memoryless subfunction
that finds applications in large adder circuits.

2. The output is a 3 bit number that indicates
how many of the four input bits are 1 (logic high).

3. The great diversity of modeling styles
to express exactly the same functionality.

Observation

Some code examples are compact and easy to understand,
others are more cryptic or tend to grow exponentially.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 135 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: The ones counter

Refer to transparency onescnt.sv for code!

Observe

1. In spite of its name, this is a memoryless subfunction
that finds applications in large adder circuits.

2. The output is a 3 bit number that indicates
how many of the four input bits are 1 (logic high).

3. The great diversity of modeling styles
to express exactly the same functionality.

Observation

Some code examples are compact and easy to understand,
others are more cryptic or tend to grow exponentially.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 135 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

3rd capabilitity: A discrete replacement for electrical signals

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Figure: ... plus data types for modeling electrical phenomena ...

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 136 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about bidirectional busses I

SODIMM 1

SODIMM 0

data bus

memory read

memory write

CPU
drives bus

receives
data

must not
interfere

must not
interfere

receives
data

drives
bus

Figure: Memory read and write transfers in a computer.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 137 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about bidirectional busses II

Requirements:

I Each bidirectional line is to be driven from multiple places,
so one needs a multi-driver signal (as opposed to a single-driver signal).

I Driving alternates.

I Buffers must be able to electrically release the line
hence the name “three-state” output
(0, 1, disabled output = high-impedance state).

I Requires some kind of access control mechanism
(centralized or distributed).

Failure modes:

I Stationary drive conflict 7→ functional failure or damage.

I Floating voltage 7→ electrically undesirable condition.

Presentation focusses on HDL modeling,

remedies to be discussed in chapter 10 ”Gate- and Transistor-Level Design”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 138 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about bidirectional busses II

Requirements:

I Each bidirectional line is to be driven from multiple places,
so one needs a multi-driver signal (as opposed to a single-driver signal).

I Driving alternates.

I Buffers must be able to electrically release the line
hence the name “three-state” output
(0, 1, disabled output = high-impedance state).

I Requires some kind of access control mechanism
(centralized or distributed).

Failure modes:

I Stationary drive conflict 7→ functional failure or damage.

I Floating voltage 7→ electrically undesirable condition.

Presentation focusses on HDL modeling,

remedies to be discussed in chapter 10 ”Gate- and Transistor-Level Design”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 138 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why do binary types not suffice to model digital circuits?

Digital circuits exhibit characteristics and phenomena such as

I transients,

I three-state outputs,

I drive conflicts, and

I power-up

that can not be modeled with 0 and 1 alone.

HDL requirement no.3

A multi-valued logic system capable of capturing the effects
of both node voltage and source impedance.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 139 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why do binary types not suffice to model digital circuits?

Digital circuits exhibit characteristics and phenomena such as

I transients,

I three-state outputs,

I drive conflicts, and

I power-up

that can not be modeled with 0 and 1 alone.

HDL requirement no.3

A multi-valued logic system capable of capturing the effects
of both node voltage and source impedance.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 139 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog logic system I

Voltage is quantized into three logic states
◦ low logic low, that is below Ul .
◦ high logic high, that is above Uh.
◦ unknown either “low”, “high” or anything in between

e.g. as a result from a short between two drivers.

Source impedance gets mapped onto two drive strengths
◦ driven as exhibited by a driving output
◦ high-impedance as exhibited by a disabled three-state output

I Note the absence of drive strength “weak”
as exhibited by a passive pull-up/-down resistor or a snapper.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 140 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog logic system I

Voltage is quantized into three logic states
◦ low logic low, that is below Ul .
◦ high logic high, that is above Uh.
◦ unknown either “low”, “high” or anything in between

e.g. as a result from a short between two drivers.

Source impedance gets mapped onto two drive strengths
◦ driven as exhibited by a driving output
◦ high-impedance as exhibited by a disabled three-state output

I Note the absence of drive strength “weak”
as exhibited by a passive pull-up/-down resistor or a snapper.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 140 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog logic system II
No charge retention in high-impedance state  
• charged low
• charged high
• charged unknown

are all merged into a single value of undetermined state (voltage).

Two extra conditions ought to be distinguished, namely:
◦ uninitialized signal has never been assigned

any value since power-up
(applicable to simulation only).

◦ don’t care don’t care condition for logic minimization,
distinction between “low” or “high” immaterial
(applicable to synthesis only).

Oddities:

I No attempt to distinguish between “unknown” and “uninitialized”.

I Same symbol X is used as for “unknown” and “don’t care”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 141 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog logic system II
No charge retention in high-impedance state  
• charged low
• charged high
• charged unknown

are all merged into a single value of undetermined state (voltage).

Two extra conditions ought to be distinguished, namely:
◦ uninitialized signal has never been assigned

any value since power-up
(applicable to simulation only).

◦ don’t care don’t care condition for logic minimization,
distinction between “low” or “high” immaterial
(applicable to synthesis only).

Oddities:

I No attempt to distinguish between “unknown” and “uninitialized”.

I Same symbol X is used as for “unknown” and “don’t care”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 141 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog logic system II
No charge retention in high-impedance state  
• charged low
• charged high
• charged unknown

are all merged into a single value of undetermined state (voltage).

Two extra conditions ought to be distinguished, namely:
◦ uninitialized signal has never been assigned

any value since power-up
(applicable to simulation only).

◦ don’t care don’t care condition for logic minimization,
distinction between “low” or “high” immaterial
(applicable to synthesis only).

Oddities:

I No attempt to distinguish between “unknown” and “uninitialized”.

I Same symbol X is used as for “unknown” and “don’t care”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 141 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog logic system III

Uses a total of four logic values to model electrical signals.

logic value → logic state
↓ low unknown high
uninitialized X
strength driven 0 X 1

high-impedance Z Z Z
don’t care X

Defines two data types that share the above set of values:
◦ logic Difference to be

◦ wire explained soon

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 142 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Illustrations

0

1
X

drive conflict strong drive 

10

01

XX

at = 0 t 

a)

Z−

0

no drive, 
high-impedance 

input does 
not matter 

Figure: The SystemVerilog MVL-4 illustrated.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 143 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to model a bidirectional line in SystemVerilog I

Want to model a circuit node that can be driven from multiple subcircuits?
 Use a wire and two or more continuous assignments with a condition.

Example:

wire Com_DZ;

logic Aa D, Bb D, SelA S, SelB S;

.....

assign Com_DZ = SelA_S ? ~Aa_D : 1’bZ;

.....

assign Com_DZ = SelB_S ? ~Bb_D : 1’bZ;

.....

Note

Node Com DZ is left floating when neither of the two drivers is enabled.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 144 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to model a bidirectional line in SystemVerilog II

no difference between logic wireand

Z X
0

10
1

X
0

0
1

b)

SelA_S

SelbB_S

Aa_D

Qq_DZ

Aa_D

Bb_D

Pp_DZ

Bb_D

SelA_S

SelB_S

Com_DZ

single-driver signals Pp_DZ Qq_DZand 
may assume distinct logic values, then an error message gets issued

then the conflict is resolved to Com_DZ = 1

logic

wire

if multi-driver signal Com_DZ is of type

Observation

Use wire for multi-driver nodes exclusively. When simulating
wire tacitely resolves all conflicts that might occur
logic supports no multiple drivers, generates an error message

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 145 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to model a bidirectional line in SystemVerilog II

no difference between logic wireand

Z X
0

10
1

X
0

0
1

b)

SelA_S

SelbB_S

Aa_D

Qq_DZ

Aa_D

Bb_D

Pp_DZ

Bb_D

SelA_S

SelB_S

Com_DZ

single-driver signals Pp_DZ Qq_DZand 
may assume distinct logic values, then an error message gets issued

then the conflict is resolved to Com_DZ = 1

logic

wire

if multi-driver signal Com_DZ is of type

Observation

Use wire for multi-driver nodes exclusively. When simulating
wire tacitely resolves all conflicts that might occur
logic supports no multiple drivers, generates an error message

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 145 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

The SystemVerilog built-in resolution function

X 0 1 Z
X X X X X
0 X 0 X 0
1 X X 1 1
Z X 0 1 Z

I This is the default resolution function for type wire,
others can be added.

