
SYSTEM SPECIFICATIONS
USING VERILOG HDL

Dr. Mohammed M. Farag

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Introduction

 Basic Concepts

 Modules and Ports

 Gate-Level Modeling

 Dataflow Modeling

 Behavioral Modeling

 Tasks and Functions

Textbook: Verilog HDL: A Guide to Digital Design and
Synthesis, Second Edition By Samir Palnitkar

Outline

EE 432 VLSI Modeling and Design 2

fAcUlty of engineering - AlexAndriA University 2014

Introduction

EE 432 VLSI Modeling and Design 3

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Better be standard than be proprietary

 Can describe a design at some levels of abstraction

 Can be interpreted at many level of abstraction

Cross functional, statistical behavioral, multi-cycles
behavioral, RTL

 Can be used to document the complete system
design tasks

Testing, simulation, ..., related activities

 User define types, functions and packages

 Comprehensive and easy to learn

Hardware Description Language

EE 432 VLSI Modeling and Design 4

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Top-Down Design
Start with system specification

Decompose into subsystems, components, until
indivisible

Realize the components

 Bottom-up Design
Start with available building blocks

 Interconnect building blocks into subsystems, then
system

Achieve a system with desired specification

 Meet in the middle
A combination of both

Design Methodologies

EE 432 VLSI Modeling and Design 5

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Designs can be described at very abstract levels
without predefining the fabrication technology

 Functional verification of the design can be done
early in the design cycle

 Designers can optimize and modify the RTL
description until it meets the desired functionality

 Designing with HDLs is analogous to computer
programming

 With rapidly increasing complexities of digital
circuits and increasingly sophisticated EDA tools,
HDLs are now the dominant method for large digital
designs

Importance of HDLs

EE 432 VLSI Modeling and Design 6

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Gateway Design Automation

Phil Moorbr in 1984 and 1985

 Verilog-XL, “XL algorithm”, 1986

Gate-level simulation

 Verilog logic synthesizer, Synopsis, 1988

Top-down design methodology

 Cadence Design Systems acquired Gateway

December 1989

a proprietary HDL

Verilog History

EE 432 VLSI Modeling and Design 7

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Open Verilog International (OVI), 1991

Language Reference Manual (LRM)

 The IEEE 1364 working group, 1994

 Verilog become an IEEE standard (1364-1995)

December, 1995

 2001, IEEE standard 1364-2001

Verilog History

EE 432 VLSI Modeling and Design 8

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog HDL is a general-purpose hardware description
language that is easy to learn and easy to use

 It is similar in syntax to the C programming language

 Verilog HDL allows different levels of abstraction to be
mixed in the same model

 Most popular logic synthesis tools support Verilog HDL

 All fabrication vendors provide Verilog HDL libraries for post
logic synthesis simulation

 The Programming Language Interface (PLI) is a powerful
feature that allows the user to write custom C code to
interact with the internal data structures of Verilog

Popularity of Verilog HDL

EE 432 VLSI Modeling and Design 9

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The speed and complexity of digital circuits have
increased rapidly

 Designers have responded by designing at higher
levels of abstraction

 Designers have to think only in terms of
functionality.

 EDA tools take care of the implementation details
and optimization

 The most popular trend currently is to design in
HDL at an RTL level, because logic synthesis tools
can create gate-level netlists from RTL level design

Trends in HDLs

EE 432 VLSI Modeling and Design 10

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Behavioral synthesis allowed engineers to design
directly in terms of algorithms and the behavior of
the circuit

 However, behavioral synthesis did not gain
widespread acceptance

 Today, RTL design continues to be very popular

 Designers often mix gate-level description directly
into the RTL description to achieve optimum results

 Another technique that is used for system-level
design is a mixed bottom-up methodology

Trends in HDLs (2)

EE 432 VLSI Modeling and Design 11

fAcUlty of engineering - AlexAndriA University 2014

Hierarchical Modeling Concepts

EE 432 VLSI Modeling and Design 12

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Top-down design methodology

 Bottom-up design methodology

Design Methodologies

EE 432 VLSI Modeling and Design 13

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Typically, a combination of top-down and bottom-up
flows is used

 Design architects define the specifications of the
top-level block

 Logic designers decide how the design should be
structured by breaking up the functionality into
blocks and sub-blocks

 At the same time, circuit designers are designing
optimized circuits for leaf-level cells

 The flow meets at an intermediate point

Design Methodologies (2)

EE 432 VLSI Modeling and Design 14

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

Example: 4-bit Ripple Carry Counter

EE 432 VLSI Modeling and Design 15

Design Hierarchy

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A module is the basic building block in Verilog

 A module can be an element or a collection of
lower-level design blocks

 Typically, elements are grouped into modules to
provide common functionality that is used at many
places in the design

 A module provides the necessary functionality to
the higher-level block through its port interface, but
hides the internal implementation

 This allows the designer to modify module internals
without affecting the rest of the design

Modules

EE 432 VLSI Modeling and Design 16

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 In Verilog, a module is declared by the keyword
module

 In Verilog, a module is declared by the keyword
module

 Each module must have a module_name, which is the
identifier for the module, and a module_terminal_list,
which describes the input and output terminals of the
module

Module Declaration

EE 432 VLSI Modeling and Design 17

module <module_name> (<module_terminal_list>);
...
<module internals>
...
endmodule

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The T-flip flop could be defined as a module as
follows

Example

EE 432 VLSI Modeling and Design 18

module T_FF (q, clock, reset);
.
.
<functionality of T-flipflop>
.
.
endmodule

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog is both a behavioral and a structural language

 Internals of each module can be defined at four
levels of abstraction, depending on the needs of the
design include

 Behavioral or algorithmic level:

 This is the highest level of abstraction provided by Verilog
HDL (similar to C programming)

 A module can be implemented in terms of the desired design
algorithm without concern for the hardware implementation
details

Verilog Abstraction Levels

EE 432 VLSI Modeling and Design 19

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Dataflow level

 The module is designed by specifying the data flow

 The designer is aware of how data flows between hardware
registers and how the data is processed in the design

 Gate level

 The module is implemented in terms of logic gates and
interconnections between these gates

 Design at this level is similar to describing a logic design

 Switch level

 This is the lowest level of abstraction provided by Verilog

 A module can be implemented in terms of switches, storage
nodes, and the interconnections between them

Verilog Abstraction Levels (2)

EE 432 VLSI Modeling and Design 20

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog allows the designer to mix and match all four
levels of abstractions in a design

 The term register transfer level (RTL)is frequently
used for a Verilog description that uses a
combination of behavioral and dataflow constructs

 Normally, the higher the level of abstraction, the
more flexible and technology-independent the
design

 However, at this level, the designer does not have
the control over low-level details which are
automatically generated by the synthesis tool

Verilog Abstraction Levels (3)

EE 432 VLSI Modeling and Design 21

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module module_name (port_list);
Declarations:

Net declarations.
Reg declarations.
Parameter declarations.

Initial statements.
Gate instantiation statements.
Module instantiation statements.
UDP instantiation statements.
Always statements.
Continuous assignment.

endmodule

Mixing Structure and Behavior

EE432 VLSI Modeling and Design 22

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A module provides a template from which you can
create actual objects

 Verilog creates a unique object from the template
when a module is invoked

 The process of creating objects from a module
template is called instantiation, and the objects are
called instances

 In Verilog, it is illegal to nest modules
 One module definition cannot contain another module

definition within the module and endmodule statements

 Instead, a module definition can incorporate copies of
other modules by instantiating them

Instances

EE 432 VLSI Modeling and Design 23

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

// Define the top-level module called ripple carry

// counter. It instantiates 4 T-flipflops. Interconnections are

// shown in Section 2.2, 4-bit Ripple Carry Counter.

module ripple_carry_counter(q, clk, reset);

output [3:0] q; //I/O signals and vector declarations

//will be explained later.

input clk, reset; //I/O signals will be explained later.

//Four instances of the module T_FF are created. Each has a unique

//name.Each instance is passed a set of signals. Notice, that

//each instance is a copy of the module T_FF.

T_FF tff0(q[0],clk, reset);

T_FF tff1(q[1],q[0], reset);

T_FF tff2(q[2],q[1], reset);

T_FF tff3(q[3],q[2], reset);

endmodule

Example-1

EE 432 VLSI Modeling and Design 24

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

// Define the module T_FF. It instantiates a D-flipflop. We assumed

// that module D-flipflop is defined elsewhere in the design. Refer

// to Figure 2-4 for interconnections.

module T_FF(q, clk, reset);

//Declarations to be explained later

output q;

input clk, reset;

wire d;

D_FF dff0(q, d, clk, reset); // Instantiate D_FF. Call it dff0.

not n1(d, q); // not gate is a Verilog primitive. Explained
later.

endmodule

Example-2

EE 432 VLSI Modeling and Design 25

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The functionality of the design block can be tested by
applying stimulus and checking results

 We call such a block the stimulus block or a test bench

 Two styles of stimulus application are possible

Components of Simulation

EE 432 VLSI Modeling and Design 26

First style
Second style

fAcUlty of engineering - AlexAndriA University 2014

Example

 Ripple Carry Counter
Top Block

 Flipflop T_FF

27EE 432 VLSI Modeling and Design

module ripple_carry_counter(q, clk,
reset);

output [3:0] q;
input clk, reset;
//4 instances of the module

T_FF are created.
T_FF tff0(q[0],clk, reset);
T_FF tff1(q[1],q[0], reset);
T_FF tff2(q[2],q[1], reset);
T_FF tff3(q[3],q[2], reset);

endmodule

module T_FF(q, clk, reset);
output q;
input clk, reset;
wire d;
D_FF dff0(q, d, clk,

reset);
not n1(d, q); /* not is a

Verilog-provided primitive.
case sensitive*/
endmodule

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

// module D_FF with synchronous reset

module D_FF(q, d, clk, reset);

output q;

input d, clk, reset;

reg q;

// Lots of new constructs. Ignore the functionality of the

// constructs.

// Concentrate on how the design block is built in a top-down
fashion.

always @(posedge reset or negedge clk)

if (reset)

q <= 1'b0;

else

q <= d;

endmodule

Example (2)

EE 432 VLSI Modeling and Design 28

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Stimulus Block

 We control the signals clk and reset so that the regular
function of the ripple carry counter

 Waveforms for clk, reset, and 4-bit output q are shown

Example (3)

EE 432 VLSI Modeling and Design 29

fAcUlty of engineering - AlexAndriA University 2014

Example: Stimulus Block
module stimulus;

reg clk;

reg reset;

wire[3:0] q;

// instantiate the design block

ripple_carry_counter r1(q, clk,
reset);

// Control the clk signal that drives
the //design block. Cycle time = 10

initial

clk = 1'b0; //set clk to 0

always

#5 clk = ~clk; //toggle clk every 5
time units

/* Control the reset signal that drives
the design block */

initial

begin

reset = 1'b1;

#15 reset = 1'b0;

#180 reset = 1'b1;

#10 reset = 1'b0;

#20 $finish; //terminate the
//simulation

end

// Monitor the outputs

initial

$monitor($time, " Output q = %d", q);

endmodule

30EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014

Basic Concepts

EE 432 VLSI Modeling and Design 31

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Free format
 Case sensitive
 white space (blank, tab, newline) can be used freely
 Identifiers: sequence of letters, $ and _(underscore). First has

to be a letter or an _
Symbol
symbol
R12_3$
_R2

 Escaped identifiers: starts with a \ (backslash) and end with
white space

\7400
\.*.$
.{*}
\~Q

 Keywords: Cannot be used as identifiers
E.g. initial, assign, module

Basics

EE432 VLSI Modeling and Design 32

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Comments: Two forms
/* First form: cam

extend over
many lines */

// Second form: ends at the end of this line

 $SystemTask / $SystemFunction
$time
$monitor

 Compiler-directive: directive remains in effect through
the rest of compilation.

// Text substitution

’define MAX_BUS_SIZE 32
......
reg[’MAX_BUS_SIZE-1:0] ADDRESS;

Basics (Contd)

EE432 VLSI Modeling and Design 33

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Whitespace
 Blank spaces (\b) , tabs (\t) and newlines (\n) comprise

the whitespace

 Whitespace is ignored by Verilog except when it
separates tokens

 Whitespace is not ignored in strings

 Comments
 Comments can be inserted in the code for readability

and documentation

 There are two ways to write comments
 A one-line comment starts with "//“

 A multiple-line comment starts with "/*" and ends with "*/"

Lexical Conventions

EE 432 VLSI Modeling and Design 34

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Comment examples
a = b && c; // This is a one-line comment

/* This is a multiple line

comment */

/* This is /* an illegal */ comment */

/* This is //a legal comment */

 Operators

a = ~ b; // ~ is a unary operator. b is the operand

a = b && c; // && is a binary operator. b and c are
operands

a = b ? c : d; // ?: is a ternary operator. b, c and d are
operands

Lexical Conventions (2)

EE 432 VLSI Modeling and Design 35

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are two types of number specification in Verilog:
sized and unsized

 Sized numbers <size> '<base format> <number>

4'b1111 // This is a 4-bit binary number

12'habc // This is a 12-bit hexadecimal number

16'd255 // This is a 16-bit decimal number

 Unsized numbers: Decimal numbers with a default size

23456 // This is a 32-bit decimal number by default

'hc3 // This is a 32-bit hexadecimal number

'o21 // This is a 32-bit octal number

Number Specification

EE 432 VLSI Modeling and Design 36

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Negative numbers

 Negative numbers can be specified by putting a minus sign
before the size for a constant number

-6'd3 // 8-bit negative number stored as 2's complement of 3

-6'sd3 // Used for performing signed integer math

4'd-2 // Illegal specification

 X or Z values

 An unknown value is denoted by an x

 A high impedance value is denoted by z

12'h13x // This is a 12-bit number; 4 least significant bits unknown

6'hx // This is a 6-bit hex number

32'bz // This is a 32-bit high impedance number

Number Specification

EE 432 VLSI Modeling and Design 37

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Strings

 A string is a sequence of characters that are enclosed by
double quotes

 It cannot be on multiple lines

 Strings are treated as a sequence of one-byte ASCII values

"Hello Verilog World" // is a string

"a / b" // is a string

reg [8*18:1] string_value; // Declare a variable that is 18 bytes wide

Initial

string_value = "Hello Verilog World"; // String can be stored in variable

 An underscore character "_" is allowed anywhere in a
number except the first character to improve readability

Strings

EE 432 VLSI Modeling and Design 38

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Keywords are special identifiers reserved to define the
language constructs written in lowercase

 Identifiers are names given to objects so that they can be
referenced in the design

 Identifiers are made up of alphanumeric characters, the
underscore (_), or the dollar sign ($)

 Identifiers are case sensitive

 Identifiers start with an alphabetic character or an
underscore

reg value; // reg is a keyword; value is an identifier

input clk; // input is a keyword, clk is an identifier

Identifiers and Keywords

EE 432 VLSI Modeling and Design 39

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Value Set

 Verilog supports four
values and eight strengths
to model the functionality
of real hardware

 The four value levels are:
0, 1, x, z

 strength levels are often
used to resolve conflicts
between drivers of
different strengths in
digital circuits

Data Types

EE 432 VLSI Modeling and Design 40

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Nets represent connections between hardware elements

 Nets are declared primarily with the keyword wire

 The terms wire and net are often used interchangeably

 Nets get the output value of their drivers

 The default value of a net is z

Example:

wire a; // Declare net a for the above circuit

wire b,c; // Declare two wires b,c for the above circuit

wire d = 1'b0; // Net d is fixed to logic value 0 at declaration.

Nets

EE 432 VLSI Modeling and Design 41

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Registers represent data storage elements
 Registers retain value until another value is placed onto

them
 Unlike a net, a register does not need a driver
 Register data types are commonly declared by the keyword

reg
 Registers can also be declared as signed variables
 The default value for a reg data type is x

reg reset; // declare a variable reset that can hold its value

initial // this construct will be discussed later

begin

reset = 1'b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1'b0; // after 100 time units reset is deasserted.

end

Registers

EE 432 VLSI Modeling and Design 42

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Nets or reg data types can be declared as vectors
(multiple bit widths)

wire a; // scalar net variable, default

wire [7:0] bus; // 8-bit bus

wire [31:0] busA,busB,busC; // 3 buses of 32-bit width.

reg clock; // scalar register, default

reg [0:40] virtual_addr; // Vector register, virtual address 41 bits

 Vectors can be declared at [high# : low#] or [low# :
high#], but the left number in the squared brackets is
always the most significant bit of the vector

Vectors

EE 432 VLSI Modeling and Design 43

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 For the vector declarations shown above, it is possible to
address bits or parts of vectors
busA[7] // bit # 7 of vector busA

bus[2:0] // Three least significant bits of vector bus,

// using bus[0:2] is illegal because the significant bit should

// always be on the left of a range specification

virtual_addr[0:1] // Two most significant bits of vector virtual_addr

 Variable Vector Part Select

 Another ability provided in Verilog HDL is to have
variable part selects of a vector

 Check the PalnitkarVerilog reference (page 48)

Vector Part Select

EE 432 VLSI Modeling and Design 44

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 An integer is a general purpose register data type

 Integers are declared by the keyword integer

 Integers store values as signed quantities

integer counter; // general purpose variable used as a
counter.

initial

counter = -1; // A negative one is stored in the counter

Integer Numbers

EE 432 VLSI Modeling and Design 45

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Integers: Decimal, hexadecimal, octal, binary
 Simple decimal form:

32 decimal 32
-15 decimal -15

 Signed integers
 Negative numbers are in two’s complement form

 Base format form:
[<size>] ’<base><value>
’hAF (h, A, F are case insensitive) // 8-bit hex
’o721 // 9-bit octal
5’O37 // 5-bit octal
4’D2 // 4-bit decimal
4’B1x02 // 4-bit binary
7’hx (x is case insensitive) // 7-bit x (x enteded)
4’hz // 4-bit z (z extended)

Integer Numbers (2)

EE432 VLSI Modeling and Design 46

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Unsigned integers

 Padding:
10’b10 // padded with 0’s
10’bx10 // padded with x’s

 ? can replace z in a number: used to enhance readability
where z is a high impedance

 _(underscore) can be used anywhere to enhance
readability, except as the first character

 Example:
8’d-6 // illegal
-8’d6 // -6 held in 8 bits

Integer Numbers (3)

EE432 VLSI Modeling and Design 47

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Real number constants and real register data types are
declared with the keyword real

 Real numbers cannot have a range declaration, and their
default value is 0

real delta; // Define a real variable called delta

initial

begin

delta = 4e10; // delta is assigned in scientific notation

delta = 2.13; // delta is assigned a value 2.13

end

integer i; // Define an integer i

initial

i = delta; // i gets the value 2 (rounded value of 2.13)

Real Numbers

EE 432 VLSI Modeling and Design 48

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Decimal notation
10.5
1.41421
0.01

 Scientific notation
235.1e2 (e is case insensitive) // 23510.0
3.6E2 // 360.0
5E-4 // 0.0005

 Must have at least one digit on either side of decimal

 Stored and manipulated in double precision (usually
64 bits)

Real Numbers (2)

EE432 VLSI Modeling and Design 49

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog simulation is done with respect to simulation
time

 A special time register data type is used in Verilog to
store simulation time

 A time variable is declared with the keyword time

 The system function $time is invoked to get the
current simulation time
time save_sim_time; // Define a time variable save_sim_time

initial

save_sim_time = $time; // Save the current simulation time

Time Data Type

EE 432 VLSI Modeling and Design 50

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 “Sequence of characters”

 \n, \t, \\, \”, %%
\n = newline
\t = tab
\\ = backslash
\” = quote mark (“)
%% = % sign

Strings

EE432 VLSI Modeling and Design 51

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Arrays are allowed in Verilog for reg, integer, time, real,
realtime and vector register data types

 Multi-dimensional arrays can also be declared with any
number of dimensions

 Arrays of nets can also be used to connect ports of
generated instances

 Arrays are accessed by <array_name>[<subscript>]

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables

time chk_point[1:100]; // Array of 100 time checkpoint variables

integer matrix[4:0][0:255]; // Two dimensional array of integers

wire [7:0] w_array2 [5:0]; // Declare an array of 8 bit vector wire

wire w_array1[7:0][5:0]; // Declare an array of single bit wires

Arrays

EE 432 VLSI Modeling and Design 52

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Memories are modeled in Verilog simply as a one-
dimensional array of registers

 Each element of the array is known as an element or
word and is addressed by a single array index

 Each word can be one or more bits

reg mem1bit[0:1023]; // Memory mem1bit with 1K 1-bit words

reg [7:0] membyte[0:1023]; // Memory membyte with 1K
//8-bit words(bytes)

membyte[511] // Fetches 1 byte word whose address is 511.

Memories

EE 432 VLSI Modeling and Design 53

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog allows constants to be defined in a module
by the keyword parameter

 Parameters cannot be used as variables

 Parameter values for each module instance can be
overridden individually at compile time

 This allows the module instances to be customized

 Parameters values can be changed at module
instantiation or by using the defparam statement

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Defines width of cache_line

parameter signed [15:0] WIDTH; // Fixed sign and range for width

Parameters

EE 432 VLSI Modeling and Design 54

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Two ways

 defparam statement:

 Parameter value in any module instance can be changed
by using hierarchical name.

defparam FA.n1.XOR_DELAY = 2,
FA.n2.AND_DELAY = 3;

 Module instance parameter value assignment:

 Specify the parameter value in the module instantiation.

 Order of assignment is the same as order of
declarations within module

HA # (2, 3) h1 (.A(p), .B(Q), .S(S1), .C(X1));

Module Parameter Values

EE432 VLSI Modeling and Design 55

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog provides standard system tasks for certain
routine operations

 All system tasks appear in the form $<keyword>

 Displaying information: $display is the main system task for
displaying values of variables or strings or expressions

$display(p1, p2, p3,....., pn); // p1, p2, p3,..., pn can be quoted
//strings or variables or expressions

/Display value of current simulation time 230

$display($time);

-- 230

//Display value of port_id 5 in binary

reg [4:0] port_id;

$display("ID of the port is %b", port_id);

-- ID of the port is 00101

System Tasks

EE 432 VLSI Modeling and Design 56

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Monitoring information: $monitor continuously
monitors the values of the variables or signals specified
in the parameter list and displays all parameters in the
list whenever the value of any one variable or signal
changes

$monitor(p1,p2,p3,....,pn); //p1, p2, ... , pn can be variables,
//signal names, or quoted strings

//Monitor time and value of the signals clock and reset

//Clock toggles every 5 time units and reset goes down at 10 time units

initial

begin

$monitor($time, " Value of signals clock = %b reset = %b",
clock,reset);

end

System Tasks (2)

EE 432 VLSI Modeling and Design 57

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Stopping and finishing in a simulation
 The task $stop is provided to stop during a simulation

 The $stop task puts the simulation in an interactive mode to
enable debuging

 The $finish task terminates the simulation

// Stop at time 100 in the simulation and examine the results

// Finish the simulation at time 1000.

initial // to be explained later. time = 0

begin

clock = 0;

reset = 1;

#100 $stop; // This will suspend the simulation at time = 100

#900 $finish; // This will terminate the simulation at time = 1000

end

System Tasks (3)

EE 432 VLSI Modeling and Design 58

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Compiler directives are provided in Verilog

 All compiler directives are defined by using the
`<keyword> construct

 We deal with the two most useful compiler
directives: `define and `include:
 The `define directive is used to define text macros in

Verilog
//define a text macro that defines default word size

//Used as 'WORD_SIZE in the code

'define WORD_SIZE 32

 The `include directive allows you to include entire
contents of a Verilog source file in another Verilog file
during compilation

Compiler Directives

EE 432 VLSI Modeling and Design 59

fAcUlty of engineering - AlexAndriA University 2014

Modules and Ports

EE 432 VLSI Modeling and Design 60

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

Components of a Verilog Module

EE 432 VLSI Modeling and Design 61

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 To understand the components of a module shown
above, check Example 4-1 (Palnitkar, P# 63)

Components of a Verilog Module

EE 432 VLSI Modeling and Design 62

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Ports provide the interface by which a module can
communicate with its environment

 The internals of the module are not visible to the
environment

 This provides a very powerful flexibility to the
designer

 The internals of the module can be changed without
affecting the environment as long as the interface is
not modified

 Ports are also referred to as terminals

Ports

EE 432 VLSI Modeling and Design 63

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A module definition contains an optional list of ports

 Consider a 4-bit full adder that is instantiated inside a
top-level module Top

Example

module fulladd4(sum, c_out, a, b, c_in); //Module with a list of ports

module Top; // No list of ports, top-level module in simulation

List of Ports

EE 432 VLSI Modeling and Design 64

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 All ports in the list of ports must be declared in the module as
follows

 Each port in the port list is defined as input, output, or inout,
based on the direction of the port signal

module fulladd4(sum, c_out, a, b, c_in);

//Begin port declaration

output[3:0] sum;

output c_cout;

input [3:0] a, b;

input c_in;

//End port declaration

Port Declaration

EE 432 VLSI Modeling and Design 65

Alternative Declaration
module fulladd4(output reg [3:0] sum,
output reg c_out, // output and c_out are

//declared as reg
input [3:0] a, b, //wire by default
input c_in); //wire by default

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Note that all port declarations are implicitly
declared as wire in Verilog

 Thus, if a port is intended to be a wire, it is sufficient
to declare it as output, input, or inout

 Input or inout ports are normally declared as wires

 However, if output ports hold their value, they must
be declared as reg (inout cannot be declared as reg)

module DFF(q, d, clk, reset);

output q;

reg q; // Output port q holds value; therefore it is
//declared as reg.

input d, clk, reset;

Port Declaration (2)

EE 432 VLSI Modeling and Design 66

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are rules governing port connections when
modules are instantiated within other modules

 Width matching

 Unconnected ports: Verilog allows ports to remain
unconnected

Port Connection Rules

EE 432 VLSI Modeling and Design 67

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are two methods of making connections
between signals specified in the module instantiation
and the ports in a module definition
 Connecting by ordered list: The signals to be connected

must appear in the module instantiation in the same order as
the ports in the port list in the module definition

module Top;
//Declare connection variables
reg [3:0]A,B;
reg C_IN;
wire [3:0] SUM;
wire C_OUT;
//Instantiate fulladd4, call it fa_ordered.
//Signals are connected to ports in order (by position)
fulladd4 fa_ordered(SUM, C_OUT, A, B, C_IN);

Connecting Ports to External Signals

EE 432 VLSI Modeling and Design 68

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Connecting ports by name: Verilog provides the
capability to connect external signals to ports by the
port names, rather than by position

// Instantiate module fa_byname and connect signals to ports by name

fulladd4 fa_byname(.c_out(C_OUT), .sum(SUM), .b(B), .c_in(C_IN),
.a(A),);

 Note that only those ports that are to be connected to
external signals must be specified in port connection by name

 Unconnected ports can be dropped

// Instantiate module fa_byname and connect signals to ports by name

fulladd4 fa_byname(.sum(SUM), .b(B), .c_in(C_IN), .a(A),);

Connecting Ports to External Signals (2)

EE 432 VLSI Modeling and Design 69

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Module definition:
module module_name (port_list);

declarations_and_statements

endmodule

 Module instantiation statement:
module_name instance_name (port_associations);

 Port associations can be positional or named; cannot be
mixed

local_net_name // positional

Port_Name(local_net_name) // Named

 Ports can be: input, output, inout

 Port can be declared as a net or a reg; must have same size
as port

Hierarchy

EE432 VLSI Modeling and Design 70

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Unconnected module inputs are driven to z state

 Unconnected module outputs are simply unused

DFF d1 (.Q(QS), .QBAR(), .DADA(D),

.PRESET(), .CLOCK(CK)); // Named

DFF d2 (QS, , D, , CK); // Positional

// Output QBAR is not connected

// Input PRESET is open and hence set to calue z

Hierarchy (2)

EE432 VLSI Modeling and Design 71

fAcUlty of engineering - AlexAndriA University 2014

Hierarchical Instantiation

module sub_block1 (a, z);

input a;

output z;

wire a, z;

IV U1 (.A(a), .Z(z));

endmodule

module sub_block2 (a, z);

input a;

output z;

wire a, z;

IV U1 (.A(a), .Z(z));

endmodule

module top (din1, din2, dout1,
dout2);

input din1;

input din2;

output dout1;

output dout2;

wire din1, din2, dout1, dout2;

sub_block1 U1(.a(din1), .z(dout1));;

sub_block2 U2(.a(din2), .z(dout2));;

endmodule

72EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Every identifier has a unique hierarchical path name

 Period character is the separator

 New hierarchy is defined by: module instantiation, task
definition, function definition, named block

Hierarchical Path Name

EE432 VLSI Modeling and Design 73

function FUNC

module Top wire SBUS

module CHILD
reg ART

task PROC
reg ART

block BLA
integer DOT

block BLB
reg ART, CIT

TOP.CHILD.ART
TOP.PROC.ART
TOP.PROC.BLB.CIT
TOP.PROC.BLA.DOT
TOP.SBUS

fAcUlty of engineering - AlexAndriA University 2014

Gate-Level Modeling

EE 432 VLSI Modeling and Design 74

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Four levels of abstraction used to describe hardware

 At gate level, the circuit is described in terms of
gates

 Actually, the lowest level of abstraction is switch-
(transistor-) level modeling

 Most digital design is now done at gate level or
higher levels of abstraction

Introduction

EE 432 VLSI Modeling and Design 75

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog supports basic logic gates as predefined
primitives