I There can be no resolution function for type logic
nor for integer or any other type of variable.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 146 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for modeling single-bit signals

data type bit logic wire

for simulation purposes
modeling of power-up phase no passable passable
modeling of weakly driven nodes no no no
modeling of multi-driver nodes no no yes
handling of drive conflicts n.a. n.a. resolved

for synthesis purposes
three-state drivers no yes yes
don’t care conditions no yes yes

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 147 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Data types for modeling multi-bit signals

data type(s) byte, integer bit logic wire

shortint, vector vector vector
int,

longint

value set per binary digit 2 4 2 4 4
word width 8/16/32/64 32 at the programmer’s discretion
arithmetic operations yes yes yes yes yes

default signed/unsigned signed signed unsign. unsign. unsign.
logic operations yes yes yes yes yes
access to subwords or bits yes yes yes yes yes
modeling of electrical effects no passable* no passable* passable

* Multiple drivers not allowed with this data type.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 148 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Orientation of binary vectors

Hint

Any vector that contains a data item coded in some positional number system
should consistently be declared as (iMSB downto iLSB ) where 2i is the weight
of the binary digit with index i .

The MSB so has the highest index assigned to it and appears in the customary
leftmost position because iMSB ≥ iLSB .
Example logic [4:0] Hour_D = 5’b10111;

Numerical data types can be declared as unsigned or signed with a modifier.
Example:

int unsigned ii...i�

int signed si...i� in 2’s complement format

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 149 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Orientation of binary vectors

Hint

Any vector that contains a data item coded in some positional number system
should consistently be declared as (iMSB downto iLSB ) where 2i is the weight
of the binary digit with index i .

The MSB so has the highest index assigned to it and appears in the customary
leftmost position because iMSB ≥ iLSB .
Example logic [4:0] Hour_D = 5’b10111;

Numerical data types can be declared as unsigned or signed with a modifier.
Example:

int unsigned ii...i�

int signed si...i� in 2’s complement format

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 149 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

A word of advice

Hint

Rather than silently relying on defaults to keep the code as terse as possible,
make your intentions reasonably explicit in the code.

I Not only improves code quality but also accelerates debugging and
code maintenance.

I Defaults are rather unsystematic in SystemVerilog.

I SystemVerilog is weakly typed = little type checking is performed.

4 data words get tacitely extended or slashed in width to make things fit
± almost no obligation to include type conversions
− impossible for tools to find suspect code fragments during compilation

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 150 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

4th HDL capability: An event-based model of time

current events
invoke

sensitive processes
schedule
future transactions

processes being executed

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

event queue
mechanism

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

event

transaction

queue
event

event

queue
event

scheduled event

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Figure: ... plus an event queue mechanism that governs process activation ...
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 151 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How does SystemVerilog simulation work? I

Please recall:

A variable’s (or a wire’s) value can be altered by any of ...

I continuous assignment.

I always comb, always ff, and always latch block
(for circuit modeling).

I always, initial, and final blocks (for testbenches).

Make sure to understand

I All the above constructs are concurrent processes aka threads of execution
(in the sense of the German “nebenläufiger Prozess”).

I “Procedural block”, in contrast, refers only to the always , always,
initial, and final blocks.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 152 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How does SystemVerilog simulation work? II

I A typical circuit model comprises many many processes.

I No more than a few processor cores are normally available
for running the simulation code.

I Yet, simulation is to yield the same result
as if all processes were operating simultaneously.

HDL requirement no.4

A mechanism that schedules processes for sequential execution and
that combines their effects such as to perfectly mimic concurrency.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 153 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How does SystemVerilog simulation work? II

I A typical circuit model comprises many many processes.

I No more than a few processor cores are normally available
for running the simulation code.

I Yet, simulation is to yield the same result
as if all processes were operating simultaneously.

HDL requirement no.4

A mechanism that schedules processes for sequential execution and
that combines their effects such as to perfectly mimic concurrency.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 153 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Notions of time

Simulation time is to an HDL what physical time is to the hardware being
modeled. The simulator can be thought to maintain some kind
of stop watch that registers the progress of simulation time.

Execution time (aka wall clock) refers to the time a computer takes to execute
statements from the program code during simulation.

I In SystemVerilog simulation, the continuum of time gets subdivided by
events each of which occurs at a precise moment of simulation time.

I An update event is said to happen whenever the value of a variable
(or wire) changes.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 154 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Notions of time

Simulation time is to an HDL what physical time is to the hardware being
modeled. The simulator can be thought to maintain some kind
of stop watch that registers the progress of simulation time.

Execution time (aka wall clock) refers to the time a computer takes to execute
statements from the program code during simulation.

I In SystemVerilog simulation, the continuum of time gets subdivided by
events each of which occurs at a precise moment of simulation time.

I An update event is said to happen whenever the value of a variable
(or wire) changes.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 154 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation I

Event-driven simulation works in cycles where three stages alternate:

1. Advance simulation time to the next scheduled event
thereby making it the current one.

2. Set all variables that are to be updated at the present moment of time
to the target value associated with the current event.

3. Invoke all processes that need to respond to the new situation.
Every assignment there supposed to modify a variable’s value causes an
event to be entered into the event queue at that point in the future when
the variable is anticipated to take on its new value.

Go to 1. and start a new simulation cycle.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 155 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Basic event-queue mechanism

past events scheduled events

present moment
of time

event queue

simulation
time

b)

event queue

processes

current update
events invoke

sensitive processes
executed schedule
events in the future

processes being 
process

a)

sensitive input

input
variables

output
variables

tpdpropagation delays

C DA B

process gets invoked by
update events on variable B

and schedules events
on variables C and D 

process
variables
"signals"

inter-

regions 
simulation 

1. Active:  
2. Inactive:
3. NBA:  

5. Postponed:
4. Observed:  

#0 blocking assignments  
LHS of non-blocking assignments  

$monitor, $strobe  
Concurrent assertions  

Blocking assigns, RHS of non-blocking assigns, continuous assigns, $display  

Figure: Interactions between the event queue and processes in SystemVerilog.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 156 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation II

I Simulation stops when the event queue becomes empty or when
simulation reaches a $stop or $finish instruction.

I As nothing happens between events, an event-driven simulator essentially
skips from one scheduled event to the next.
 No computational resources are wasted while models sit idle.

Note the analogy between event queue and agenda

I Update events are observable from the past evolution of a variable’s value.

I Scheduled events reflect future plans that may or may not materialize.

This was just a first order approximation

The exact operation of the SystemVerilog “stratified event queue” is much
more complicated as each cycle is organized into 17 ordered “regions”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 157 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation II

I Simulation stops when the event queue becomes empty or when
simulation reaches a $stop or $finish instruction.

I As nothing happens between events, an event-driven simulator essentially
skips from one scheduled event to the next.
 No computational resources are wasted while models sit idle.

Note the analogy between event queue and agenda

I Update events are observable from the past evolution of a variable’s value.

I Scheduled events reflect future plans that may or may not materialize.

This was just a first order approximation

The exact operation of the SystemVerilog “stratified event queue” is much
more complicated as each cycle is organized into 17 ordered “regions”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 157 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation II

I Simulation stops when the event queue becomes empty or when
simulation reaches a $stop or $finish instruction.

I As nothing happens between events, an event-driven simulator essentially
skips from one scheduled event to the next.
 No computational resources are wasted while models sit idle.

Note the analogy between event queue and agenda

I Update events are observable from the past evolution of a variable’s value.

I Scheduled events reflect future plans that may or may not materialize.

This was just a first order approximation

The exact operation of the SystemVerilog “stratified event queue” is much
more complicated as each cycle is organized into 17 ordered “regions”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 157 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation III

A process is either active or suspended at any time. Simulation time is stopped
while the code of the processes presently active is being carried out.

This implies:

I All active processes are executed concurrently with respect to
simulation time.

I All sequential statements inside a procedural block (always, initial,
final) are executed in zero simulation time.

Note

The order of process invocation with respect to execution time
is undetermined.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 158 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

In software languages:

I Execution strictly follows the order of statements in the source code.

During SystemVerilog simulation:

I No fixed ordering for carrying out processes
(including continuous assignments and assertion statements).

Important observation

When to invoke a process gets determined solely by events on the variables
(and wires) that run back and forth between processes.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 159 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Sensitivity list, process suspension and activation I

I A matching event (value change) on any signal in the sensitivity list
(re-)activates the process. Example:

// vvvvvv sensitivity list vvvvvv

always_ff @(posedge Clk_C, negedge Rst_RB)

.....

I Constructs for temporarily suspending a process and for stating when
it is to resume include:

Statement Wake-up condition
@(...) an update event on any of the signals listed here
wait (...) idem plus the logic conditions specified here
#... a predetermined lapse of time as specified here

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 160 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Sensitivity list, process suspension and activation II

SystemVerilog property

Continuous assignments have no sensitivity list.
Any variable on the right-hand side of the assignment activates the process.