 These primitives are instantiated like modules
except that they are predefined in Verilog and do not
need a module definition

 There are two classes of basic gates: and/or gates
and buf/not gates

Gate Types

EE 432 VLSI Modeling and Design 76

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The and/or gates available in Verilog are

and or xor

nand nor xnor

 The output terminal is denoted by out

 Input terminals are denoted by i1 and i2

 More than two inputs can be specified in a gate
instantiation

And/Or Gates

EE 432 VLSI Modeling and Design 77

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Buf/not gates have one scalar input and one or more
scalar outputs

 Two basic buf/not gate primitives are provided in
Verilog

buf not

Buf/Not Gates

EE 432 VLSI Modeling and Design 78

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Gates with an additional control signal on buf and not gates are
also available

bufif1 notif1

bufif0 notif0

 These gates propagate only if their control signal is asserted

 They propagate z if their control signal is deasserted

Bufif/notif

EE 432 VLSI Modeling and Design 79

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are many situations when repetitive instances are
required

 Verilog HDL allows an array of primitive instances to be
defined

Example:
wire [3:0] OUT, IN1, IN2;

// basic gate instantiations.

nand n_gate[3:0](OUT, IN1, IN2);

// This is equivalent to the following 4 instantiations

nand n_gate0(OUT[0], IN1[0], IN2[0]);

nand n_gate1(OUT[1], IN1[1], IN2[1]);

nand n_gate2(OUT[2], IN1[2], IN2[2]);

nand n_gate3(OUT[3], IN1[3], IN2[3]);

Array of Instances

EE 432 VLSI Modeling and Design 80

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Gate-level multiplexer

Examples

EE 432 VLSI Modeling and Design 81

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

4-bit Ripple Carry Full Adder

EE 432 VLSI Modeling and Design 82

4-bit Ripple Carry Adder

1-bit full adder

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Gate delays allow the Verilog user to specify delays
through the logic circuits

 Three types of delay specifications are allowed
 Rise (0, x, z1)

 Fall (1, x, z 0)

 Turn-off (0, 1, x z)

 If no delays are specified, the default value is zero
// Delay of delay_time for all transitions

and #(delay_time) a1(out, i1, i2);

// Rise and Fall Delay Specification.

and #(rise_val, fall_val) a2(out, i1, i2);

// Rise, Fall, and Turn-off Delay Specification

bufif0 #(rise_val, fall_val, turnoff_val) b1 (out, in, control);

Gate Delays

EE 432 VLSI Modeling and Design 83

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Signal propagation delay from any gate input to the
gate output

 Up to three values per output: rise, fall, turn-off delay
not N1 (XBAR, X); // Zero delay

nand #(6) (out, in1, in2); // All delays = 6

and #(3,5) (out, in1, in2, in3); /* rise delay = 3, fall delay = 5,

to_x_or_z = min(3,5) */

 Each delay can be written in min:typ:max form as
well

nand #(2:3:4, 4:3:4) (out, in1, in2);

 Can also use a specify block to specify delays

Gate Delays (2)

EE432 VLSI Modeling and Design 84

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

// Define a simple combination module called D

module D (out, a, b, c);

// I/O port declarations

output out;

input a,b,c;

// Internal nets

wire e;

// Instantiate primitive gates to build the circuit

and #(5) a1(e, a, b); //Delay of 5 on gate a1

or #(4) o1(out, e,c); //Delay of 4 on gate o1

endmodule

Example

EE 432 VLSI Modeling and Design 85

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module CLOCK (CLK,START);
output CLK;
Input START;

initial begin
START = 1;
#3 START = 0;

end

nor #5 (CLK, START, CLK);
endmodule

// Generate a clock with on-off width of 5
// Not synthesizable
// For waveform only

A Clock Generator

EE432 VLSI Modeling and Design 86

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Compiler directive: ’timescale
’timescale time_unit / time_precision;

 1, 10, 100 /s, ms, us, ns, ps, fs
’timescale 1ns / 100ps

module AND_FUNC (Z, A, B);

output Z;

input A, B;

and # (5.22, 6.17) A1 (Z, A, B);

endmodule

/* Delays are in ns. Delays are rounded to one-tenth of a ns (100ps).
Therefore,

5.22 becomes 5.2ns, 6.17 becomes 6.2ns and 8.59 becomes 8.6ns */

// If the following timescale directive is used:

’timescale 10ns / 1ns

// Then 5.22 becomes 52ns, 6.17 becomes 62ns, 8.59 becomes 86ns

Time Unit and Precision

EE432 VLSI Modeling and Design 87

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 System function, $time: returns the simulation time
as an integer value scaled time unit specified.

’timescale 10ns / 1ns
module TB;

......
initial

$monitor (“PUT_A=%d PUT_B=%d”, PUT_A, PUT_B,
“GET_O=%d”, GET_O, “at time %t”, $time);

endmodule

PUT_A=0 PUT_B=0 GET_O=0 at time 0
PUT_A=0 PUT_B=1 GET_O=0 at time 5
PUT_A=0 PUT_B=0 GET_O=0 at time 11
......
/* $time value is scaled to the time unit and then rounded */

Getting Simulation Time

EE432 VLSI Modeling and Design 88

fAcUlty of engineering - AlexAndriA University 2014

Switch-Level Modeling

EE 432 VLSI Modeling and Design 89

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog provides the ability to design circuits at a
MOS-transistor level

 Verilog HDL currently provides only digital design
capability with logic values 0 1, x, z

 There is no analog capability

 Thus, in Verilog HDL, transistors are also known
switches that either conduct or are open

 Design at this level is becoming rare with the
increasing complexity of circuits

Introduction

EE 432 VLSI Modeling and Design 90

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Two types of MOS switches can be defined with the
keywords nmos and pmos

Example:

nmos n1(out, data, control); //instantiate a nmos switch

pmos p1(out, data, control); //instantiate a pmos switch

MOS Switches

EE 432 VLSI Modeling and Design 91

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The value of the out signal is determined from the values of data and
control signals.

 Logic tables for out are shown in the following Table

 Some combinations of data and control cause the output to be either
a 1 or 0, or to an z value without a preference for either value

 The symbol L stands for 0 or z; H stands for 1 or z

MOS Switches (2)

EE 432 VLSI Modeling and Design 92

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 CMOS switches are declared with the keyword
cmos

Example:
cmos c1(out, data, ncontrol, pcontrol);//instantiate cmos gate.

CMOS Switches

EE 432 VLSI Modeling and Design 93

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Three keywords are used to define bidirectional
switches: tran, tranif0, and tranif1

Example:
tran t1(inout1, inout2); //instance name t1 is optional

tranif0 (inout1, inout2, control); //instance name is not specified

Bidirectional Switches

EE 432 VLSI Modeling and Design 94

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The power (Vdd, logic 1) and Ground (Vss, logic 0)
sources are needed when transistor-level circuits are
designed

 Power and ground sources are defined with
keywords supply1 and supply0

Example:

supply1 vdd;

supply0 gnd;

assign a = vdd; //Connect a to vdd

assign b = gnd; //Connect b to gnd

Power and Ground

EE 432 VLSI Modeling and Design 95

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Resistive switches have higher source-to-drain
impedance than regular switches and reduce the
strength of signals passing through them

 Resistive switches are declared with keywords that
have an "r" prefixed to the corresponding keyword
for the regular switch

rnmos rpmos //resistive nmos and pmos switches

rcmos //resistive cmos switch

rtran rtranif0 rtranif1 //resistive bidirectional switches

Resistive Switches

EE 432 VLSI Modeling and Design 96

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

//Define our own nor gate, my_nor

module my_nor(out, a, b);

output out;

input a, b;

//internal wires

wire c;

//set up power and ground lines

supply1 pwr; //pwr is connected to Vdd

supply0 gnd ; //gnd is connected to Vss(ground)

//instantiate pmos switches

pmos (c, pwr, b);

pmos (out, c, a);

//instantiate nmos switches

nmos (out, gnd, a);

nmos (out, gnd, b);

endmodule

Example: CMOS NOR Gate

EE 432 VLSI Modeling and Design 97

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

//Define a 2-to-1 multiplexer using switches
module my_mux (out, s, i0, i1);
output out;
input s, i0, i1;
//internal wire
wire sbar; //complement of s
//create the complement of s;
//use my_nor defined previously.
my_nor nt(sbar, s, s); //equivalent to a not gate
//instantiate cmos switches
cmos (out, i0, sbar, s);
cmos (out, i1, s, sbar);
endmodule

Example: 2-to-1 Multiplexer

EE 432 VLSI Modeling and Design 98

fAcUlty of engineering - AlexAndriA University 2014

User-Defined Primitives

EE 432 VLSI Modeling and Design 99

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Verilog provides the ability to define User-Defined
Primitives (UDP)

 There are two types of UDPs: combinational and
sequential

 Combinational UDPs are defined where the output is
solely determined by a logical combination of the inputs

 Sequential UDPs take the value of the current inputs
and the current output to determine the value of the
next output.

Introduction

EE 432 VLSI Modeling and Design 100

fAcUlty of engineering - AlexAndriA University 2014

UDP Syntax
 UDP definition in pseudo

syntax form is as follows:

//UDP name and terminal list

primitive <udp_name> (

<output_terminal_name>(only
one allowed)

<input_terminal_names>);

//Terminal declarations

output
<output_terminal_name>;

input <input_terminal_names>;

reg
<output_terminal_name>;(optio
nal; only for sequential UDP)

// UDP initialization (optional;
only for sequential UDP

initial <output_terminal_name>
= <value>;

//UDP state table

table

<table entries>

endtable

//End of UDP definition

endprimitive

101EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 UDPs can take only scalar input terminals (1 bit)

 UDPs can have only one scalar output terminal (1 bit)
always appearing first in the terminal list

 In the declarations section, the output terminal is declared
with the keyword output

 The output terminal of sequential UDP is declared as a reg

 The inputs are declared with the keyword input

 The state in a sequential UDP can be initialized with an
initial statement

 The state table entries can contain values 0, 1, or x

 UDPs are defined at the same level as modules

 UDPs do not support inout ports.

UDP Rules

EE 432 VLSI Modeling and Design 102

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Each entry in the state table in a combinational UDP has
the following pseudosyntax

<input1> <input2> <inputN> : <output>;

 The <input#> values in a state table entry must appear
in the same order as they appear in the input terminal
list

 Inputs and output are separated by a ":"

 A state table entry ends with a ";"

 All possible combinations of inputs, where the output
produces a known value, must be explicitly specified.
Otherwise, if a certain combination occurs and the
corresponding entry is not in the table, the output is x.

State Table Entries

EE 432 VLSI Modeling and Design 103

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

primitive MUX1BIT (Z, A, B, SEL);
output Z;
input A, B, SEL;

table
// A B SEL : Z

0 ? 1 : 0 ;
1 ? 1 : 1 ;
? 0 0 : 0 ;
? 1 0 : 1 ;
0 0 x : 0 ;
1 1 x : 1 ;

endtable
endprimitive

 Any combination that is not specified is an x.

 Output port must be the first port.

 “?” represents iteration over “0”, “1”, or “x” logic values

Combinational UDP

EE432 VLSI Modeling and Design 104

Don’t care

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The output of a sequential UDP is always declared as a reg

 An initial statement can be used to initialize output of sequential UDPs

 The format of a state table entry is slightly different

<input1> <input2> <inputN> : <current_state> : <next_state>;

 There are three sections in a state table entry: inputs, current state, and
next state separated by a colon (:) symbol

 The input specification of state table entries can be in terms of input
levels or edge transitions

 The current state is the current value of the output register

 The next state is computed based on inputs and the current state

 All possible combinations of inputs must be specified to avoid unknown
output values

Sequential UDPs

EE 432 VLSI Modeling and Design 105

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Level-sensitive sequential UDP example:
primitive LATCH (Q, CLK, D);

output Q;
reg Q;
input CLK, D;

table
//CLK Data State Output(next state)

1 1 : ? : 1 ;
1 0 : ? : 0 ;
0 ? : ? : - ;

endtable
Endprimitive

 “?” means don’t-care

 “-” means no change in output

Sequential UDP (Level)

EE432 VLSI Modeling and Design 106

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Edge-sensitive sequential UDP example:
primitive D_EDGE_FF (Q, CLK, D);

output Q;
reg Q;
input CLK, D;

table
//CLK Data State Output(next state)

(01) 0 : ? : 0 ;
(01) 1 : ? : 1 ;
(0x) 1 : 1 : 1 ;
(0x) 0 : 0 : 0 ;

// Ignore negative edge of clock;
(?0) ? : ? : - ;

// Ignore data change on steady clock;
? (??) : ? : - ;

endtable
endprimitive

Sequential UDP (Edge)

EE432 VLSI Modeling and Design 107

fAcUlty of engineering - AlexAndriA University 2014

Dataflow Modeling

EE 432 VLSI Modeling and Design 108

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 For small circuits, the gate-level modeling approach
works very well

 However, in complex designs the number of gates is
very large

 Thus, designers can design more effectively if they
concentrate on implementing the function at a level
of abstraction higher than gate level

 Dataflow modeling provides a powerful way to
implement a design

 In logic synthesis, automated tools create a gate-level
circuit from a dataflow description

Introduction

EE 432 VLSI Modeling and Design 109

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Models behavior of combinational logic
 Dataflow style using continuous assignment
 Assign a value to a net
 Examples:

wire [3:0] Z, PRESET, CLEAR;
assign Z = PRESET & CLEAR;

wire COUT, CIN;
wire [3:0] SUM, A, B;
assign {COUT, SUM} = A+ B + CIN;
assign MUX = (S == 0) ? A: ’bz,

MUX = (S == 1) ? B: ’bz,
MUX = (S == 2) ? C: ’bz,
MUX = (S == 3) ? D: ’bz;

assign Z = ~(A | B) & (C | D);

 Expression on right-hand side is evaluated whenever any
operand changes

Basics

EE432 VLSI Modeling and Design 110

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Can have an assignment in the net declaration
wire [3:0] A = 4’b0;
assign PRESET = ’b1;

wire #10 A_GT_B = A > B;

 Only one assignment to a net using net declaration

 Multiple assignments to a net is done using continuous
assignments

 Continuous assignments have the following characteristics:

 The left hand side of an assignment must be a net (cannot be a reg)

 Continuous assignments are always active

 The operands on the right-hand side can be registers or nets or function
calls

 Delay values can be specified for assignments in terms of time units

Net Declaration

EE432 VLSI Modeling and Design 111

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Delay values control the time between the change in
a right-hand-side operand and when the new value is
assigned to the left-hand side

 Regular Assignment Delay
assign #10 out = in1 & in2; // Delay in a continuous assign

Delays

EE 432 VLSI Modeling and Design 112

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Delay between assignment of right-hand side to left-
hand side

wire #10 A = B && C; // Continuous delay

 Net delay
wire #10 A;

// Any change to A is delayed 10 time units before it takes effect

 If delay is in a net declaration assignment, then delay is
not net delay

wire #10 A = B + C;

// 10 time units id it part of the continuous assignment and not net
delay

 If value changes before it has a chance to propagate,
latest value change will be applied
 Inertial delay

Delays (2)

EE432 VLSI Modeling and Design 113

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Dataflow modeling describes the design in terms of
expressions instead of primitive gates

 Expressions are constructs that combine operators and
operands to produce a result

// Examples of expressions. Combines operands and operators

a ^ b

addr1[20:17] + addr2[20:17]

in1 | in2

 Operands can be any one of the data types defined
previously

integer count, final_count;

final_count = count + 1;//count is an integer operand

Expressions, Operators, and Operands

EE 432 VLSI Modeling and Design 114

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

1. Numbered operands
2. Functional call operands

 A functional call can be used as an operand within an expression
wire [7:0] A;
// PARITY is a function described elsewhere
assign PAR_OUT = PARITY(A);

3. Bit selects
input [3:0] A, B, C;
output [3:0] SUM;
assign SUM[0] = (A[0] ^ B[0] ^ C[0]);

4. Part selects
5. Memory addressing

reg [7:0] RegFile [0:10]; // 11 b-bit registers
reg [7:0] A;
RegFile[3] = A; // A assigned to 3rd register in RegFile

Operands

EE 432 VLSI Modeling and Design 115

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Operators act on the operands to produce desired
results

d1 && d2 // && is an operator on operands d1 and d2

Operators

EE 432 VLSI Modeling and Design 116

Arithmetic * / + - % **

Logical ! && ||

Relational > < >= <=

Equality == != === !==

Bitwise ~ & | ^ ^~ or ~^

Reduction & ~& | ~| ^ ^~ or ~^

Shift >> << >>> <<<

Concatenation { }

Replication { { } }

Conditional ?:

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

+ (plus)
- (minus)
* (multiply)
/ (divide)
% (modulus)

 Integer division will truncate
 % gives the remainder with the sign of the first operand
 If any bit of operand is x or z, the result is x
 reg data type holds an unsigned value, while integer data

type holds a signed value
reg [0:7] A;
integer B;
A = -4’d6; // reg A has value unsigned 10
B = -4’d6; // integer B has value signed -6
A-2 // result is 8
B-2 // result is -8

Arithmetic Operators

EE 432 VLSI Modeling and Design 117

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

> (greater than)

< (less than)

>= (greater than or equal to)

<= (less than or equal to)

 If there are x or z in operand, the result is x

 If unequal bit lengths, smaller operand is zero-filled
on most significant side (I.e., on left)

Relational Operators

EE 432 VLSI Modeling and Design 118

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

== (logical equality, result may be unknown)
!= (logical inequality, result may be
unknown)
=== (case equality, x and z also compared)
!== (case inequality, x and z also compared)

A = ’b11x0;
B = ’b11x0;

A == B is known.
A === B is true

 Unknown is same as false in synthesis
 Compare bit by bit, zero-filling on most significant side

Equality Operators

EE 432 VLSI Modeling and Design 119

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

&& (logical and)

|| (logical or)

A = ’b0110; // non-zero

B = ’b0100; // non-zero

A || B is 1.

A && B is also 1

 Non-zero value is treated as 1

 If result is ambiguous, set it to x

Logical Operators

EE 432 VLSI Modeling and Design 120

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

~ (unary negation)
& (binary and)
| (binary or)
^ (binary exclusive-or)
~^,^~ (binary exclusive-nor)

A = ’b0110;
B = ’b0100;

A | B is 0110
A & B is 0100

 If operand sizes are unequal, smaller is zero-filed in the
most significant bit side

Bit-wise Operators

EE 432 VLSI Modeling and Design 121

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

& (unary and)
~& (unary nand)
| (unary or)
~| (unary nor)
^ (unary xor)
~^ (unary xnor)

A = ’b0110;
B = ’b0100;

| B is 1
& B is 0

 Bitwise operation on a single operand to produce 1-bit result

Reduction Operators

EE 432 VLSI Modeling and Design 122

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

<< (left shift)

>> (right shift)

reg [0:7] D;

D = 4’b0111;

D >> 2 has the value 0001

 Logic shift, fill vacant bits with 0

 If right operand is an x or a z, result is x

 Right operand is always an unsigned number

Shift Operators

EE 432 VLSI Modeling and Design 123

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

expr1 ? expr2:expr3
wire [0:2] GRADE = SCORE > 60 ? PASS:FAIL;

 If expr1 is an x or a z, expr2 and expr3 are combined
bit by bit (all x’s except 0 with 0 = 0, 1 with 1 = 1)

Example:

//model functionality of a 2-to-1 mux

assign out = control ? in1 : in0;

Conditional Operators

EE 432 VLSI Modeling and Design 124

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

wire [7:0] DBUS;

wire [11:0] ABUS;

assign ABUS[7:4] = {DBUS[0], DBUS[1], DBUS[2], DBUS[3]};

assign ABUS = {DBUS[3:0], DBUS[7:4]};

assign DBUS[7:4] = {2{4’B1011}}; // 1011_1011

assign ABUS[7:4] = {{4{DBUS[7]}, DBUS}; // sign extension

Concatenation and Replication

EE 432 VLSI Modeling and Design 125

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

Write the Verilog description and test benches of the
following circuits using dataflow modeling:

 4-to-1 Multiplexer

 Logic equation

 Conditional operator

 4-bit Full Adder

 Dataflow operators

 Full adder with carry lookahead

 Ripple Counter

Examples

EE 432 VLSI Modeling and Design 126

fAcUlty of engineering - AlexAndriA University 2014

Behavioral Modeling

EE 432 VLSI Modeling and Design 127

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Designers need to be able to evaluate the trade-offs
of various architectures and algorithms in the earlier
design stages

 Architectural evaluation takes place at an algorithmic
level

 Verilog provides designers the ability to describe
design functionality in an algorithmic manner

 In other words, the designer describes the behavior
of the circuit

 Behavioral modeling represents the circuit at a very
high level of abstraction

Introduction

EE 432 VLSI Modeling and Design 128

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Use procedural blocks to describe the
operation of the circuit

 Two procedural blocks:

always block: executes repetitively

initial block: executes once

 Concurrent procedural blocks

All execute concurrently

All activated at time 0

Procedure Blocks

EE432 VLSI Modeling and Design 129

fAcUlty of engineering - AlexAndriA University 2014

The initial Block
 An initial block starts at time

0, executes exactly once
during a simulation

 Ports and variables can be
initialized in declaration

 The initial block is always used
in testbenches

Example:
module stimulus;

reg x,y, a,b, m;

initial

m = 1'b0; //single statement; //does
//not need to be grouped

initial

begin

#5 a = 1'b1; //multiple
//statements; need to be grouped

#25 b = 1'b0;

end

initial

begin

#10 x = 1'b0;

#25 y = 1'b1;

end

initial

#50 $finish;

endmodule
130EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

Can model:

 combinational logic

 sequential logic

Syntax:
// Single statement
always @ (event expression)

statement
// Sequential statements
always @ (event expression)

begin
sequential statements

end

The always Block

EE432 VLSI Modeling and Design 131

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 “event expression” specified a set of events based
on which statements within the always block are
executed sequentially

 The type of logic synthesized is based on what is
specified in the “event expression”

 Four forms of event expressions are supported

 An OR of several identifiers (comb/seq logic)

 The rising edge clock (register inference)

 The falling edge clock (register inference)

 Asynchronous reset (register inference)

The always Block (2)

EE 432 VLSI Modeling and Design 132

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

1. An OR of several identifiers

 Combinational or synchronous logic may be represented by a set of sequential
statements
always @ (id1 or id2 or id3 or ... or idn)

begin
sequential_statements

end

 A synchronous block may appear inside an always block (representing synchronous
logic) in two forms:

always @ (posedge clock_name)
begin

sequential_statements
end

always @ (negedge clock_name)
begin

sequential_statements
end

 Sequential statements not within a sequential block represents combinational logic

Event Expressions

EE432 VLSI Modeling and Design 133

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 module Comb (A, B, C, Y);
 input A, B, C;
 output Y;
 reg Y;

 always @ (A or B or C)
 begin
 Y = A ^ B ^ C;
 end
 endmodule

Example

EE432 VLSI Modeling and Design 134

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

2. The rising edge clock (register inference)

 The event expression denotes the rising edge of a clock

 The behavior within block represents synchronous logic triggered on the
rising edge of clock
always @ (posedge CLK)

begin
Q = D;

end

3. The falling edge clock (register inference)

 The event expression denotes the falling edge of a clock

 The behavior within block represents synchronous logic triggered on the
rising edge of clock
always @ (negedge CLK)

begin
Next_state = Current_state;

end

Event Expressions

EE432 VLSI Modeling and Design 135

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 module SEQ (CLK, A, B, Y);
 input CLK, A, B;
 output Y;
 reg Y;

 always @ (posedge CLK)
 begin
 Y = A + B;
 end
 endmodule

Register Inference

EE432 VLSI Modeling and Design 136

CLK

A

B
CLK

D Q

Q

Y

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

4. Asynchronous reset (register inference)
 Asynchronous resets in addition to register inferences (2 & 3

above)
always @ (negedge reset1 or posedge CLK or posedge reset2)

begin
if (!reset1)

begin
/* sequential_statements
asynchronous input triggered by the false condition of reset1 to the registers */

end
else

begin
/* sequential_statement
Optional for sequential statements. Could well have “else-if” clauses*/

if (!reset2)
begin

/* sequential_statements: Asynchronous inputs triggered by reset2 */
end

else
begin

// sequential_statements: register inference statements.
end

end
end

Event Expressions

EE432 VLSI Modeling and Design 137

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The language constructs “registers” is synthesized as
a hardware register (flip-flop) if the register is
assigned a value in:
 A sequential block

 An “always” block that has an event expression denoting a
rising or falling clock edge

 It is illegal to assign a register value on both rising
and falling edges of a clock

Register Inference

EE432 VLSI Modeling and Design 138

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Only “registers” and “integers” may be assigned values in
sequential statements

 If an output port of the module is to be assigned a value in an
always block it generally must be declared to be of a register type
as well

 Possible sequential statements within an always block are

procedure assignment

synchronous block

if statement

case statement

for-loop statement

repeat loop statement

block statement

task enabling

Sequential Statements and the Always Block

EE432 VLSI Modeling and Design 139

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 An “always” block is concurrent and so may
appear in any order within a module body with
other continuous assignments (module
instantiations or other always block)

 Data is passed out of an always block using
register variables

Sequential Statements and the Always Block (2)

EE432 VLSI Modeling and Design 140

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Procedural assignments update values of reg, integer, real, or time
variables

 The value placed on a variable will remain unchanged until another
procedural assignment updates the variable with a different value

 The syntax of procedural assignment
assignment ::= variable_lvalue = [delay_or_event_control]

expression

 The left-hand side of a procedural assignment <lvalue> can be
 A reg, integer, real, or time register variable or a memory element

 A bit select of these variables (e.g., addr[0])

 A part select of these variables (e.g., addr[31:16])

 A concatenation of any of the above

 There are two types of procedural assignment statements: blocking and
nonblocking

Procedural Assignments

EE 432 VLSI Modeling and Design 141

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Blocking procedural assignment:
 Assignment is executed before any of the following ones are

executed.

 Only applies to its own sequential block.

reg_a = 10;

 Non-blocking procedural assignment.
 The procedural flow is not blocked

2

reg_a <= LOAD;

reg_b <= STORE;

 Evaluate right-hand side and schedules the assignment.

 At the end of the current loop, assignment to the left-hand
side is made

Blocking versus Non-Blocking

EE432 VLSI Modeling and Design 142

fAcUlty of engineering - AlexAndriA University 2014

Blocking versus Non-Blocking (2)
 Blocking (=)

 Assignment are blocked, i.e.,
they must be executed
before subsequent
statements are executed

always @ (posedge
clock)

begin
B = A;
C = B;
D = C;

end

 1 flip-flop (Data in is A, data
out is D)

 Non-blocking (<=)
 Assignment are not

blocked, i.e., can be
scheduled to occur
without blocking the
procedural flow

always @ (posedge
clock)

begin
B <= A;
C <= B;
D <= C;

end

 3 pipelined flip-flops (A to
B to C to D)

143EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 It is recommended that blocking and non-blocking
assignments not be mixed in the same always block

 Using non-blocking assignments in place of blocking
assignments is highly recommended in places where
concurrent data transfers take place after a common event

 blocking assignments can potentially cause race conditions
because the final result depends on the order in which the
assignments are evaluated

 Typical applications of non-blocking assignments include
pipeline modeling and modeling of several mutually
exclusive data transfers

 On the downside, non-blocking assignments can
potentially cause a degradation in the simulator
performance and increase in memory usage

Application of Non-blocking Assignments

EE 432 VLSI Modeling and Design 144

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Blocking assignment
initial
begin

CLR = #5 0;
CLR = #4 1;
CLR = #10 1;

end
// CLR is assigned at time 5, and then at 9 and then at 19

 Non-blocking assignment
initial
begin

CLR <= #5 1;
CLR <= #4 0;
CLR <= #10 1;

end
// CLR is assigned 0 at time 4, 1 at time 5 and 1 at time 10

 Value is indetermined if multiple values are assigned at the same
time

Example

EE432 VLSI Modeling and Design 145

delay between RHS and LHS

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Allow expression to be driven continuously into
integers or nets

 assign and deassign procedural statements: for
integers

 force and release procedural statements: for nets

Procedural Continuous Assignment

EE432 VLSI Modeling and Design 146

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 An assign procedural statement overrides all
procedural assignments to a register

 The deassign procedural statement ends the
continuous assignment to a register

 Value remains until assigned again

 If assign applied to an already assigned register,
it is deassigned first before making the new
procedural continuous assignment

Assign and Deassign

EE432 VLSI Modeling and Design 147

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module DFF (D, CLR, CLK, PRESET, Q);
input D, CLR, CLK, PRESET;
output Q;
reg Q;
always @ (CLR or PRESET)

if (CLR)
assign Q = 0; // D has no effect on Q

else if (PRESET)
assign Q = 1; // D has no effect on Q

else
deassign Q;

always @ (posedge CLK)
Q = D;

endmodule;

Example

EE432 VLSI Modeling and Design 148

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Similar to assign-deassign, except that it can be applied
to nets as well as registers

 force procedural statement on a net overrides all drivers
of the net, until a release is executed on the net

......

or #1 (PRT, STD, DXZ);

initial
begin

force PRT = DXZ & STD;
#5 // Wait for 5 time units.
release PRT;
$finish;

end

Force and Release

EE432 VLSI Modeling and Design 149

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 if statement

 loop statement (forever, repeat, while, for)

 case statement

High-Level Constructs

EE432 VLSI Modeling and Design 150

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Conditional statements are used for making
decisions based upon certain conditions

 These conditions are used to decide whether or not
a statement should be executed

 Keywords if and else are used for conditional
statements

 There are three types of conditional statements

Conditional Statements

EE 432 VLSI Modeling and Design 151

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Usage of conditional statements is shown below
//Type 1 conditional statement. No else statement.