Example:

assign Oup_D = InpA_D + InpB_D;

I InpA D and InpB D act as wake-up signals here.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 161 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Delay modeling for simulation

Delays are captured with an optional # term in a continuous assignment.
Example assign #TPD Oup_D = InpA_D + InpB_D;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 162 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Delay modeling for simulation

Delays are captured with an optional # term in a continuous assignment.
Example assign #TPD Oup_D = InpA_D + InpB_D;

Contamination delay must be modeled using a procedural block.
Example:

always_comb

begin

Oup_D <= #TCD ’{default:1’bX}; // revert all bits to unknown after tcd

Oup_D <= #TPD InpA_D + InpB_D; // propagate result to output after tpd

end

I Ramps can not be modeled.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 163 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Event-driven simulation IV

simulation
time

changes scheduled
to occur at later
moments of time

kept on record

variable

ob
je

ct
’s

 v
al

ue

past
events

future
events

changes that
have occurred

waveform so far
future waveform

at present moment of time
as planned and foreseen

present event

Figure: The past, present and future of SystemVerilog variables.

I SystemVerilog variables can convey time-varying information between
processes via the event queue. They are instrumental in process
invocation which is directed by the same mechanism.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 164 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Blocking versus nonblocking assignments

SystemVerilog property

How variables interact with the event queue depends on how exactly
the assignment is coded.

Assignment Continuous Procedural
Operator assign ... = = (blocking) <= (nonblocking)
Delay term none non-zero none non-zero none non-zero

Execution suspends until continues suspends continues
of process next update event on for delay

a right-hand operand specified
Effect immediate deferred immediate deferred following deferred
on variable by delay by delay simultan. by delay

specified specified blocking specified
assignm.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 165 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

No binding order of execution for simultaneous events

SystemVerilog aberration

A simulator is free to execute processes scheduled for the same simulation time
in arbitrary order  nondeterminism and race conditions loom.

∅ As opposed to VHDL, SystemVerilog knows of no δ delay.

Rules for writing safe RTL synthesis models

1. Prefer continuous assigns for uncomplicated combinational functions.

2. Do not use procedural blocks other than always comb, always ff and
always latch. (Use always block only where not for synthesis.)

3. In an always comb block, always use blocking assignments (=).

4. In always ff and always latch blocks,
use nonblocking assignments (<=) only.

5. Do not make #0 (zero delay expression) procedural assignments.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 166 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

No binding order of execution for simultaneous events

SystemVerilog aberration

A simulator is free to execute processes scheduled for the same simulation time
in arbitrary order  nondeterminism and race conditions loom.

∅ As opposed to VHDL, SystemVerilog knows of no δ delay.

Rules for writing safe RTL synthesis models

1. Prefer continuous assigns for uncomplicated combinational functions.

2. Do not use procedural blocks other than always comb, always ff and
always latch. (Use always block only where not for synthesis.)

3. In an always comb block, always use blocking assignments (=).

4. In always ff and always latch blocks,
use nonblocking assignments (<=) only.

5. Do not make #0 (zero delay expression) procedural assignments.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 166 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Signal/variable initialization vs. hardware reset facility

SystemVerilog supports assigning an initial value in a declaration statement.
Example integer Acceleration_D = 0;

I The initial value defines the objects’s state at t = 0,
just before the simulator enters the first simulation cycle.

I A hardware reset mechanism remains ready to reconduct the circuit into
a predetermined start state at any time t ≥ 0 using a dedicated reset
signal distributed to all bistables concerned.

Observation

These are two totally different things. An initialized variable
will neither model a reset facility nor synthesize into one.

A code example for how to model a reset has been given earlier, another one is to follow shortly.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 167 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Signal/variable initialization vs. hardware reset facility

SystemVerilog supports assigning an initial value in a declaration statement.
Example integer Acceleration_D = 0;

I The initial value defines the objects’s state at t = 0,
just before the simulator enters the first simulation cycle.

I A hardware reset mechanism remains ready to reconduct the circuit into
a predetermined start state at any time t ≥ 0 using a dedicated reset
signal distributed to all bistables concerned.

Observation

These are two totally different things. An initialized variable
will neither model a reset facility nor synthesize into one.

A code example for how to model a reset has been given earlier, another one is to follow shortly.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 167 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to check timing conditions

Please recall:

I Latches, flip-flops, RAMs, etc. impose timing requirements that must not
be violated, otherwise circuit behavior becomes unpredictable.

 A simulation model is in charge of two things:

1. Check whether input waveforms indeed conform with timing requirements
(if any).

2. Evaluate input data to update outputs and/or state.

SystemVerilog supports this plan with

I the specify block and

I twelve specialized constructs
among which $setup, $hold, $width and $period.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 168 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

How to check timing conditions

Please recall:

I Latches, flip-flops, RAMs, etc. impose timing requirements that must not
be violated, otherwise circuit behavior becomes unpredictable.

 A simulation model is in charge of two things:

1. Check whether input waveforms indeed conform with timing requirements
(if any).

2. Evaluate input data to update outputs and/or state.

SystemVerilog supports this plan with

I the specify block and

I twelve specialized constructs
among which $setup, $hold, $width and $period.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 168 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: Setup and hold time checks
// simulation model of a single-edge-triggered flip-flop with hardcoded timing

module setff

( input logic Clk_CI, logic Rst_RBI, logic Dd_DI,

output logic Qq_DO );

logic State_DP; // state variable

specify

$setup ( Dd_DI, posedge Clk_CI, 1.09ns ); // data evt, clock evt, min. sep.

$hold ( posedge Clk_CI, Dd_DI, 0.60ns ); // clock evt, data evt, min. sep.

endspecify

always_ff @(posedge Clk_CI, negedge Rst_RBI)

if (~Rst_RBI)

State_DP <= 1’b0;

else

State_DP <= Dd_DI;

assign #0.92ns Qq_DO = State_DP;

endmodule

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 169 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

5th HDL capability: Facilities for model parametrization

current events
invoke

sensitive processes
schedule
future transactions

processes being executed

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

event queue
mechanism

(parameter)
generic

items
conditional

parameter

items
conditional

port

entity
design

component
instantiated

(hierarchy)

port

module

instance
module

(hierarchy)

VHDL SystemVerilog

resolved type

electrical type electrical type

net type
(e.g. wire)

(e.g. logic)(e.g. std_ulogic)

(e.g. std_logic)

event

transaction

queue
event

event

queue
event

scheduled event

signal

variable

(continuous
assignment or
procedural block)

process

variable

signal assignm.
or process
statement)

process
(conc./cond./sel.

variable (or wire
under certain
circumstances)

Figure: ... plus parametrization with adjustable quantities and conditional items.
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 170 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why it pays to keep HDL models parametrized

1. Imagine you have devised a synthesis model for a datapath unit
I 16 data registers
I 17 arithmetic and logic operations
I 32 bit word width

2. In addition, you need a similar unit for address computations
I 5 data registers
I 8 arithmetic and logic operations
I 24 bit word width

Easy to derive model 2. by modifying the existing HDL code, but

I maintenance effort doubled

I what if you later needed a third and a fourth model?

HDL requirement no.5

Means for accommodating distinct architecture choices and parameter settings
within a single piece of code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 171 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why it pays to keep HDL models parametrized

1. Imagine you have devised a synthesis model for a datapath unit
I 16 data registers
I 17 arithmetic and logic operations
I 32 bit word width

2. In addition, you need a similar unit for address computations
I 5 data registers
I 8 arithmetic and logic operations
I 24 bit word width

Easy to derive model 2. by modifying the existing HDL code, but

I maintenance effort doubled

I what if you later needed a third and a fourth model?

HDL requirement no.5

Means for accommodating distinct architecture choices and parameter settings
within a single piece of code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 171 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Why it pays to keep HDL models parametrized

1. Imagine you have devised a synthesis model for a datapath unit
I 16 data registers
I 17 arithmetic and logic operations
I 32 bit word width

2. In addition, you need a similar unit for address computations
I 5 data registers
I 8 arithmetic and logic operations
I 24 bit word width

Easy to derive model 2. by modifying the existing HDL code, but

I maintenance effort doubled

I what if you later needed a third and a fourth model?

HDL requirement no.5

Means for accommodating distinct architecture choices and parameter settings
within a single piece of code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 171 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Parameters
// w-input odd parity gate

module parityoddw

#( parameter WIDTH, // number of inputs

parameter TCD = 0ns, // contamination delay with default value

parameter TPD = 1.0ns ) // propagation delay with default value

( input logic [WIDTH-1:0] Inp_DI,

output logic Oup_DO );

...

endmodule

.....