//Statement executes or does not execute.

if (<expression>) true_statement ;

//Type 2 conditional statement. One else statement

//Either true_statement or false_statement is evaluated

if (<expression>) true_statement ; else false_statement ;

//Type 3 conditional statement. Nested if-else-if.

//Choice of multiple statements. Only one is executed.

if (<expression1>) true_statement1 ;

else if (<expression2>) true_statement2 ;

else if (<expression3>) true_statement3 ;

else default_statement ;

Conditional Statements (2)

EE 432 VLSI Modeling and Design 152

fAcUlty of engineering - AlexAndriA University 2014

Examples
//Type 1 statements

if (!lock) buffer = data;

if (enable) out = in;

//Type 2 statements

if (number_queued <
MAX_Q_DEPTH)

begin

data_queue = data;

number_queued =
number_queued + 1;

end

else

$display("Queue Full. Try
again");

//Type 3 statements

//Execute statements based on
//ALU control signal.

if (alu_control == 0)

y = x + z;

else if(alu_control == 1)

y = x - z;

else if(alu_control == 2)

y = x * z;

else

$display("Invalid ALU control
signal");

153EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The keywords case, endcase, and default are used in
the case statement

case (expression)

alternative1: statement1;

alternative2: statement2;

alternative3: statement3;

...

...

default: default_statement;

endcase

Multi-way Branching (case Statement)

EE 432 VLSI Modeling and Design 154

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Each of statement1, statement2 , default_statement can
be a single statement or a block of multiple statements

 A block of multiple statements must be grouped by
keywords begin and end

 The expression is compared to the alternatives in the
order they are written

 For the first alternative that matches, the corresponding
statement or block is executed

 If none of the alternatives matches, the
default_statement is executed

 The default_statement is optional
 The case statement compares 0, 1, x, and z values in the

expression and the alternative bit for bit.

case Statement

EE 432 VLSI Modeling and Design 155

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module mux4_to_1 (out, i0, i1, i2, i3, s1, s0);

// Port declarations from the I/O diagram

output out;

input i0, i1, i2, i3;

input s1, s0;

reg out;

always @(s1 or s0 or i0 or i1 or i2 or i3)

case ({s1, s0}) //Switch based on concatenation of control signals

2'd0 : out = i0;

2'd1 : out = i1;

2'd2 : out = i2;

2'd3 : out = i3;

default: $display("Invalid control signals");

endcase

endmodule

Example

EE 432 VLSI Modeling and Design 156

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are two variations of the case statement. They
are denoted by keywords, casex and casez

 casez treats all z values in the case alternatives or the
case expression as don't cares

 All bit positions with z can also represented by ? in that
position.

 casex treats all x and z values in the case item or the
case expression as don't cares

 The use of casex and casez allows comparison of
only non-x or -z positions in the case expression
and the case alternatives

casex, casez Keywords

EE 432 VLSI Modeling and Design 157

fAcUlty of engineering - AlexAndriA University 2014

Sequential Statements in a Block

 “case” statement

 Specifies a multi-way
branch based on the value
of an expression

 Is sequential and therefore
may be nested to any level.

 $parallel ensures not
priority encoded (less
logic)

module EX_CASE (A, B, F, D, H, N);
input A, B;
input [3:0] F;
inout H, N;
output [1:0] D;
reg H, N;
reg [1:0] D;

always @(A or B or F or H or N)
begin

case (F) // $parallel
0, 4, 8, 9: D = {H, A};
5: N = N & B;
7: H = B;
default: begin

D = {H, A}; N = N & A; H = B;
end

endcase
end

endmodule

158EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module FULL (c1, c2, c3, c4, a, y);
input c1, c2, c3, c4;
output y;
input [1:0] a;
output [6:0] y;
reg [6:0] y;

always @ (posedge Pclk)
begin

if (Preset)
begin

y <= #2 {6’b0, 1’b0};
end

else casex ({c1, c2, c3, c4}) // $full $parallel
4’b1x0x: y[0] <= #2 a[0];
4’b1x1x: y[1:0] <= #2 a;
4’b01x0: y <= #2 y + 7’b1;
4’b0101: y <= #2 {y[6:1]+6’b1, 1’b0};
4’b1111: y <= #2 {y[6:2]+5’b1, 2’b0};

endcase
end

case Statement (Full and Parallel)

EE432 VLSI Modeling and Design 159

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are four types of looping statements in
Verilog: while, for, repeat, and forever

 All looping statements can appear only inside an
initial or always block

 Loops may contain delay expressions

 Nested loops are allowed

Loops

EE 432 VLSI Modeling and Design 160

fAcUlty of engineering - AlexAndriA University 2014

while Loop

 The while loop executes
until the while-
expression is not true

 If the loop is entered
when the while-
expression is not true,
the loop is not executed
at all

Example:

//Illustration 1: Increment count
from 0 to 127. Exit at count 128.

//Display the count variable.

integer count;

initial

begin

count = 0;

while (count < 128) //Execute
loop //till count is 127.

//exit at count 128

begin

$display("Count = %d", count);

count = count + 1;

end

end

161EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014

for Loop

 The keyword for is used
to specify this loop

 The for loop contains
three parts:

 An initial condition

 A check to see if the
terminating condition is
true

 A procedural assignment
to change value of the
control variable

Example:

integer count;

initial

for (count=0; count < 128;
count = count + 1)

$display("Count = %d", count);

 for loops are generally used
when there is a fixed beginning
and end to the loop

 If the loop is simply looping on
a certain condition, it is better
to use the while loop

162EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014

repeat Loop
 The keyword repeat is used

for this loop. The repeat
construct executes the loop
a fixed number of times.

 A repeat construct cannot
be used to loop on a general
logical expression

 A repeat construct must
contain a number, which can
be a constant, a variable or a
signal value

Example:

//Illustration 1 : increment and
//display count from 0 to 127

integer count;

initial

begin

count = 0;

repeat(128)

begin

$display("Count = %d",
count);

count = count + 1;

end

end

163EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014

forever loop
 The keyword forever is used

to express this loop

 The loop does not contain
any expression and executes
forever until the $finish task
is encountered

 The loop is equivalent to a
while loop with an
expression that always
evaluates to true

 A forever loop is typically
used in conjunction with
timing control constructs

Example:

//Example 1: Clock generation

reg clock;

initial

begin

clock = 1'b0;

forever #10 clock = ~clock;

//Clock with period of 20 units

end

//Example 2: Synchronize two register
//values at every +ve clock edge

reg clock;

reg x, y;

initial

forever @(posedge clock) x = y;

164EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Block statements are used to group multiple
statements to act together as one

 There are two types of blocks:

 Sequential blocks

 Parallel blocks

 Blocks can be named optionally
 Registers can be declared locally

 Blocks can be referenced (disable statement)

 Can uniquely identify registers

Sequential and Parallel Blocks

EE 432 VLSI Modeling and Design 165

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The keywords begin and end are used to group
statements into sequential blocks

 Sequential blocks have the following characteristics

 The statements in a sequential block are processed in
the order they are specified

 A statement is executed only after its preceding
statement completes execution (except for nonblocking
assignments with intra-assignment timing control)

 If delay or event control is specified, it is relative to the
simulation time when the previous statement in the
block completed execution

Sequential blocks

EE 432 VLSI Modeling and Design 166

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

begin

[: block_id { declarations }]

statements
end

// Waveform generation
begin

#2 stream = 1;
#7 stream = 0;
#10 stream = 1;
#14 stream = 0;
#16 stream = 1;
#21 stream = 0;

end

Sequential Blocks (2)

EE432 VLSI Modeling and Design 167

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Parallel blocks, specified by keywords fork and join,
provide interesting simulation features

 Parallel blocks have the following characteristics
 Statements in a parallel block are executed concurrently

 Ordering of statements is controlled by the delay or event
control assigned to each statement

 If delay or event control is specified, it is relative to the time
the block was entered

 The order in which the statements are written in the
block is not important

 Parallel blocks might cause implicit race conditions if
two statements that affect the same variable complete
at the same time

Parallel Blocks

EE 432 VLSI Modeling and Design 168

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Control passes out of block after all statements finish
fork

[: block_id { declarations }]

statements
join

// Waveform generation
fork

#2 stream = 1;
#5 stream = 0;
#3 stream = 1;
#4 stream = 0;
#2 stream = 1;
#5 stream = 0;

join

Parallel Blocks (2)

EE432 VLSI Modeling and Design 169

fAcUlty of engineering - AlexAndriA University 2014

Examples
//Example 1: Parallel blocks
with delay.

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0; //completes at
//simulation time 0

#5 y = 1'b1; //completes at
//simulation time 5

#10 z = {x, y}; //completes at
//simulation time 10

#20 w = {y, x}; //completes
//at simulation time 20

join

//Parallel blocks with deliberate
//race condition

reg x, y;

reg [1:0] z, w;

initial

fork

x = 1'b0;

y = 1'b1;

z = {x, y};

w = {y, x};

join

170EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014

Named Blocks
 Blocks can be given names.

 Local variables can be
declared for the named
block

 Named blocks are a part
of the design hierarchy.
Variables in a named block
can be accessed by using
hierarchical name
referencing.

 Named blocks can be
disabled, i.e., their
execution can be stopped

Example:

//Named blocks

module top;

initial

begin: block1 //sequential block named
block1

integer i; //integer i is static and local to
//block1

// can be accessed by hierarchical name,
//top.block1.i

...

...

End

171EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Generate statements allow Verilog code to be generated
dynamically at elaboration time before the simulation
begins

 This facilitates the creation of parameterized models.

 Generate statements are particularly convenient when
the same operation or module instance is repeated for
multiple bits of a vector, or when certain Verilog code is
conditionally included based on parameter definitions

 Generate statements allow control over the declaration
of variables, functions, and tasks, as well as control over
instantiations

 All generate instantiations are coded with a module
scope and require the keywords generate - endgenerate

Generate Blocks

EE 432 VLSI Modeling and Design 172

fAcUlty of engineering - AlexAndriA University 2014

Generate Blocks (2)
 Generated instantiations

can be one or more of the
following types
 Modules
 User defined primitives
 Verilog gate primitives
 Continuous assignments
 initial and always blocks

 Generated declarations
and instantiations can be
conditionally instantiated
into a design

 Generated variable
declarations and
instantiations can be
multiply instantiated into a
design

 Generated instances have
unique identifier names and
can be referenced
hierarchically

 Generate statements
permit the following Verilog
data types to be declared
 net, reg
 integer, real, time, realtime
 event

173EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 There are three methods to create generate
statements

 Generate loop

 Generate conditional

 Generate case

Generate Blocks (3)

EE 432 VLSI Modeling and Design 174

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A generate loop permits one or more of the
following to be instantiated multiple times using a
for loop:

 Variable declarations

 Modules

 User defined primitives, Gate primitives

 Continuous assignments

 initial and always blocks

Generate Loop

EE 432 VLSI Modeling and Design 175

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

// This module generates a bit-wise xor of two N-bit buses

module bitwise_xor (out, i0, i1);

// Parameter Declaration. This can be redefined

parameter N = 32; // 32-bit bus by default

// Port declarations

output [N-1:0] out;

input [N-1:0] i0, i1;

// Declare a temporary loop variable

genvar j;

//Generate the bit-wise Xor with a single loop

generate for (j=0; j<N; j=j+1) begin: xor_loop

xor g1 (out[j], i0[j], i1[j]);

end //end of the for loop inside the generate block

endgenerate //end of the generate block

endmodule

Example

EE 432 VLSI Modeling and Design 176

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A generate conditional is like an if-else-if generate
construct that permits the following

 Verilog constructs to be conditionally instantiated
into another module based on an expression that is
deterministic at the time the design is elaborated

 Modules

 User defined primitives, Gate primitives

 Continuous assignments

 initial and always blocks

Generate Conditional

EE 432 VLSI Modeling and Design 177

fAcUlty of engineering - AlexAndriA University 2014

Example
// This is a parametrized multiplier

module multiplier (product, a0, a1);

// Parameter Declaration.

parameter a0_width = 8;

parameter a1_width = 8;

// Local Parameter declaration.

localparam product_width =
a0_width + a1_width;

// Port declarations

output [product_width -1:0]
product;

input [a0_width-1:0] a0;

input [a1_width-1:0] a1;

// Instantiate the type of multiplier
//conditionally depending on the
//value of the a0_width and a1_width

if (a0_width <8) || (a1_width < 8)

cla_multiplier #(a0_width, a1_width)
m0 (product, a0, a1);

else

tree_multiplier #(a0_width, a1_width)
m0 (product, a0, a1);

endgenerate //end of the generate
block

endmodule

178EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A generate case permits the following Verilog
constructs to be conditionally instantiated into
another module based on a select-one-of-many case
construct that is deterministic at the time the design
is elaborated

 Modules

 User defined primitives, Gate primitives

 Continuous assignments

 initial and always blocks

Generate Case

EE 432 VLSI Modeling and Design 179

fAcUlty of engineering - AlexAndriA University 2014

Example
// This module generates an N-bit
//adder

module adder(co, sum, a0, a1, ci);

// Parameter Declaration. This can
//be redefined

parameter N = 4; // 4-bit bus by
//default

// Port declarations

output [N-1:0] sum;

output co;

input [N-1:0] a0, a1;

input ci;

// Instantiate the appropriate adder
//based on the width of the bus.

// This is based on parameter N that
//can be redefined at instantiation
//time

generate

case (N)

//Special cases for 1 and 2 bit adders

1: adder_1bit adder1(c0, sum, a0, a1,
ci); //1-bit implementation

2: adder_2bit adder2(c0, sum, a0, a1,
ci); //2-bit implementation

// Default is N-bit adder

default: adder_cla #(N) adder3(c0,
sum, a0, a1, ci);

endcase

endgenerate //end of the generate

endmodule

180EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Timing control over when procedural statements
can occur

 Delay control
 # delay

 Timing duration from time initially encountered the statement to the
time it executes

 Event control
 Statement execution is delayed until the occurrence of some simulation

event

 @ symbol

 Edge-triggered control

 Level-sensitive control

Timing Controls

EE432 VLSI Modeling and Design 181

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The procedural statement execution is delayed by
the specified delay

 If delay expression is x or z, it is 0

 If delay expression is negative, use two’s complement
unsigned integer

#2 TX = RX - 5;

STROBE COMPARE = TX ^ MASK;

#(PERIOD/2) CLOCK = ~CLOCK;

Delay Control

EE432 VLSI Modeling and Design 182

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

@ (posedge CLOCK) CURR_STATE = NEXT_STATE;

@ (posedge RESET) COUNT = 0;

@ (CTRL_A or CTRL_B) DBUS = ’bz;

@ CLA ZOO = FOO;

// Assign on any change of value in register CLA.