// module instantiation statement

parityoddw #( .WIDTH(NUMBITS), .TCD(0.05ns), .TPD(NUMBITS * 0.1ns) )

u173 ( .Inp_DI(DataVec_D) , .Oup_DO(Parbit_D) );

.....

Ports carry time-varying information between modules.
Parameters serve to disseminate time-invariant details to modules

(e.g. word widths, active-low/high signaling, timing quantities),
they do not have any direct hardware counterpart.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 172 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional spawning of processes I

Consider a cellular automaton: Game of Life by John H. Conway (1970)
Show http://www.bitstorm.org/gameoflife/

2D array of identical cells

alive = 3

alive ≤ 1

alive ≥ 4

birth

isolation

overcrowding

set of rules

..... .....

..... .....

..... .....

.....

.....

..... .....

.....

..... ..... ..... ..... .....

HDL requirement no.5’

Means for varying the number of processes (and of components too)
as a function of parameter settings made after the source code is frozen.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 173 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional spawning of processes I

Consider a cellular automaton: Game of Life by John H. Conway (1970)
Show http://www.bitstorm.org/gameoflife/

2D array of identical cells

alive = 3

alive ≤ 1

alive ≥ 4

birth

isolation

overcrowding

set of rules

..... .....

..... .....

..... .....

.....

.....

..... .....

.....

..... ..... ..... ..... .....

HDL requirement no.5’

Means for varying the number of processes (and of components too)
as a function of parameter settings made after the source code is frozen.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 173 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional spawning of processes II

The generate statement

I allows to decide on the number of concurrent processes immediately
before simulation or synthesis begins with no changes to the basic code

I produces processes under control of constants and parameters

I comes in two flavors

generate if
to capture the conditional presence or absence
of a process

generate for
to capture a number of replications of a process
where the number is subject to change

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 174 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Example: Game of Life

.....

// spawn a process for each cell in the array

generate

for (genvar ih = 0; ih<HEIGHT; ih++)

for (genvar iw = 0; iw<WIDTH; iw++)

always_ff @(posedge Clk_C) begin // sensitivity list

integer live_neighbors;

live_neighbors = live_neighbors_at(ih,iw);

if (State_DP[ih][iw]==’b0 && live_neighbors==3)

State_DP[ih][iw] <= ’b1; // birth

else if (State_DP[ih][iw]==’b1 && live_neighbors<=1)

State_DP[ih][iw] <= ’b0; // death from isolation

else if (State_DP[ih][iw]==’b1 && live_neighbors>=4)

State_DP[ih][iw] <= ’b0; // death from overcrowding

end // always_ff

endgenerate

.....

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 175 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Multiple models for one circuit block

SystemVerilog allows multiple modules for the same circuit

Why would you want that?

I Because over a design cycle the same functionality needs to be modeled
at distinct levels of detail.

1. Algorithmic model (purely behavioral)
2. RTL model (for simulation and synthesis)
3. Post synthesis gate-level netlist (timing estimated)
4. Post layout gate-level netlist (timing back-annotated)

I To evaluate different circuit implementations for one block
(in terms of A, tlp, E , etc.).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 176 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Multiple models for one circuit block

SystemVerilog allows multiple modules for the same circuit

Why would you want that?

I Because over a design cycle the same functionality needs to be modeled
at distinct levels of detail.

1. Algorithmic model (purely behavioral)
2. RTL model (for simulation and synthesis)
3. Post synthesis gate-level netlist (timing estimated)
4. Post layout gate-level netlist (timing back-annotated)

I To evaluate different circuit implementations for one block
(in terms of A, tlp, E , etc.).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 176 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional compilation of source code
With multiple modules for one subcircuit, there must be a way to indicate
which one to use for simulation and synthesis  ‘ifdef statement.

// parametrized binary to Gray code converter

module binary2gray

#( parameter ...) // parameters

(.....); // inputs and outputs

‘ifdef usebehavioral

// module body with behavioral model follows here

.....

‘else

// module body with structural model follows here

.....

‘endif

endmodule

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 177 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Conditional compilation of source code
With multiple modules for one subcircuit, there must be a way to indicate
which one to use for simulation and synthesis  ‘ifdef statement.

// parametrized binary to Gray code converter

module binary2gray

#( parameter ...) // parameters

(.....); // inputs and outputs

‘ifdef usebehavioral

// module body with behavioral model follows here

.....

‘else

// module body with structural model follows here

.....

‘endif

endmodule

Warning

Warning: Do not give two modules with functionally distinct behaviors
identical names as this is extremely confusing!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 178 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

SystemVerilog provides a range of constructs for writing parametrized circuit
models:

I parameter quantities

I generate...for and generate...if statements

I ‘define, ‘undef, ‘ifdef and other compiler directives.

SystemVerilog property

It is possible to establish a model without committing the code
to any specific number of processes and/or instantiated components.

 A preparatory step must take place before simulation or synthesis
can begin 7→ elaboration and binding.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 179 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Insight gained

SystemVerilog provides a range of constructs for writing parametrized circuit
models:

I parameter quantities

I generate...for and generate...if statements

I ‘define, ‘undef, ‘ifdef and other compiler directives.

SystemVerilog property

It is possible to establish a model without committing the code
to any specific number of processes and/or instantiated components.

 A preparatory step must take place before simulation or synthesis
can begin 7→ elaboration and binding.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 179 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

(every component instantiated
must have a behavioral model)

all signals (variables) initialized,
all processes executed until
suspended for the first time

simulation time set to zero,

initialization

simulation time set
to next transaction

sensitive processes executed 

new transactions scheduled
until they suspended again,

actual or estimated
delay data (SDF)

progress
in time

executable program

delay
calculation

cells and interconnect
timing models for 

PTV
situation

of target library
inventory and data

SynopsysDC commands

analyze elaborate compile / design optimization

HDL simulation flow

• full language supported
• circuit models plus testbench

RTL synthesis flow

• subset of language only
• circuit models exclusively

default

overwritten
delay values

code
generation

(every component instantiated

be available from target library)
but not detailed any further must

gate-level netlist
for target library

functionally correct
network of generic
logic components

minimized
logic network

state encoding

state reduction
and

combinat. logic

synthesis of
registers and

state machines specified
with minimum states and
near-optimum encoding

Boolean
optimization

technology
mapping

constraints
timing

&

circuit
layout gate-level netlist

layout
extraction

source
code

all generate statements unrolled,  
all instantiation statements honored,

all processes and signals (variables) known
all components bound,

elaboration
and binding

parsed model 

syntax analysis

actual capacitance
and resistance values

Delay calculation from layout
• outside the scope of VHDL or SystemVerilog

back-annotation
(optional)

signal
updating

process
execution

signal
waveforms

 updated accordingly
signals (variables)

pending trans-
actions carried out,

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 180 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about programming

Proven concepts from safe and modular programming include

I Structured flow control statements (no goto)

I Typing and type checking

I Data structures (enumerated types, arrays, records)

I Subprograms

I Packages (collections of type declarations and subprograms)

I Information hiding (declaration module vs. implementation module)

HDL requirement no.6

Make those ideas available to HDL model developers too.

No graphic illustration at this point.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 181 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

What you ought to know about programming

Proven concepts from safe and modular programming include

I Structured flow control statements (no goto)

I Typing and type checking

I Data structures (enumerated types, arrays, records)

I Subprograms

I Packages (collections of type declarations and subprograms)

I Information hiding (declaration module vs. implementation module)

HDL requirement no.6

Make those ideas available to HDL model developers too.