@ (posedge CLEAR or negedge RESET) Q = 0;

 Negative edge: (1->x, z, or 0), (x or z -> 0)

 Positive edge: (0->x, z, or 0), (x or z -> 1)

 Events can be OR’ed as well to indicate “if any one of
the events occur”

Edge-Triggered Event Control

EE432 VLSI Modeling and Design 183

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Execution of a procedural statement is delayed until
a condition becomes true

 wait statement:
wait (condition)

statement

 If condition is already true, the next statement is
evaluated immediately.

wait (SUM > 22) SUM = 0;

Level-Sensitive Event Control

EE432 VLSI Modeling and Design 184

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Timing control within an assignment

 Delay assigning right-hand side to left-hand side

 Right-hand side expression is evaluated before the delay
DONE = #5 A;
// is the same as
begin

temp = A;
#5 DONE = temp;

end

Q = @ (posedge CLK) D;
// is the same as
begin

temp = D;
@ (posedge CLK) Q = temp;

end

Intra-assignment Timing Control

EE432 VLSI Modeling and Design 185

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module DFF (CLK, D, PRESET, Q, QBAR);
input CLK, D, PRESET;
output Q, QBAR;
reg Q, QBAR;
always wait (PRESET == 1)
begin

#3 Q = 1;
#2 QBAR = 0;
wait (PRESET == 0);

end
always @ (negedge CLK)
begin

if (PRESET != 1)
begin

#5 Q = D;
#1 QBAR = ~Q;

end
end

endmodule

Example: D flip-flop with asynchronous reset

EE432 VLSI Modeling and Design 186

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

’timescale 1 ns/100ps
module HAND_SHAKE (DATA_IN, DATA_OUT);

input [0:31] DATA_IN;
output [0:31] DATA_OUT;
reg SEND, ACK;
reg [0:31] DATA;
initial {ACK, SEND} = 0;

Handshake Example

EE432 VLSI Modeling and Design 187

Processor A Processor B

SEND

ACK

DATA

DATA_IN DATA_OUT

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

always
begin

SEND = 1;
DATA = DATA_IN;
wait (ACK = 1);
SEND = 0;
#50; // Wait for 50 time units.

end

always
begin

#25; // Wait for 25 time units.
DATA_OUT = DATA;
ACK = 1;
#25 ACK = 0;
wait (SEND == 1)

end
endmodule

Handshake Example (2)

EE432 VLSI Modeling and Design 188

fAcUlty of engineering - AlexAndriA University 2014

Tasks and Functions

EE 432 VLSI Modeling and Design 189

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A designer is frequently required to implement the same
functionality at many places in a behavioral design

 This means that the commonly used parts should be
abstracted into routines and the routines must be
invoked instead of repeating the code

 Most programming languages provide procedures or
subroutines to accomplish this

 Verilog provides tasks and functions to break up large
behavioral designs into smaller pieces

 Tasks and functions allow the designer to abstract
Verilog code that is used at many places in the design

Introduction

EE 432 VLSI Modeling and Design 190

fAcUlty of engineering - AlexAndriA University 2014

Differences between Tasks and Functions

 A function can enable another
function but not another task

 Functions always execute in 0
simulation time

 Functions must not contain any
delay, event, or timing control
statements

 Functions must have at least
one input argument. They can
have more than one input

 Functions always return a single
value. They cannot have output
or inout arguments

 A task can enable other tasks
and functions

 Tasks may execute in non-zero
simulation time

 Tasks may contain delay, event,
or timing control statements

 Tasks may have zero or more
arguments of type input,
output, or inout

 Tasks do not return with a
value, but can pass multiple
values through output and
inout arguments

191EE 432 VLSI Modeling and Design

Functions Tasks

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Provides the ability to call common procedures from
different places within a description

 Enables large procedures to be broken into smaller ones
making reading and debugging easier

 The I/O passed in a task enabling statement must match
that of the I/O in the task declaration

Tasks and Functions

EE432 VLSI Modeling and Design 192

Example: (Task)
task PROC

input A, B;
inout D;

begin
D = A + B

end
endtask

Example: (Task enabling for
the left task)

always @ (in1 or in2)
if (in1)

PROC (in1, Y, result);
else if (in2)

PROC (in2, Y, result);

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Both tasks and functions must be defined in a
module and are local to the module

 Tasks are used for common Verilog code that
contains delays, timing, event constructs, or multiple
output arguments

 Functions are used when common Verilog code is
purely combinational, executes in zero simulation
time, and provides exactly one output

 Functions are typically used for conversions and
commonly used calculations

Tasks and Functions (2)

EE 432 VLSI Modeling and Design 193

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Tasks can have input, output, and inout arguments;
functions can have input arguments

 In addition, they can have local variables, registers,
time variables, integers, real, or events

 Tasks or functions cannot have wires. Tasks and
functions contain behavioral statements only.

 Tasks and functions do not contain always or initial
statements but are called from always blocks, initial
blocks, or other tasks and functions

Tasks and Functions (3)

EE 432 VLSI Modeling and Design 194

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Tasks are declared with the keywords task and
endtask

 Tasks must be used if any one of the following
conditions is true for the procedure:

 There are delay, timing, or event control constructs in
the procedure.

 The procedure has zero or more than one output
arguments.

 The procedure has no input arguments

Tasks

EE 432 VLSI Modeling and Design 195

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Tasks are normally static in nature. All declared items are
statically allocated and they are shared across all uses of
the task executing concurrently

 Therefore, if a task is called concurrently from two
places in the code, these task calls will operate on the
same task variables

 It is highly likely that the results of such an operation
will be incorrect

 To avoid this problem, a keyword automatic is added in
front of the task keyword to make the tasks re-entrant.
Such tasks are called automatic tasks

 All items declared inside automatic tasks are allocated
dynamically for each invocation

Tasks (2)

EE 432 VLSI Modeling and Design 196

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Procedure

 Can contain timing control

 Can call other functions and tasks

 0 or more arguments

 Output or input arguments can be updated

 Task definition:

task task_id;

[declarations]

statements

endtask

 Cannot declare a new type within a task

Tasks (3)

EE432 VLSI Modeling and Design 197

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

parameter MAXBITS = 8;

task REVERSE_BITS;

input [MAXBITS-1 : 0] DIN;

output [MAXBITS-1 : 0] DOUT;

integer K;

begin

for (K=0;K<MAXBITS;K=K+1)

DOUT [MAXBITS-K] = DIN[K];

end

endtask

Task Example

EE432 VLSI Modeling and Design 198

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Task calling:
task_id [(expr1, expr2, . . . , exprN)];

 List of arguments must match the order of arguments in task
definition

 Arguments are passed by value

 Task can be called more than once concurrently

 Local variables are static; if concurrently called, same local
variables are shared

 Calling statement for task REVERSE_BITS:
// Declarations:

reg [MAXBITS-1 : 0] REG_X, NEW_REG_X;

REVERSE_BITS (REG_X, NEW_REG_X); // Calling task.

Task Calling

EE432 VLSI Modeling and Design 199

fAcUlty of engineering - AlexAndriA University 2014

Example
…
parameter delay = 10;
reg [15:0] A, B;
reg [15:0] AB_AND,
AB_OR, AB_XOR;
always @(A or B)
begin

//invoke the task
//bitwise_oper.
bitwise_oper(AB_AND,
AB_OR, AB_XOR, A, B);
end
...

//define task bitwise_oper
task automatic
bitwise_oper (output [15:0]
ab_and, ab_or, ab_xor,
input [15:0] a, b);
begin
#delay ab_and = a & b;
ab_or = a | b;
ab_xor = a ^ b;
end
endtask
…

200EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Functions are declared with the keywords function
and endfunction

 Functions are used if all of the following conditions
are true for the procedure

 There are no delay, timing, or event control constructs
in the procedure

 The procedure returns a single value

 There is at least one input argument

 There are no output or inout arguments

 There are no nonblocking assignments

Functions

EE 432 VLSI Modeling and Design 201

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Executes in one simulation time unit.

 No delays.

 Cannot call another task.

 Must have at least one input.

 Returns a value that can be used in an expression.

 Function definition:

function [range] function_id;

input_declarations

other_declarations

statements

endfunction

 If no range is specified, 1 bit is assumed.

Functions

EE432 VLSI Modeling and Design 202

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

parameter MAXBITS = 8;

function [MAXBITS-1:0] REVERSE_BITS;

input [MAXBITS-1 : 0] DIN;

reg K;

begin

for (K=0;K<MAXBITS;K=K+1)

REVERSE_BITS [MAXBITS-K] = DIN[K];

end

endfunction

 Implicit declaration of a reg, same as function name

 Must include assignment to function name

Function Example

EE432 VLSI Modeling and Design 203

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Can be used in any expression

 Function call:
function_id [(expr1, expr2, . . . , exprN)];

 Calling function REVERSE_BITS:

// Declarations:

reg [MAXBITS-1 : 0] REG_X, NEW_REG_X;

NEW_REG_X = REVERSE_BITS (REG_X);

Function Call

EE432 VLSI Modeling and Design 204

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Return a value (unlike task)

 Must have at least one input argument

 Can not enable task, but task may enable other tasks and functions

Function Call

EE432 VLSI Modeling and Design 205

Example: (function)
function [3:0] DEPTH

input D, T;
reg [3:0] R, p;

begin
if (D)
p = p*2;

else if (~T)
R = *p;

DEPTH = R*p;
end

endfunction

Example: (calling function)

// RESULT is a 4-bit wire
assign RESULT = DEPTH (in1, in2);

fAcUlty of engineering - AlexAndriA University 2014

Example
//Define a module that contains the
//function calc_parity

module parity;

...

reg [31:0] addr;

reg parity;

//Compute new parity whenever
//address value changes

always @(addr)

begin

parity = calc_parity(addr); //First
invocation of calc_parity

$display("Parity calculated = %b",
calc_parity(addr));

//Second invocation of calc_parity

end

//define the parity calculation
function

function calc_parity (input [31:0]
address);

begin

//set the output value
appropriately. Use the implicit

//internal register calc_parity.

calc_parity = ^address; //Return
the xor of all address bits.

end

endfunction

…

endmodule

206EE 432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Functions are normally used non-recursively

 If a function is called concurrently from two
locations, the results are non-deterministic because
both calls operate on the same variable space

 However, the keyword automatic can be used to
declare a recursive (automatic) function where all
function declarations are allocated dynamically for
each recursive calls

 Each call to an automatic function operates in an
independent variable space

Automatic (Recursive) Functions

EE 432 VLSI Modeling and Design 207

fAcUlty of engineering - AlexAndriA University 2014

Other Topics

EE432 VLSI Modeling and Design 208

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Display System Tasks
 $display and $monitor system tasks.

 $write task: Write the specified argument values to output, but does not add a
newline character (as opposed to $display which does)

$write | $writeh | $writeb | $writeo (arg1, arg2, . . . , argN)

Different default bases
$write (“simulation time is ”);

$write (“%t\n”, $time);

 $strobe task: Display run data at selected time but at end of current simulation
time.

always @ (posedge RST)

$strobe (“the flip-flop value is %b at time %t”, Q, $time);

/* After end of simulation time when RST has a positive edge, the $strobe
task prints the values of Q and current simulation time. */

 %h, %d, %o, %b, %c, %m, %s

System Tasks

EE432 VLSI Modeling and Design 209

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 File I/O system tasks
 $fopen, $fclose

 $fdisplay, $fwrite, $fstrobe, $fmonitor

 $readmemb, $readmemh: Loads memory data from a file

reg [0:3] MEM_A [0:63];

$readmemb (“ones_and_zeros.vec”, MEM_A);

 Simulation control system tasks
 $finish; // make the simulation exit

 $stop; // Causes simulation to suspend

 Simulation time system functions
 $time // 64-bit time value is returned

 $stime // 32-bit unsigned integer time value is returned

 $realtime // return real number time

System Tasks (2)

EE432 VLSI Modeling and Design 210

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Can be used to terminate a task or a block before it
finishes executing all its statements

 Used to model hardware interrupts and global resets
disable task_id;

disable block_id;

 Execution continues with the next statement
begin BLK_A

// statement 1

disable BLK_A;

// statement 2

end

// statement 3

// Statement 2 is never executed. After disable statement is executed,
statement 5 is executed

Disable Statement

EE432 VLSI Modeling and Design 211

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Contain information about value changes on
specified variables in design
$dumpfile (“uart.dump”);

$dumpvars (level_num, CLK, CLR);

$dumpvars; // Dumps all variables.

$dumpoff ;

$dumpon;

$dumpall;

$dumplimit (file_size);

$dumpflush;

Value Change Dump File

EE432 VLSI Modeling and Design 212

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Always begins with a character ’
 Definition holds accross multiple files for one compilation

’default_nettype wand // specifies net type for implicit net

//

’define WORD 16 // Create a macro for text substitution

’undef WORD // Undefines a previously defined text macro.

’ifdef SUN

. . .

[’else

. . .

’endif] // Conditional compilation

’include “../../rx.h” // Inserted the contents of the specified file.

’resetall // All compiler directives are reset to default.

’timescale 1 ns / 10 ps // 1ns is the time unit and delays are rounded to
10ps

Compiler Directives

EE432 VLSI Modeling and Design 213

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module NESTED_MACROS (A, B, C, D, Y);
input A, B, C, D;
output Y;

reg Y;

’define ONE 1’b1
’define ZERO 1’b0
’define TEST (A == ’ONE)

always @ (A or B or C or D)
if (’TEST && (C != D))
Y = 1;
else
Y = 0;

endmodule

Nested Macros

EE432 VLSI Modeling and Design 214

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Used to assign delay to these paths

 Used to describe paths between a source and a
destination

 Used to perform timing checks.
specify

spec_param_declarations // Declares parameters

// for use only within the specify block.

path_declarations

system_timing_checks

endspecify

Specify Block

EE432 VLSI Modeling and Design 215

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

specify
specparam tCLK_Q = (4:5:6);

// Path delays:
(CLOCK*> Q) = tCLK_Q;
(DATA*> Q) = 12;
(CLEAR, PRESET*> Q) = (4:5:3);

/* Can specify pulse width to be rejected and a range
for which to generate an x */

specparam PATHPULSE$ = (1,2);
// Reject limit = 1, error limit = 2.

specparam PATHPULSE$DATA$Q = 6;
endspecify

Specify Block (2)

EE432 VLSI Modeling and Design 216

fAcUlty of engineering - AlexAndriA University 2014

Modeling for Synthesis

EE432 VLSI Modeling and Design 217

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Netlist
 structural description

 Primitives

 Continuous assignment
 Data flow specification

 Verilog operators

 Procedural blocks
 always and initial blocks

 Allow timing control and concurrency

 C-like procedural statements

 Task and function

Modeling Structures

EE432 VLSI Modeling and Design 218

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Model combinational logic

 Operands + operators

 Drive values to a net

 assign out = a & b;

 assign eq = (a==b);

 wire #10 inv = ~in;

 wire [7:0] c = a + b;

 Avoid logic loops

 assign a = a + b;

 asynchronous design

Continuous Assignments

EE432 VLSI Modeling and Design 219

fAcUlty of engineering - AlexAndriA University 2014

Operator Precedence

[] bit-select or part select

() parenthesis

!,~ logic and bit-wise
negation

&, |, ~&, ~|, ^, ~^, ^~

reduction operators

+,- unary arithmetic

{ } concatenation

*,/,% arithmetic

+,- arithmetic

>>,<< shift

>, >+, <, <=

relational

==, !=logical equality

& bit-wise AND

^, ^~, ~^ bit-wise XOR
and XNOR

| bit-wise OR

&& logical AND

|| logical or

?: conditional

220EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Describe the system at a higher level of abstraction

 Specify a set of concurrently active procedural blocks

 Procedural blocks

 initial blocks

 For test-fixtures to generate test vectors

 always blocks

 Can be combinational circuits

 Can infer latches or flip-flops

 Procedural blocks have the following components

 Procedural assignment statements

 timing controls

 high-level programming language constructs

RTL Model

EE432 VLSI Modeling and Design 221

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Procedural and RTL assignments
 reg and integer

 out = a+ b;

 begin ... end block statements
 group statements

 if ... else statements

 case statements

 for loops

 while loops

 forever loops

 disabled statements
 Disable a named block

RTL Statements

EE432 VLSI Modeling and Design 222

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A complete sensitivity list (inputs)

always @ (a or b or c)

f = a&~c | b&c;

 Simulation results

always @ (a or b)// conditions are ignored by synthesizer

f = a&~c | b&c;

 Parentheses

always @ (a or b or c or d)

z = a+b+c+d; // z = (a+b) + (c+d);

Combinational Always Blocks

EE432 VLSI Modeling and Design 223

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Outputs are functions of inputs

 Examples

 Mux

 Decoder

 Priority encoder

 Adder

Combinational Circuit Design

EE432 VLSI Modeling and Design 224

combinational
circuit

inputs outputs

fAcUlty of engineering - AlexAndriA University 2014

Multiplexer

 Net-list (gate-level)
module mux2_1 (out, a, b, sel);

output out;
input a, b, sel;
not (sel_, sel);
and (a1, a, sel_);
and (b1, b, sel);
or (out, a1, b1);

endmodule

 Continuous assignment
module mux2_1 (out, a, b, sel);

output out;
input a, b, sel;
assign out = (a&~sel) | (b&sel);

endmodule

 RTL modeling
module mux2_1 (out, a, b, sel);

output out;
input a, b, sel;
always @ (a or b or sel)

if (sel)
out = b;

else
out = a;

endmodule

225EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014

Multiplexer (2)

 4-to-1 multiplexor
module mux4_1 (out, in0, in1,

in2, in3, sel);
output out;
input in0, in1, in2, in3;
input [1:0] sel;

assign out = (sel == 2’b00) ?
in0 :

(sel == 2’b01) ? in1 :
(sel == 2’b10) ? in2 :
(sel == 2’b11) ? in3 :

1’bx;
endmodule

 4-to-1 multiplexor
module mux4_1 (out, in, sel);

output out;
input [3:0] in;
input [1:0] sel;
reg out;

always @ (sel or in) begin
case (sel)

2’d0: out = in[0];
2’d1: out = in[1];
2’d2: out = in[2];
2’d3: out = in[3];
default: out = 1’bx;

endcase
end

endmodule
226EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module decoder (o, enb_, sel);
output [7:0] o;
input enb_;
input [2:0] sel;
reg [7:0] o;
always @ (enb_ or sel)

if (enb_)
o = 8’b1111_1111;

else
case (sel)
3’b000: o = 8’b1111_1110;
3’b001: o = 8’b1111_1101;
3’b010: o = 8’b1111_1011;
3’b011: o = 8’b1111_0111;
3’b100: o = 8’b1110_1111;
3’b101: o = 8’b1101_1111;
3’b110: o = 8’b1011_1111;
3’b111: o = 8’b0111_1111;
default: o = 8’bx;
endcase

endmodule

Decoder (3-8 decoder with an enable control)

EE432 VLSI Modeling and Design 227

fAcUlty of engineering - AlexAndriA University 2014

Priority Encoder

always @ (d0 or d1 or d2 or d3)
if (d3 == 1)

{x, y, v} = 3’b111;
else if (d2 == 1)

{x, y, v} = 3’b101;
else if (d1 == 1)

{x, y, v} = 3’b011;
else if (d0 == 1)

{x, y, v} = 3’b001;
else

{x, y, v} = 3’bxx0;

inputs outputs

d0 d1 d2 d3 x y v

0 0 0 0 x x 0
1 0 0 0 0 0 1
x 1 0 0 0 1 1
x x 1 0 1 0 1
x x x 1 1 1 1

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module parity_checker (data, parity);
input [0:7] data;
output parity;
reg parity;
always @ (data)

begin: check_parity
reg partial;
integer n;
partial = data[0];
for (n=1; n<=7; n=n+1)

begin
partial = partial^data[n];

end
parity <= partial;

end
endmodule

Parity Checker

EE432 VLSI Modeling and Design 229

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 RTL modeling
module adder (c, s, a, b);

output c;
output [7:0] s;
input [7:0] a, b;

assign {c, s} = a + b;
endmodule

 Logic synthesis

 Carry Look-Ahead (CLA) adder for speed optimization

 Ripple adder for area optimization

Adder

EE432 VLSI Modeling and Design 230

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 A feedback path

 The state of the sequential circuits

 The state transition

 Synchronous circuits

 Asynchronous circuits

Sequential Circuit Design

EE432 VLSI Modeling and Design 231

combinational
circuit

inputs outputs

memory
element

fAcUlty of engineering - AlexAndriA University 2014

Register Inference
 Inference of Positive Edge

Triggered Flip-flops
module ff1 (data, clk, q);

input [3:0] data;
input clk;
output [3:0] q;
reg [3:0] q;
always (posedge clk)

q = data;
endmodule

 Inference of Positive Edge
Triggered Flip-flops with
active low reset

module inf_ff (clk, reset, a,
b, q);

input clk, reset;
input [3:0] a, b;
output [3:0] q;
reg [3:0] q;

always (posedge
clk or negedge reset)

if (!reset) q = 0;
//asynchronous input first

else q = a&b;
endmodule

232EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Redundant register variables can cause extra logics
module BAD_DESIGN (D, CLK, RN, Q, QBAR);

input D, CLK, RN;
output Q, QBAR;
reg Q, QBAR;

always (negedge RN or posedge CLK)
begin

if (! RN) begin
Q = 1’b0;
QBAR = 1’b1;

end
else begin

Q = D;
QBAR = ~D;

end
endmodule

Variable Within Always

EE432 VLSI Modeling and Design 233

D

CLK

Q

RN

QBAR

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module GOOD_DESIGN (D, CLK, RN, Q, QBAR);
input D, CLK, RN;
output Q, QBAR;
reg Q, QBAR;

always (negedge RN or posedge CLK)
begin

if (! RN)
Q = 1’b0;

else
Q = D;

end
assign ABAR = ~Q;

endmodule

Variable Within Always (2)

EE432 VLSI Modeling and Design 234

D

CLK

Q

RN

QBAR

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 D latch

always @ (enable or data)

if (enable)

q = data;

 D latch with gated
asynchronous data

always @ (enable or data or gate)

if (enable)

q = data&gate;

D Latches

EE432 VLSI Modeling and Design 235

data

gate
q

enable

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 D latch with gated “enable”

always @ (enable or data or gate)

if (enable & gate)

q = data;

 D latch with asynchronous reset

always @ (reset or data)

if (reset)

q = 1’b0;

else if (enable)

q = data;

Latches

EE432 VLSI Modeling and Design 236

data

gate

q

enable

fAcUlty of engineering - AlexAndriA University 2014

Latch Inference (2)

 What if g is false?

module latch4 (d, en, g, k);
input [3:0] d;
input en, g;
output [3:0] k;
reg [3:0] k;
always (d or en or g)

if (g)
k = d & {en, en, en, en};

endmodule

 y and z are not fully
specified

always @ (control or a or b or c)
begin
if (control > 2)

begin
x = a;
y = b;
z = c;

end
else x = b;

end

237EE432 VLSI Modeling and Design

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 What if bcd is 5?
wire [3:0] bcd;
...
case (bcd)

4’d0: begin zero = 1’b1; {one, two} = 2’b0; end
4’d1: begin {zero, two} = 2’b0; one = 1’b1; end
4’d2: begin {zero, one} = 2’b0; two = 1’b1; end

endcase

 Using default to prevent latch inference
wire [3:0] bcd;
...
case (bcd)

4’d0: begin zero = 1’b1; {one, two} = 2’b0; end
4’d1: begin {zero, two} = 2’b0; one = 1’b1; end
4’d1: begin {zero, one} = 2’b0; two = 1’b1; end
default: {zero, one, two} = 3’bxxx;

endcase

Latch Inference (3)

EE432 VLSI Modeling and Design 238

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Why latches are inferred?
wire [3:0] bcd;
...
case (bcd)

4’d0: zero = 1’b1;
4’d1: one = 1’b1;
4’d1: two = 1’b1;
default: {zero, one, two} = 3’xxx;

endcase

 Using full_case directive to prevent latch inference
wire [3:0] bcd;
...
case (bcd) //synopsys full_case

4’d0: begin zero = 1’b1; {one, two} = 2’b0; end
4’d1: begin {zero, two} = 2’b0; one = 1’b1; end
4’d1: begin {zero, one} = 2’b0; two = 1’b1; end

endcase

Latch Inference (4)

EE432 VLSI Modeling and Design 239

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

always (posedge CLK)
begin

if (enable)
out = (~condition) ? in : out;

else
out = 1’bz;

end

Registered Three-State

EE432 VLSI Modeling and Design 240

CLK

in

condition

out

enable

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;
reg [2:0] count;

always @ (posedge clock) begin
if (reset)

count = 0;
else

begin
count = count + 1;
and_bits = &count;
or_bits = |count;
xor_bits = ^count;

end
end

Endmodule //Six inferred registers

Inefficient Description

EE432 VLSI Modeling and Design 241

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Separate combinational and sequential circuits
module count (clock, reset, and_bits, or_bits, xor_bits);
input clock, reset;
output and_bits, or_bits, xor_bits;
reg and_bits, or_bits, xor_bits;
reg [2:0] count;

always @ (posedge clock) begin
if (reset)

count = 0;
else

count = count + 1;
end
always @ (count) begin // combinational circuits

and_bits = &count;
or_bits = |count;
xor_bits = ^count;

end
endmodule \\Three registers are inferred

Efficient Description

EE432 VLSI Modeling and Design 242

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 An example

Pipelines

EE432 VLSI Modeling and Design 243

comb.
circuits

Flip-
Flops

comb.
circuits

Flip-
Flops

comb.
circuits

Flip-
Flops

a

b

DFF

DFFc

n-sum
sum

d-c

p
DFF

out

assign n_sum = a + b;

assign p = sum*d_c;

// plus D flip-flops

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Moore mode1

 Mealy model

Finite State Machine

EE432 VLSI Modeling and Design 244

comb.
circuit

memory
elements

comb.
circuits

inputs

next
state

present
state outputs

comb.
circuit

memory
elements

comb.
circuits

inputs

next
state

present
state outputs

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module mealy (in1, in2, clk, reset, out);
input in1, in2, clk, reset;
output out;
reg present_state, next_state, out;

// state flip-flops
always @ (posedge clk or negedge reset)

if (!reset)
present_state = 0;

else
present_state = next_state;

// combinational circuits
always @ (in1 or in2 or present_state)

case (present_state)
0: begin

next_state = 1;
out = 1’b0;

end
1: begin

next_state = 0;
out = 1’b1;

end
endcase

endmodule

Mealy Machine Example

EE432 VLSI Modeling and Design 245

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Traffic Light Controller

A FSM Example

EE432 VLSI Modeling and Design 246

Farmroad

Farmroad

Highway

Highway

c

c

FL

FL

HL

HL

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Input Signal Description

Reset place control in initial state

C detects vehicle on farmroad in either direction

TS short timer interval has expired

TL long timer interval has expired

 Output Signal Description

HG, HY, HR assert green, yellow, red highway lights

FG, FY, FR assert green, yellow, red farmroad lights

ST commence timing a long or short interval

 State Description

S0 highway green (farmroad red)

S1 highway yellow (farmroad red)

S2 farmroad green (highway red)

S3 farmroad yellow (highway red)

Specification

EE432 VLSI Modeling and Design 247

fAcUlty of engineering - AlexAndriA University 2014

State Transition Diagram

S0

S1

S2

S3

Reset

TS/STTL*C/ST

TS/ST TL+C/ST

TL+C

TL*C

TS TS

S0: HG
S1: HY
S2: FG
S3: FY

EE432 VLSI Modeling and Design 248

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

module traffic_light (HG, HY, HR, FG, FY, FR, ST_o, tl, ts, clk, reset, c);

output HG, HY, HR, FG, FY, FR, ST_o;

input tl, ts, clk, reset, c;

reg ST_o, ST;

reg [0:1] state, next_state;

parameter EVEN=0, ODD=1;

parameter S0=2b’00, S1=2b’01, S2=2b’10, S3=2b’11;

assign HG = (state==S0);

assign HY = (state==S1);

assign HR = (state==S2) || (state==S3);

assign FG = (state==S2);

assign FY = (state==S3);

assign FR = (state==S0) || (state==S1);

Verilog Description

EE432 VLSI Modeling and Design 249

fAcUlty of engineering - AlexAndriA University 2014

//flip-flops

always @(posedge clk or posedge reset)

if (reset) // an asynchronous reset

begin

state = S0;

ST_o = 0;

end

else

begin

state = next_state;

ST_o = ST;

end

EE432 VLSI Modeling and Design 250

fAcUlty of engineering - AlexAndriA University 2014

always @(state or c or tl or ts)

case (state) // state
transition

S0:

if (tl & c)

begin

next_state = S1;

ST = 1;

end

else

begin

next_state = S0;