No graphic illustration at this point.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 181 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Concepts borrowed from programming languages

I Structured flow control statements
I if ... else if ... else, case...endcase
I for, while, repeat

4 Little type checking 7→ almost anything compiles!

I Enumerated types (enum)

I Composite data types (struct)

I Subprograms (function, task)

I Packages (package)

4 Limited information hiding, no separation into declaration and
implementation module.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 182 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

Package
A package is a named collection of types and/or subprograms
that is made visible by referring to it in an import clause. Example:

package calendar;

typedef enum {JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY,

AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER} month;

typedef logic unsigned [4:0] day;

function month nextmonth (month given_month);

return given_month.next; // wraps around at the end

endfunction

function day nextday (day given_day);

.....

endfunction

endpackage: calendar

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 183 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

System tasks I
System tasks are commands to the simulator and not for synthesis. Examples:

$display("Simulation ended after %4d checks and with %4d error(s).",

checkcnt, errorcnt);

int simvectorfile = $fopen("../simvectors/moore6st_simvector.asc", "r");

$fclose(simvectorfile);

while( !$feof(simvectorfile)) begin

void’($fgets(readstr, simvectorfile));

fmatch = $sscanf(readstr, "%b %b %b",

StimuliRec.Clr_S, StimuliRec.Inp_D, ExpRespRec.Oup_D );

...

end

$readmemh("../sim/vectors/stim.txt", stimuli);

$error("Expected ’b%b does not match actual ’b%b", expresp, ActResp_D);

assert (simvectorfile) else $fatal("Could not open simvector file.");

RandomBit = (($urandom_range(99,0) < percentzero) ? 1’b0 : 1’b1);
c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 184 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Circuit hierarchy and connectivity
Interacting concurrent processes
A discrete replacement for electrical signals
An event-driven scheme of execution
Facilities for model parametrization
Concepts borrowed from programming languages

System tasks II, incomplete overview
Command Action

Formatted text output

$write write line to standard output immediately with no newline character
$display write line to standard output immediately preceded by a newline character
$strobe idem at the end of current time slot, i.e. before advancing simulation time
$monitor idem when specified events occur

File operations

$fopen open a file
$fclose close a file
$fread read from a file
$fgets read characters from a file and assembles them into a string
$sscanf parse formatted text from a string
$feof return a non-zero value when end of file found and 0 if not so
$fwrite same as $write for writing to a file

Memory load and dump

$readmemb/h load memory from a text file in binary/hex format
$writememb/h dump memory to a text file in binary/hex format

Simulation control

$stop suspend simulation
$finish terminate simulation

Run time information with severity levels (standalone and for use in assertions)

$info print argument to simulator window and continue
$warning print argument to simulator window, count as warning, and continue
$error print argument to simulator window, count as error, and continue
$fatal print argument to simulator window and terminate simulation

Random number generation (for use in stimuli preparation)

$random return a random signed integer
$urandom return a random unsigned integer

Enquiries about the event queue (for use in properties and assertions)

$rose return 1 iff argument has changed to 1

$fell return 1 iff argument has changed to 0

$stable return 1 iff argument had not changed value
$past return argument’s value a specified number of clock cycles earlier

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 185 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Subject

Circuit synthesis from HDL models

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 186 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

HDL synthesis overview

of target library
inventory and data

SynopsysDC commands

analyze elaborate compile / design optimization

RTL synthesis flow

• subset of language only
• circuit models exclusively

(every component instantiated

be available from target library)
but not detailed any further must

gate-level netlist
for target library

functionally correct
network of generic
logic components

minimized
logic network

state encoding

state reduction
and

combinat. logic

synthesis of
registers and

state machines specified
with minimum states and
near-optimum encoding

Boolean
optimization

technology
mapping

constraints
timing

&

source
code

all generate statements unrolled,  
all instantiation statements honored,

all processes and signals (variables) known
all components bound,

elaboration
and binding

parsed model 

syntax analysis

Figure: Major steps of automated RTL synthesis.

I Syntax analysis is different for VHDL and for SystemVerilog models.
After that, the synthesis process becomes essentially the same.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 187 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis subset

The predominant HDLs have not originally been intended for synthesis.

I While almost all VHDL simulators support the full IEEE 1076 standard,
only a subset of the legal language constructs is amenable to synthesis.

I The same holds for SystemVerilog and the IEEE 1800 standard.

 Good HDL code is written such as to be portable across platforms
and synthesis tools.

Guiding principle

Limit yourself to safe, unambiguous, and universally accepted constructs!

I Apart from that, the impact of coding style on combinational random
logic is fairly small (surprisingly perhaps as it is often overstated).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 188 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis subset

The predominant HDLs have not originally been intended for synthesis.

I While almost all VHDL simulators support the full IEEE 1076 standard,
only a subset of the legal language constructs is amenable to synthesis.

I The same holds for SystemVerilog and the IEEE 1800 standard.

 Good HDL code is written such as to be portable across platforms
and synthesis tools.

Guiding principle

Limit yourself to safe, unambiguous, and universally accepted constructs!

I Apart from that, the impact of coding style on combinational random
logic is fairly small (surprisingly perhaps as it is often overstated).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 188 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Not all data types are amenable to synthesis

VHDL SystemVerilog

Supported:

+ integer + integer, shortint, int, longint
+ boolean and bit + bit
+ std logic and std ulogic + logic and wire
+ unsigned and signed + byte
+ enumerated type + enumerated type
+ ufixed, sfixed and float
+ array and record of fixed size + array and struct of fixed size

Not supported:

− real − real
− time − time-related data types
− character − string, queue, and other

dynamic data types
− file − file-related data types

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 189 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Not all data types are amenable to synthesis

VHDL SystemVerilog

Supported:

+ integer + integer, shortint, int, longint
+ boolean and bit + bit
+ std logic and std ulogic + logic and wire
+ unsigned and signed + byte
+ enumerated type + enumerated type
+ ufixed, sfixed and float
+ array and record of fixed size + array and struct of fixed size

Not supported:

− real − real
− time − time-related data types
− character − string, queue, and other

dynamic data types
− file − file-related data types

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 189 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Hardware-compatible wake-up conditions

I While HDLs allow the modeling of arbitrary behavior
(as long as it is causal, discrete in value, and discrete in time),
automatic synthesis only supports synchronous clock-driven subcircuits
and — at a higher level — conglomerates of such subcircuits.

Observation

Any process that is supposed to model a piece of hardware must execute upon
activation, return to the same instruction, and suspend there.

Why?

I Each wait or similar statement is allowed to carry its own condition
as to when process execution is to resume.
7→ Depending on the details, this may imply asynchronous behavior.
7→ Extremely difficult, if not impossible, to implement in a physical circuit.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 190 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Hardware-compatible wake-up conditions

I While HDLs allow the modeling of arbitrary behavior
(as long as it is causal, discrete in value, and discrete in time),
automatic synthesis only supports synchronous clock-driven subcircuits
and — at a higher level — conglomerates of such subcircuits.

Observation

Any process that is supposed to model a piece of hardware must execute upon
activation, return to the same instruction, and suspend there.

Why?

I Each wait or similar statement is allowed to carry its own condition
as to when process execution is to resume.
7→ Depending on the details, this may imply asynchronous behavior.
7→ Extremely difficult, if not impossible, to implement in a physical circuit.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 190 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Formalisms for describing finite state machines

b)

00 01

1011

by3

by4

dis

by3by4
by3 by4

by4

by3

dis

dis dis

a)

f

g
o(k)
oup

i(k)
cntrl

s(k)
present state

s(k+1)
next state

state register

next state
function

output
function

combinational operations

o(k)  =  g( i(k),s(k) )

s(k+1)  =  f( i(k),s(k) )

c)

wait on event on clock

wait on event on clock

wait on event on clock

3 4

wait on event on clock

oup := "00"

forever

repeat until clock is high and counting is enabled

oup := "01"

repeat until clock is high and counting is enabled

oup := "10"

repeat until clock is high and counting is enabled

oup := "11"

divide by

repeat until clock is high
and counting is enabled

output := "00"
.

Figure: Data dependency graph (a), state chart (b), Nassi-Shneiderman diagram (c).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 191 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Explicit versus implicit state models

modeling style explicit state implicit state
computed state enumerated state

inspired from data dependency graph state chart, state Nassi-Shneiderman
or schematic diagram graph, or state table diagram

synchronization sensitivity list or single wait statement multiple
mechanism (semantically equivalent) wait statements
state declared explicitly as signal or variable hidden in pointer
variable and thus of user-defined type to current statement
states (subrange of) integer enumerated type multiple
captured by or vector of bits wait statements
state transitions arithmetic and/or one-to-one translation control flow
captured by logic operations from state table
output function arithmetic and/or one-to-one translation assignment
captured by logic operations from state table statements

immediate hard- yes depending on
ware equivalent wait conditions
synchronous yes idem
synthesizable yes no

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 192 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

What you ought to know from automata theory

Mealy machine output is a function of both state and input

o(k) = g(i(k), s(k))

s(k + 1) = f (i(k), s(k))

 latency 0, through path, hazards likely.

Moore machine output is a function of state exclusively

o(k) = g(s(k))

s(k + 1) = f (i(k), s(k))

 latency 1, no through path, hazards likely.

Medvedev machine subclass of Moore with identity as output function

o(k) = s(k)

s(k + 1) = f (i(k), s(k))

 latency 1, no through path, hazard-free.

o(k)g

s(k+1)s(k)

i(k)
f

o(k)

s(k+1)s(k)

i(k)
f

g o(k)

s(k+1)s(k)

i(k)
f

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 193 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to capture a finite state machine in HDL

clk

rst

clk

rst

Moore machine Medvedev machineMealy machine

memorizing process

o(k)

s(k+1)
s(k)

i(k)

f

memorizing process

o(k)

s(k+1)
s(k)

i(k)

f

g

memorizing process
i(k)

f

g

clk

rst

s(k+1)
s(k)

not supported by all synthesizers not supported by all synthesizers produce duplicate flip-flops
some synthesizers unnecessarily a) b) c)

coded
in one

process

coded
in one

process

clk

rst

clk

rst

clk

rst

s(k+1)

memoryless process

o(k)i(k)

f

g

s(k)
memorizing process s(k+1)

memoryless process

o(k)i(k)

f

s(k) memorizing process
s(k+1)

memoryless process

o(k)i(k)

f

g

s(k)
memorizing process

widely supported by synthesizers widely supported by synthesizers widely supported by synthesizers d) e) f)

coded
in two

(or more)
processes

coded
in two

(or more)
processes

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 194 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to write portable synthesis code (VHDL)

For the sake of code portability and trouble-free synthesis ...

Good VHDL synthesis code shall

I model circuits at the RTL (register transfer level) throughout,

I collect combinational and sequential logic in separate processes,

I have all memorizing process statements conform with our skeleton,

I prefer concurrent, conditional and selected signal assignments for
combinational logic,

I have all memoryless process statements coded according to the rules.

Warning

The emergence of unplanned for latches or other bistables during synthesis
always points to bad code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 195 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to write portable synthesis code (VHDL)

For the sake of code portability and trouble-free synthesis ...

Good VHDL synthesis code shall

I model circuits at the RTL (register transfer level) throughout,

I collect combinational and sequential logic in separate processes,

I have all memorizing process statements conform with our skeleton,

I prefer concurrent, conditional and selected signal assignments for
combinational logic,

I have all memoryless process statements coded according to the rules.

Warning

The emergence of unplanned for latches or other bistables during synthesis
always points to bad code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 195 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to write portable synthesis code (SystemVerilog)

For the sake of code portability and trouble-free synthesis ...

Good SystemVerilog synthesis code shall

I model circuits at the RTL (register transfer level) throughout,

I collect combinational and sequential logic in separate processes,

I use always ff blocks exclusively for memorizing behavior
(always latch blocks for level-sensitive clocking),

I use continuous assigns or always comb blocks for combinational logic.

Warning

The emergence of unplanned for latches or other bistables during synthesis
always points to bad code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 196 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to write portable synthesis code (SystemVerilog)

For the sake of code portability and trouble-free synthesis ...

Good SystemVerilog synthesis code shall

I model circuits at the RTL (register transfer level) throughout,

I collect combinational and sequential logic in separate processes,

I use always ff blocks exclusively for memorizing behavior
(always latch blocks for level-sensitive clocking),

I use continuous assigns or always comb blocks for combinational logic.

Warning

The emergence of unplanned for latches or other bistables during synthesis
always points to bad code.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 196 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Example: a Mealy-type state machine

Refer to transparency mealy5st.vhd or .sv for code!

Observe

1. The enumerated type for states.

2. The default state and output assignments.

3. The when state if input then action construct
that assigns values to output and next state.

4. The tying up of parasitic states.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 197 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Example: a Moore-type state machine

Refer to transparency moore6st.vhd or .sv for code!

Observe

1. The combination of symbolic state identifiers
and one-hot state codes imposed by the user.

2. The default state and output assignments (as before).

3. The placement of all output assignments outside
the if input then clauses throughout.
This makes the code describe a Moore machine!

4. Output assignments can be stated before or after each of the
if input then clauses with no difference.

5. The tying up of parasitic states (as before).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 198 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Example: a Medvedev-type state machine

Refer to transparencies graycnt.vhd and grayconv.vhd or .sv for code!

Observe

1. The simplicity and elegance of the combinational process.

2. The usage of two functions bintogray and graytobin
for code conversion described in a user-defined package grayconv.vhd.

3. The clause use work.grayconv.all that makes that package available.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 199 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

More on good FSM coding practices

Recommendation

I Try to decompose large FSMs into a bunch of smaller ones that cooperate.

I Adhere to hierarchical and modular design.

I Consider using counters instead of long state chains.

Recommendation

The various processes that make up for an FSMs are best included in the same
architecture body as the datapath they command.

Shutting the FSM into an entity of its own just inflates the code and the effort
for coding and maintenance.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 200 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis of ROMs
Innocent approach: Declare a storage array as if the code were intended
for simulation and assume the synthesizer will take care of all the rest.
Example: 4bit-binary to seven-segment display decoder.

-- unsupported VHDL coding style

.....

-- address of array must be of type integer or natural

p_memless : process (Binary4Code_D)

variable address : natural range 0 to 15;

type array16by7 is array(0 to 15) of std_logic_vector(1 to 7)

constant SEGMENT_LOOKUP_TABLE : array16by7 := -- segments ordered a...g

("1111110","0110000","1101101","1111001", -- digits 0,1,2,3,

"0110011","1011011","0011111","1110000", -- 4,5,6,7,

"1111111","1110011","1110111","0011111", -- 8,9,A,b,

"1001110","0111101","1001111","1000111"); -- C,d,E,F;

begin

-- use binary input as index, look up in table, and assign to segment output

address := to_integer(unsigned(Binary4Code_D));

Segment7Code_D <= SEGMENT_LOOKUP_TABLE(address);

end process p_memless;

.....

I Will not synthesize into a ROM macrocell but into random logic.c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 201 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis of RAMs I

Innocent approach: Declare a storage array as if the code were intended
for simulation and assume the synthesizer will take care of all the rest.

Example: 64 byte read-write memory. – unsupported VHDL coding style

.....

type array64by8 is array(0 to 63) of std_logic_vector(7 downto 0);

signal Storage_D : array64by8;

.....

I Will not synthesize into a RAM because the behavior so defined
is a far cry from actual RAM macrocells and their interfaces.
Automated synthesis would hardly churn out a safe and synchronous
gate-level circuit either.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 202 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis of RAMs II

Second attempt: Instantiate RAM, state macrocell generator to be used,
pass on all further specifications in a generic map.

-- unsupported VHDL coding style

.....

u39: cmosram01

generic map ( NUMBER_OF_WORDS => 64, WORD_WIDTH => 8,

DATA_INPUT_OUTPUT_SEPARATE => false )

port map ( CLK => Clk_C, WRENA => RamWrite_S,

ADDR => RamAddress_D, DATIO => RamData_D );

.....

I Realistic, but not currently feasible due to the lack of standardization
and the absence of interfaces between VHDL synthesis and proprietary
macrocell generators.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 203 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis of RAMs III (VHDL)

Final attempt: instantiate RAM macrocell like any other component.

-- supported VHDL coding style

.....

u39: myram64by8

port map ( CLK => Clk_C, WRENA => RamWrite_S,

ADDR => RamAddress_D, DATIO => RamData_D );

.....

Observation

The necessary design views of a macrocell (simulation model, schematic icon,
detailed layout, etc.) must be obtained from outside the VHDL environment.

The chip designer must either

◦ gain access to the process-specific macrocell generator software or

◦ commission the silicon foundry do so for him.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 204 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis of RAMs III (SystemVerilog)

Final attempt: instantiate RAM macrocell like any other component.

// supported SystemVerilog coding style

.....

myram64by8 u39 ( .CLK(Clk_C), .WRENA(RamWrite_S),

.ADDR(RamAddress_D), .DATIO(RamData_D) );

.....

Observation

The necessary design views of a macrocell (simulation model, schematic icon,
detailed layout, etc.) must be obtained from outside the SystemVerilog
environment.

The chip designer must either

◦ gain access to the process-specific macrocell generator software or

◦ commission the silicon foundry do so for him.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 205 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Synthesis of RAMs and ROMs

Look up table (LUT) (memoryless)
desired hardware organization random logic ROM (tiled layout)
function must be modeled as an array-type constant by instantiating a ROM

or with logic equations macrocell as a component

Data storage array (memorizing)
desired hardware organization register file built from RAM (tiled layout)

flip-flops or latches
function must be modeled as an array of (clocked) by instantiating a RAM

storage registers macrocell as a component

Common characteristics of implemented circuit
efficient when data quantity is small large
techn.-specific softw. required no macrocell generator
code amenable to retargeting yes manual rework needed
pre-synthesis simulation from RTL source code extra behavioral model
post-synthesis simulation from gate-level model idem

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 206 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Insight gained

A storage array can be implemented

◦ as on-chip macrocell,

◦ as off-chip part,

◦ as a RAM,

◦ assembled from flip-flops or

◦ from latches.

Deciding among those options has far-reaching consequences for circuit
performance, system architecture, and design effort.