ST = 0;

end

S0

S1

S2

S3

Reset

TS/STTL*C/ST

TS/ST TL+C/ST

TL+C

TL*C

TS TS

EE432 VLSI Modeling and Design 251

fAcUlty of engineering - AlexAndriA University 2014

S1:
if (ts) begin

next_state = S2;
ST = 1;

end
else begin

next_state = S1;
ST = 0;

end
S2:

if (tl | !c) begin
next_state = S3;
ST = 1;

end
else begin

next_state = S2;
ST = 0;

end

TS

S0

S1

S2

S3

Reset

TS/STTL*C/ST

TS/ST TL+C/ST

TL+C

TL*C

TS

EE432 VLSI Modeling and Design 252

fAcUlty of engineering - AlexAndriA University 2014

S3:

if (ts)

begin

next_state = S0;

ST = 1;

end

else

begin

next_state = S3;

ST = 0;

end

endcase

endmodule

S0

S1

S2

S3

Reset

TS/STTL*C/ST

TS/ST TL+C/ST

TL+C

TL*C

TS TS

EE432 VLSI Modeling and Design 253

fAcUlty of engineering - AlexAndriA University 2014

EE432 VLSI Modeling and Design 254

FSM 1

module FSM1(CLK, OP1, OP2);
input CLK;
output OP1, OP2;
reg OP1, OP2;
parameter S0=0, S1=1, S2=2;
reg [1:0] STATE;

always @(posedge CLK)
begin

case (STATE)
S0: begin

OP1 = 1;
OP2 = 1;
STATE=S1;

end

S1: begin
OP1 = 0;
STATE=S2;

end
S2: begin

OP2 = 0;
STATE=S0;

end
default:

STATE=S0;
endcase

end
endmodule

fAcUlty of engineering - AlexAndriA University 2014

EE432 VLSI Modeling and Design 255

FSM 2
module FSM2(CONTROL, CLK,

RESET, Y);
input control, CLK, RESET;
output [0:2] Y;
reg [0:2] Y;
parameter S0=0, S1=1, S2=2,
S3=3;

reg [1:0] STATE;
always @(posedge CLK)

begin
if (RESET) begin

Y=0;
STATE=S0;

end
else

case (STATE)
S0: begin

Y = 1;
STATE=S1;

end

S1: begin
Y = 2;
if (CONTROL == 1)

STATE=S2;
else

STATE=S3;
end

S2: begin
Y=3;
STATE=S3;

end
S3: begin

Y=4;
STATE=S0;

default:
STATE=S0;

endcase
end

endmodule

fAcUlty of engineering - AlexAndriA University 2014

EE432 VLSI Modeling and Design 256

FSM 3
module FSM3(CONTROL, CLK, RESET, Y);

input control, CLK, RESET;
output [0:2] Y;
reg [0:2] Y;
parameter S0=0, S1=1, S2=2, S3=3;
reg [1:0] STATE;

always @(posedge RESET or posedge CLK)
begin

if (RESET)
STATE=S0;

else
case (STATE)

S0: STATE=S1;
S1: if (CONTROL == 1)

STATE=S2;
else

STATE=S3;

S2: STATE=S3;
S3: STATE=S0;
default: STATE=S0;

endcase
end

always @(STATE)
case (STATE)

S0: Y=1;
S1: Y=2;
S2: Y=3
S3: Y=4;
default: Y=0;

endcase
end

endmodule

fAcUlty of engineering - AlexAndriA University 2014

EE432 VLSI Modeling and Design 257

FSM 4
module FSM4(CONTROL, CLK, RESET, Y);

input control, CLK, RESET;
output [0:2] Y;
reg [0:2] Y;
parameter S0=0, S1=1, S2=2, S3=3;
reg [1:0] PRESENT_STATE, NEXT_STATE;

always @(PRESENT_STATE or CONTROL)
begin

Y=0;
NEXT_STATE=S0;
case (PRESENT_STATE)

S0: begin
Y=1;
NEXT_STATE=S1;

end
S1: begin

if (CONTROL == 1)
NEXT_STATE=S2;

else
NEXT_STATE=S3;

S2: begin
Y=3;
NEXT_STATE=S3;

end
S3: begin

Y=4;
STATE=S0;

endcase
end

always @(posedge RESET or
posedge CLK)
begin

if (RESET)
PRESENT_STATE=S0;

else
PRESENT_STATE =

NEXT_STATE;
end

endmodule

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 To compare with “z” (High Impedance) use only equality operators

 Using “==” z is always evaluated FALSE

 Using “!=” z is always evaluated TRUE

Example: (z handling using “==” operator)

if (A ==’bz)
B = 0;

else
B = 1;

// B is always 1 (comparison evaluated FALSE)

Example: (z handling using “!=” operator)
if (A != 4’hz)

B = 4’h0;
else

B = 4’h1;
// B is always 0 in 4-bit hex (comparison evaluated TRUE)

Z Handling

EE432 VLSI Modeling and Design 258

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Tri-state inference

 Tri-state buffer may be inferred from the high impedance
value z.

 When the high impedance value z is assigned to a variable,
the output of the tri-state buffer is disabled.

Example: (Tri-state inference using z handling)

module tri_state(a, b);

parameter N = 15;

input [N:0] a;

input enable;

output [N:0] b;

assign b = (enable) ? a : 16’bz;
endmodule;

Z Handling (2)

EE432 VLSI Modeling and Design 259

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

X (unknown) handling

 Similar to value “z”
 Using “==” x is always evaluated FALSE
 Using “!=” x is always evaluated TRUE

Example: (x handling using “==” operator)
if (A ==’bx)

B = 0;
else

B = 1;
// B is always 1 (comparison evaluated FALSE)

Example: (x handling using “!=” operator)
if (A != 4’hx)

B = 4’h0;
else

B = 4’h1;
// B is always 0 in 4-bit hex (comparison evaluated TRUE)

X Handling

EE432 VLSI Modeling and Design 260

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Resolves the shorting of an output wire receiving
multiple assignments to an AND gate

 Declaring “wand”

 Example
module mywand (a, b, c);

input a, b;
output c;

wand c;

assign c = a;
assign c = b;

endmodule;

Wired-AND

EE432 VLSI Modeling and Design 261

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Resolves the shorting of an output wire receiving
multiple assignments to an OR gate

Declaring “wor”

 Example
module mywor (a, b, c);

input a, b;
output c;

wor c;

assign c = a;
assign c = b;

endmodule;

Wired-OR

EE432 VLSI Modeling and Design 262

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Shorting of an output wire receiving multiple
assignments

Declaring “tri”

 Example
module mytri (a, b, c);

input a, b, control;
output c;

tri c;

assign c = (control ? a : ’bz);
assign c = (control ? ’bz : b);

endmodule;

Tri-State

EE432 VLSI Modeling and Design 263

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Example
module T (A, B, C, D, E, Z);

input A, B, C, D, E;
output Z;

// wor BAT;
// wand BAT;
// tri BAT;
wire BAT;

assign BAT = A & B;
assign BAT = C | D;
assign Z = BAT | E;

endmodule;

Resolution Functions

EE432 VLSI Modeling and Design 264

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Case 1: If BAT is a wire
 Warning: Unable to determine wired-logic type for multiple-driver net ‘BAT’

 Information: Assuming multiple-driver net ‘BAT’ is a wired-AND

 Connects the drivers of BAT using an AND gate

 Case 2: If BAT is a tri
 Warning: In design ‘T’, there is 1 three-state bus with non-three state drivers.

 Connects the drivers of BAT using an AND gate

 Case 3: If BAT is a wand
 Information: In design ‘T’, there is 1 wired-AND net

 Connects the drivers of BAT using an AND gate

 Case 4: If BAT is a word
 Information: In design ‘T’, there is 1 wired-OR net

 Connects the drivers of BAT using an OR gate

Resolution Functions (2)

EE432 VLSI Modeling and Design 265

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Example
module T (A, B, C, D, E, F, G, Z);

input A, B, C, D, E, F, G;
output Z;

// wor BAT;
// wand BAT;
tri BAT;
// wire BAT;

assign BAT = (F ? A&B : ’bz);
assign BAT = (G ? C | D : ’bz);
assign Z = BAT | E;

endmodule;

Resolution Functions (3)

EE432 VLSI Modeling and Design 266

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Case 5: If BAT is a tri

 BAT is shorted after tri-state gates

 Case 6: If BAT is a wire/wand/wor

 BAT is shorted after tri-state gates

Resolution Functions (4)

EE432 VLSI Modeling and Design 267

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Example
module T (A, B, C, D, E, F, G, Z);

input A, B, C, D, E, F, G;
output Z;
// wor BAT;
wand BAT;
// tri BAT;
// wire BAT;
assign BAT = (F ? A&B : ’bz);
assign BAT = C | D;
assign Z = BAT | E;

endmodule;

 Case 7: BAT is a wand/wor/tri/wire

 Warning: In design ‘T’, there is 1 three-state but with non three-
state drivers

 BAT drivers are shorted

Resolution Functions (5)

EE432 VLSI Modeling and Design 268

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Example
module T (A, B, C, D, E, F, G, H, J, Z);

input A, B, C, D, E, F, G, H, J;
output Z;
wor BAT;
// wand BAT;
// tri BAT;
// wire BAT;

assign BAT = (F ? A&B : ’bz);
assign BAT = C | D;
assign BAT = H ^ J;
assign Z = BAT | E;

endmodule;

 Case 8: BAT is a wand/wor/tri/wire

 2nd and 3rd drivers are AND’ed. Could be a bug

Resolution Functions (6)

EE432 VLSI Modeling and Design 269

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

if (A[0] == 0 && A[1] == 0)
B = C;

else if (A[0] == 1 && A[1] == 0)
B = D;

else if (A[0] == 0 && A[1] == 1)
B = E;

else
B = F;

If-Else Statement

EE432 VLSI Modeling and Design 270

fAcUlty of engineering - AlexAndriA University 2014

If-Else Hardware Implementation

A[0]

A[1] B
M

U

X

C D E F

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

case (A)
2’b00: B = C;
2’b01: B = D;
2’b10: B = E;
2’b11: B = F;

endcase

Case Statement

EE432 VLSI Modeling and Design 272

fAcUlty of engineering - AlexAndriA University 2014

Case Hardware Implementation

EQ

A[0]
A[1]

0
0

EQ

A[0]
A[1]

0
0

EQ

A[0]
A[1]

0
0

EQ

A[0]
A[1]

0
0

A[0]

0

A[1]

0

A[0]

A[1]

module
generation

constant
propagation

C D E F

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Sharing common subexpressions
 Data path
 Common block of logic
 Sharing between synchronous and combinational sections

 Adding Structure
 Sharing resource explicitly
 Using parentheses
 Detailing the logic structure

 Using design knowledge
 Bit-width calculation
 Constant propagation

 Understanding hardware implication
 Hardware implication over software efficiency

Modeling for Optimization

EE432 VLSI Modeling and Design 274

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Don’t repeatedly calculate the same operation

Use temporary assignment

 Original

A = B + C + D;

D = F + C + B;

 Modified

E = B + C;

A = E + D;

D = F + E;

Common Subexpression

EE432 VLSI Modeling and Design 275

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

A = B + C + D + F;

Using Parenthesis

EE432 VLSI Modeling and Design 276

A = (B + C) + (D + F);

+

+

+

A B D F

A

+ +

+

A B D F

A

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Original style
if (RST == ’b0) begin

A = 11 - 2;
B = A + 1
D = 12 - B;
C = 2 * D;

end
else

C = B;

 Better style
if (RST == ’b0)

C = 4;
else

C = 10;

Constant Propagation

EE432 VLSI Modeling and Design 277

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 The most straightforward coding is not always the best
choice for actual hardware implementation

Control of Logic Network

EE432 VLSI Modeling and Design 278

/* Verilog Version */
module worst_ver (a, s);

input [4:0] a;
output [4:0] s;
reg [4:0] s; integer 1;

always @ (a) begin
if (a == 0) s = 5’b11110;
else begin

s[0] = a[0] && a[1];
for (I=1; I <= 4; I=I+1)

if (I > a-1’b1)
s[I] = 1’b1;

else
s[I] = 1’b0;

end
end

endmodule

>1
a
1

>2
a
1

>3
a
1

>4
a
1

0
1 MUX

0
1 MUX

0
1 MUX

0
1 MUX

s[1]

s[2]

s[3]

s[4]

s[0]
a[0]
a[1]

Generic logic schematic

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Adding structure information by introduction of temporary variables

Control of Logic Network

EE432 VLSI Modeling and Design 279

>1

>2
a
1

>3

>4

0
1 MUX

0
1 MUX

0
1 MUX

0
1 MUX

s[1]

s[2]

s[3]

s[4]

s[0]
a[0]
a[1]

/* Verilog Version */
module worse_ver (a, s);

input [4:0] a;
output [4:0] s;
reg [4:0] s, tmp;
integer 1;

always @ (a) begin
if (a == 0) s = 5’b11110;
else begin

s[0] = a[0] && a[1];
tmp = a-1;
for (I=1; I <= 4; I=I+1)

if (I > tmp) s[I] = 1’b1;
else s[I] = 1’b0;

end
end

endmodule

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Move constants to one side

Control of Logic Network

EE432 VLSI Modeling and Design 280

/* Verilog Version */
module good_ver (a, s);

input [4:0] a;
output [4:0] s;
reg [4:0] s;
integer 1;

always @ (a) begin
if (a == 0) s = 5’b11110;
else begin

s[0] = a[0] && a[1];
for (I=1; I <= 4; I=I+1)

if (I+1 > a)
s[I] = 1’b1;

else
s[I] = 1’b0;

end
end

endmodule

>1

>2

>3

>4

0
1 MUX

0
1 MUX

0
1 MUX

0
1 MUX

s[1]

s[2]

s[3]

s[4]

s[0]
a[0]
a[1]

a

a

a

a

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Think more as a logic specification than a function specification

Control of Logic Network

EE432 VLSI Modeling and Design 281

/* Verilog Version */
module better_ver (a, s);

input [4:0] a;
output [4:0] s;
reg [4:0] s;
integer 1;

always @ (a) begin
case (a)

5’b00000: s = 5’b11110;
5’b00001: s = 5’b11110;
5’b00010: s = 5’b11100;
5’b00011: s = 5’b11001;
5’b00100: s = 5’b10000;
default: s={4’b0000,a[0]&&a[1]};

endcase
end

endmodule

11110
11110
11100
11001
10000
0000

MUX
s

a[0]

a

a[1]

Generic logic schematic

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Smart comparison
if (CTRL >= 3’b100)
if (CTRL[2] == 1’b1)

 Multiplication vs. shifting
A * 4

A << 2

 Unnecessary operation
if ((cnt+1) == 120)

if (cnt == 119)

Hardware Implication

EE432 VLSI Modeling and Design 282

fAcUlty of engineering - AlexAndriA University 2014fAcUlty of engineering - AlexAndriA University 2014

 Multiplication, division and remainder by variables or
constants (not power of 2)

 Addition and subtraction by variables

 Shifting by non-computable amount

 Non-computable array indexing

 Comparison with variables

 Preferred actions:

 Avoiding

 Simplifying

 Sharing

Complex Operation

EE432 VLSI Modeling and Design 283