Conclusion

Spontaneous incorporation of macrocells is neither a practical nor really
a desirable proposition for RTL synthesis because it would deprive designers
of control over a circuit’s architecture.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 207 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

What is an “optimal” circuit?
I Meets all user-defined performance targets at the lowest hardware costs.

A
T

= const.

complexity
A

propagation delayT

user-defined
timing constraintslack

result from
constrained
optimization

result from
unconstrained
optimization

available
no solutions

available
solutions

fastest but largest unacceptable
solutions

smallest but slowest

most efficient

bound of acceptable solutions

bound of feasible solutions

memory bound of algorithm

AT producthyperbola of minimum

the constraint imposed
optimal solution under 

Pareto-optimal solution
suboptimal solution

Figure: Trade-offs between size and performance for a hypothetical circuit.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 208 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Timing quantities related to synthesis

Timing constraint User-defined bound (upper or lower) for a timing quantitity
(propagation delay, contamination delay, clock period, etc.)
that the final circuit must meet.

Slack Difference between target specified and actual circuit delay, e.g.
tsl = tlp max − tlp (combinational ckt) or
tsl = Tclk − tss (sequential ckt).

Negative slack indicates synthesis has failed to meet timing target  

1. Try varying synthesizer directives.

2. Rework RTL synthesis code.

3. Rework circuit architecture.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 209 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Timing quantities related to synthesis

Timing constraint User-defined bound (upper or lower) for a timing quantitity
(propagation delay, contamination delay, clock period, etc.)
that the final circuit must meet.

Slack Difference between target specified and actual circuit delay, e.g.
tsl = tlp max − tlp (combinational ckt) or
tsl = Tclk − tss (sequential ckt).

Negative slack indicates synthesis has failed to meet timing target  

1. Try varying synthesizer directives.

2. Rework RTL synthesis code.

3. Rework circuit architecture.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 209 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Timing constraints are not part of the HDL standards ...

I All timing-related constructs get ignored during synthesis, e.g.
I ... after tpd (VHDL)
I wait for 3.9 ns idem
I ... #3.9ns ... (SystemVerilog)

These serve to model the behavior of existing circuits,
not to impose target requirements for the synthesis process.

I Timing constraints that could guide synthesis and optimization
have never been adopted in the IEEE 1076 and 1800 standards.

Unsupported constructs:

VHDL: Oup_D <= Aa_D + Bb_D with_delay_no_more_than 1.7 ns;

SystemVerilog: assign #max#1.7ns Oup_D = Aa_D + Bb_D;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 210 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Timing constraints are not part of the HDL standards ...

I All timing-related constructs get ignored during synthesis, e.g.
I ... after tpd (VHDL)
I wait for 3.9 ns idem
I ... #3.9ns ... (SystemVerilog)

These serve to model the behavior of existing circuits,
not to impose target requirements for the synthesis process.

I Timing constraints that could guide synthesis and optimization
have never been adopted in the IEEE 1076 and 1800 standards.

Unsupported constructs:

VHDL: Oup_D <= Aa_D + Bb_D with_delay_no_more_than 1.7 ns;

SystemVerilog: assign #max#1.7ns Oup_D = Aa_D + Bb_D;

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 210 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

... but must be expressed with scripting languages instead

I The HDL code is complemented with user-defined timing constraints
along with other synthesis control statements.

I Proprietary language extensions or scripting languages such as Tcl
must be used.

Tcl syntax examples for timing constraints:

create_clock -period 15 [get_ports Clk_CI]
set_input_delay -max 6 -clock Clk_CI [get_ports Inp_DI]

I Tcl requires time spans to be expressed as multiples of a predefined time
unit, 1 ns in this example.

I The same timing constraints are to be reused later during design
verification.

For your first encounter with RTL synthesis, you may prefer to skip further details and come back later.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 211 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

... but must be expressed with scripting languages instead

I The HDL code is complemented with user-defined timing constraints
along with other synthesis control statements.

I Proprietary language extensions or scripting languages such as Tcl
must be used.

Tcl syntax examples for timing constraints:

create_clock -period 15 [get_ports Clk_CI]
set_input_delay -max 6 -clock Clk_CI [get_ports Inp_DI]

I Tcl requires time spans to be expressed as multiples of a predefined time
unit, 1 ns in this example.

I The same timing constraints are to be reused later during design
verification.

For your first encounter with RTL synthesis, you may prefer to skip further details and come back later.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 211 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to formulate timing constraints I
I An upper bound for the delay from one register to the next gets imposed

by Tclk  Indicating a clock period is mandatory and straightforward.

a) create_clock -period Tclk [get_ports Clk_CI]

Oup_DOInp_DI
A B C D E

tidel todel

Tclk Tclk Tclk

upstream circuitry downstream circuitry

Clk_CI circuit under construction

tdi

clock distribution delay

FF
st

FF
up FF

st

FF
dn

delay

Figure: Most synthesis tools accept timing constraints in terms of Tclk , tidel and todel .

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 212 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to formulate timing constraints II

I Constraining input- and output paths is more tricky because it is possible
to look at input/output timing from two different perspectives:

“Egocentric” view indicates how much time is available
to the circuit under construction.

“Altruistic” view quantifies the amount of time that must
be set aside for the surrounding circuitry.

Note

Most EDA tools adopt the “altruistic” view mainly because target clock can
be altered without having to numerically readjust all I/O timing constraints.

Caution

Do not get confused by inexpressive or ill-defined names!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 213 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to formulate timing constraints II

I Constraining input- and output paths is more tricky because it is possible
to look at input/output timing from two different perspectives:

“Egocentric” view indicates how much time is available
to the circuit under construction.

“Altruistic” view quantifies the amount of time that must
be set aside for the surrounding circuitry.

Note

Most EDA tools adopt the “altruistic” view mainly because target clock can
be altered without having to numerically readjust all I/O timing constraints.

Caution

Do not get confused by inexpressive or ill-defined names!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 213 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to formulate input timing constraints

Clk_CI

Inp_DI

2 data-valid window ends

3 data-valid window begins

(propagation through input logic plus register set-up)
time span left for input circuit under construction to settle

circuit under construction must catch data at its input  
data-valid window of upstream circuitry during which 

active clock edge

time

2

3

tidel max

tidel min

b)

set_input_delay  tidel -clock Clk_CI [get_ports Inp_DI]

set_input_delay -max tidel max -clock Clk_CI [get_ports Inp_DI]

set_input_delay -min tidel min -clock Clk_CI [get_ports Inp_DI]

unknown data valid unknown

tidel max

23

Tclk

tidel min

upper bound for
long path delay

lower bound for
short path delay

of circuit under
construction

Figure: Input constraints tidel max and tidel min as understood by synthesis tools .

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 214 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to formulate output timing constraints

1 data-call window ends

4 data-call window begins

Clk_CI

Oup_DO

(propagation delay through register and output logic)
time span left for output circuit under construction to settle

circuit under construction must provide valid output data 
data-call window of downstream circuitry during which 

c)

set_output_delay  todel -clock Clk_CI [get_ports Oup_DO]

todel max -clock Clk_CI [get_ports Oup_DO]set_output_delay -max 

set_output_delay -min todel min -clock Clk_CI [get_ports Oup_DO]

time

active clock edge

4

1

todel max

todel min

todel max

don’t care data called don’t care

14

Tclk

todel min

upper bound for
long path delay

lower bound for
short path delay

of circuit under
construction

Figure: Output constraints todel max and todel min as understood by synthesis tools.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 215 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Cross reference for I/O timing constraints

Event Symbol Quantity (altruistic view) Synopsys term

relating to the interface with the upstream circuitry
(3) tsu inp setup time

data-valid ≤ Tclk − tpd upst of circuit under construction
window tpd upst = tidel max clock-to-output prop. delay maximum
begins of upstream circuitry input delay

(2) tho inp hold time
data-valid ≤ tcd upst of circuit under construction

window tcd upst = tidel min clock-to-output cont. delay minimum
ends of upstream circuitry input delay

relating to the interface with the downstream circuitry
(4) tpd oup clock-to-output prop. delay

data-call ≤ Tclk − tsu dnst of circuit under construction
window tsu dnst = todel max setup time maximum
begins of downstream circuitry output delay

(1) tcd oup clock-to-output cont. delay
data-call ≥ tho dnst of circuit under construction
window tho dnst = −todel min hold time minus minimum

ends of downstream circuitry output delay

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 216 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Dealing with special subcircuits I

I Adders, multipliers, and other (high-performance) arithmetic units.

I Padframe (core ↔ pads interconnect).

I Clock distribution network (typically buffered trees).

I Clock gating circuitry (for low power).

I Data synchronizers (at clock boundaries).

I Scan paths (auxiliary structures for circuit testing).

What do all these subcircuits have in common?

Each must conform to a precisely defined pattern at the gate level,
mimicking the desired behavior alone does not suffice!

Limitation: Boolean optimization tools are not designed to handle
such “non-logic” circuits.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 217 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Dealing with special subcircuits I

I Adders, multipliers, and other (high-performance) arithmetic units.

I Padframe (core ↔ pads interconnect).

I Clock distribution network (typically buffered trees).

I Clock gating circuitry (for low power).

I Data synchronizers (at clock boundaries).

I Scan paths (auxiliary structures for circuit testing).

What do all these subcircuits have in common?

Each must conform to a precisely defined pattern at the gate level,
mimicking the desired behavior alone does not suffice!

Limitation: Boolean optimization tools are not designed to handle
such “non-logic” circuits.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 217 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Dealing with special subcircuits II

I What are the options when tight control is sought?
(over a subcircuit’s gate-level construction)

I Use dedicated design automation tools,1

I fall back to schematic entry, or
I write a parametrized structural VHDL model.

I As for arithmetic circuits, take advantage of proven synthesis models
(e.g. Synopsys DesignWare).

Hint

Do not reoptimize subcircuits so obtained as critical properties may deteriorate.
Use “Don’t touch” synthesis directives to prevent logic optimization
from altering structurally critical subcircuits.

1Example: Clock tree generation is postponed to the physical design phase and handled
by specialized EDA software there.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 218 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Why write RTL synthesis models?

I VHDL is perfectly suitable for coding a data processing algorithm.

I Yet, do not expect an EDA tool to accept a purely behavioral model and
to turn that into a circuit design of acceptable performance, size, and
energy efficiency.

Conclusion

The fun and the burden of architecture design
rests with the hardware developer.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 219 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to write an RTL model step by step I

VHDL construct (SystemVerilog construct)

1. Draw a fairly detailed block diagram of the architecture devised.

2. Check where you can take advantage of DesignWare models.

3. Organize the design such as to confine critical propagation paths
to within design entities (modules).

4. Identify macrocells such as RAMs and ROMs and prepare for generating
the necessary design views outside the HDL environment.

5. Identify all registers and loosely collect the combinational operations in
between into clouds.

6. For each cloud, specify the operations in mathematical terms.

7. Specify what is to happen during each clock cycle (schedule).

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 220 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

How to write an RTL model step by step II

8. For each FSM, find out what type is most appropriate.

9. Capture each register in a memoryzing process statement
(always ff block).

10. For each cloud, decide how many processes to use.
Prefer concurrent signal assignments (continuous assignments)
for simpler operations.

11. Declare the data items that run back and forth between the various
processes as signals (variables) and decide on appropriate types.

12. Only now translate your draft into actual HDL code.
• Adhere to the code patterns established in this text.
• Watch out for special signals such as clock, reset, enable etc.
• The schedule defines the various subfunctions in full detail.
• Fill in don’t care entries wherever possible.
• Follow the recommendations in this text.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 221 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Translating an RTL diagram into HDL code (VHDL)

INP2
OUP2

INP1

OUP1

f g
h

ij
ROM

combinational
subfunction

concurrent
conditional
selected

or

signal
assignment

memoryless
process statement

register

process
memorizing

statement

after skeleton
to be patterned

macrocell

instantiation
component

statementROM
RAM

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 222 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Translating an RTL diagram into HDL code (SystemVerilog)

INP2
OUP2

INP1

OUP1

f g
h

ij
ROM

combinational
subfunction

continuous assignment

or

always_comb block

register

block
always_ff

macrocell

instantiation
module

statementROM
RAM

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 223 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Hardware model writing versus programming

I Writing code for HDL synthesis is not the same as writing software
for a program-controlled computer!

I Always think in terms of circuit hierarchies and simultaneous activities
(concurrent processes) rather than in terms of instruction sequences!

Golden rule

I Establish a block diagram of your architecture first,
then code what you see!

Caution

Do not ignore warnings and error messages from the synthesizer
unless you understand what they mean!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 224 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Hardware model writing versus programming

I Writing code for HDL synthesis is not the same as writing software
for a program-controlled computer!

I Always think in terms of circuit hierarchies and simultaneous activities
(concurrent processes) rather than in terms of instruction sequences!

Golden rule

I Establish a block diagram of your architecture first,
then code what you see!

Caution

Do not ignore warnings and error messages from the synthesizer
unless you understand what they mean!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 224 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Data types
Finite state machines and sequential subcircuits in general
RAM and ROM macrocells
Timing constraints
Limitations and caveats
How to establish a register transfer level model step by step

Hardware model writing versus programming

I Writing code for HDL synthesis is not the same as writing software
for a program-controlled computer!

I Always think in terms of circuit hierarchies and simultaneous activities
(concurrent processes) rather than in terms of instruction sequences!

Golden rule

I Establish a block diagram of your architecture first,
then code what you see!

Caution

Do not ignore warnings and error messages from the synthesizer
unless you understand what they mean!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 224 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Conclusions I

VHDL and SystemVerilog universally adopted due to paying benefits:

+ Top-down design methodology using a single standard language.

+ RTL synthesis does away with all lower-level schematic drawings
in a typical VLSI design hierarchy. 7→ Saves time and effort.

+ HDLs enable sharing, reusing and porting of subfunctions and -circuits
in a parametrized form. 7→ More useful than schematics.

+ Automatic technology mapping postpones the committment
to a specific fabrication process until late in the design cycle.

+ Allows for retargetting between field-programmable logic and ASICs.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 225 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Conclusions II

+ VHDL and SystemVerilog support the coding of simulation testbenches.

V H D L

hardware description language verification language

V e r i l o g

S y s t e m V e r i l o g

general programming

for RTL synthesis hardware modeling

cosimulation

verification aids

coverage
analysis

SVA propertiesconcurrent
assertions

undirected directed
random stimuli generation

testbench codingbasic 
sophis-
ticated 

classes

mailboxes

semaphoresassertions

shared
variables

interacting concurrent processes 

electrical data types 

event-based concept of time 

parametrization and abstraction 

circuit hierarchy and connectivity 

sophisticated busses & interfaces 

More on this in chapter 5 “Functional Verification”.

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 226 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Conclusions III

The limitations are relatively minor:

− Learning to master VHDL or SystemVerilog may be daunting.

∼ Only a subset is amenable to synthesis. 7→ No serious problem.

− Lack of agreement between tool vendors on
I what constructs the synthesis subset ought to include,
I how to capture timing constraints and synthesis directives, and
I when to support new constructs introduced with past std revisions.

− A gap remains between system design and actual hardware design.
Manual translation from a behavioral model to RTL synthesis code is
inefficient and prone to errors. Will high-level synthesis help?

Concluding remark

HDL synthesis does not do away with architecture design!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 227 / 227



Motivation and background
Key concepts and constructs of VHDL

Key concepts and constructs of SystemVerilog
Automatic circuit synthesis from HDL models

Conclusions

Conclusions III

The limitations are relatively minor:

− Learning to master VHDL or SystemVerilog may be daunting.

∼ Only a subset is amenable to synthesis. 7→ No serious problem.

− Lack of agreement between tool vendors on
I what constructs the synthesis subset ought to include,
I how to capture timing constraints and synthesis directives, and
I when to support new constructs introduced with past std revisions.

− A gap remains between system design and actual hardware design.
Manual translation from a behavioral model to RTL synthesis code is
inefficient and prone to errors. Will high-level synthesis help?

Concluding remark

HDL synthesis does not do away with architecture design!

c© Hubert Kaeslin Microelectronics Design Center ETH Zürich Circuit Modeling with Hardware Description Languages 227 / 227


	Motivation and background
	Why hardware synthesis?
	Alternatives for modeling digital hardware
	Why bother learning hardware description languages?
	A first look at VHDL and SystemVerilog

	Key concepts and constructs of VHDL
	Circuit hierarchy and connectivity
	Interacting concurrent processes
	A discrete replacement for electrical signals
	An event-driven scheme of execution
	Facilities for model parametrization
	Concepts borrowed from programming languages

	Key concepts and constructs of SystemVerilog
	Circuit hierarchy and connectivity
	Interacting concurrent processes
	A discrete replacement for electrical signals
	An event-driven scheme of execution
	Facilities for model parametrization
	Concepts borrowed from programming languages

	Automatic circuit synthesis from HDL models
	Data types
	Finite state machines and sequential subcircuits in general
	RAM and ROM macrocells
	Timing constraints
	Limitations and caveats
	How to establish a register transfer level model step by step

	Conclusions

