
CHAPTER-1
DIGITAL LAYOUT

IC Mask Design

fAcUlty of engineering - AlexAndriA University

 Close look at automated layout software

 Why automated layout only works with certain cells

 Knowing the circuit really does what it should

 How to know in advance if your floorplan choice is good

 Automated programs getting stuck

 Troubleshooting tips

 Which nets to wire first

 Which nets to wire by hand

Chapter Preview

fAcUlty of engineering - AlexAndriA University

 Techniques to guarantee rule-perfect layout

 Flowchart of digital layout procedures

 Lots of feedback loops

 How to keep the power moving through big cells

 Chicken or egg wiring and timing circle

 Did you really build what you designed?

 How to build quickie chips for testing

Chapter Preview (2)

fAcUlty of engineering - AlexAndriA University

 The majority of integrated circuits built today are large making

it impossible for a mask designer to manually layout the chip

 The majority of large digital chips are laid out with the

assistance of computer-aided tools

 Understanding how these automated digital layout tools

operate allows you to develop skillful daily habits in your work

Opening Thoughts on Standard Cell Techniques

fAcUlty of engineering - AlexAndriA University

Design Process

Verifying the Circuitry Logic

HDL Coding

Functional
Simulation

Compiling a Netlist

Logic Synthesis

Drive Strength
(Fanout)

Buffer Cells

Clock tree
synthesis

Floorplanning

Block placement

Gate Grouping

Block-level
Connectivity

Using Fly-lines

Timing Checks

Placement

I/O Drivers
Routing

Power Nets

Clock Net
Wiring

Other Critical
Nets

Remaining Nets

Finishing the
wiring by hands

fAcUlty of engineering - AlexAndriA University

 Circuit designers typically use languages called VHDL or Verilog
to design their enormous digital circuits

 These HDL data files are then submitted to a computer
simulator, which tests the chip circuitry while it is still in
software form

 The simulator needs to have process-specific descriptions and
physical representations of each logic function it wants to use,
such as rise time, fall time, gate propagation delays

 All of these files are collectively known as a standard cell library
or logic library

 The company that is supplying your silicon usually provides a
standard cell library

Verifying the Circuitry Logic

fAcUlty of engineering - AlexAndriA University

Example: VHDL Code Segment

fAcUlty of engineering - AlexAndriA University

 The HDL code will be fed to a silicon compiler or logic
synthesizer that translates the high HDL code into a file that
contains all the required logic functions, as well as how they are
to be connected to each other

 The file basically says, for example, “In order to add two 16-bit
numbers together, I need 25 gates and here’s how they should
be connected.”

 This file, called a netlist, will drive your automated layout tools

 At this point, we know what gates we need, and we know how
they must be eventually wired to each other

 The automated synthesis tool controls the circuit parameters
such as speed, area, and power according to the design needs

Compiling a Netlist

fAcUlty of engineering - AlexAndriA University

Example: A Netlist Segment

fAcUlty of engineering - AlexAndriA University

 If we try to drive too many gates from a single source, we might
overload our driving transistors and the circuit will not work

 Therefore, before we can start layout, we need to modify the
netlist to make sure that these large nets are adequately driven

 To do this, we replace the cells that are driving the net with cells
of identical logic function that have larger driving capability (also
called drive strength or fanout)

 The fan out number indicates how many devices a gate can drive

 For example, we might see that our cell library has 10 or 15
different sizes of inverters.

 These inverter selections might be referred to as 1x, 2x,or 4x
inverters where x indicates the drive strength

Drive Strength

fAcUlty of engineering - AlexAndriA University

Example: Inverters with Various Drive Strength

fAcUlty of engineering - AlexAndriA University

 If the compiler breaks a large net into smaller, more
easily driven sections, it will insert additional gates to
drive each smaller newly created net.

 These extra gates are not part of the original logic
and called buffer cells

 Buffer cells help drive gate and wiring capacitance
but has no logic function associated with it

 In the next slide, we will see an example of how the
compiler uses these concepts to drive a large clock
net

Buffer Cells

fAcUlty of engineering - AlexAndriA University

 The wiring nets for the clock signal are called clock
nets.

 A clock net is usually very large and connected to
thousands of gates

 It is impossible to create a cell with enough drive
strength to drive all the gates on a clock net

 We split the clock net into smaller sections and add
buffer cells

 The net is split into a branching-out pattern, called a
clock tree

Clock Tree Synthesis

fAcUlty of engineering - AlexAndriA University

Example: Clock Tree

fAcUlty of engineering - AlexAndriA University

 With a large number of added buffer cells, the extra cells will
introduce extra delays that were not accounted for in the
original simulations

 Not only that, but other large nets may require this same sort
of tree synthesis as well, adding even more buffer cells, also
creating delays

 Therefore, once the clock net is synthesized, and any other
large fan out nets are buffered, we need to re-simulate our
design using the compiled net list. Compiling creates a need to
re-simulate

 This sort of iteration is common in chip development

Post-Synthesis Simulation

fAcUlty of engineering - AlexAndriA University

 We are now ready to use a suite, or package, of
automated software tools called the place and route
tools

 Place and route tools cover the gamut of higher
level and lower level software assistance leading to
your final layout

 As the name implies, these programs generally place
the gates and route the wires, in addition to other
helpful functions

Layout Process

fAcUlty of engineering - AlexAndriA University

 A floorplanning tool will help you create areas of
functionality on your chip, determine the
connectivity between these areas, determine your
I/O pad placements, and give you feedback on how
easy your floorplan might be to wire

 The floorplanning tool gets its connectivity and gate
information based on the netlist file, created by the
compiler software

 Let’s follow the floorplanning tool in more detail,
beginning with your initial decisions

Floorplanning

fAcUlty of engineering - AlexAndriA University

 Typically, your chip will be divided into various
functional areas

 For example, if you are working on a large digital
chip, there might be a microprocessor unit in your
chip (MPU), perhaps a floating point unit (FPU),
maybe a RAM block and a ROM block

 Using the floorplanning tool you decide location of
each area of functionality and you will have a chance
to change these decisions later to get a better
floorplan

Block Placement

fAcUlty of engineering - AlexAndriA University

Example: Floorplanning

fAcUlty of engineering - AlexAndriA University

 Once your areas of functionality are specified, the first task you
would want to do is gather together, to some degree, the gates
used in each block

 For example, you do not want FPU gates scattered throughout
the ROM or RAM blocks

 Associated gates should all be located near each other where
the floorplanning tool helps to gather your gates together

 The exact placement of each gate is not determined at this
point.

Gate Grouping

fAcUlty of engineering - AlexAndriA University

 Next, your floorplanning tool will help you place the input and
output (I/O) cells of your chip

 For instance, you would want all the inputs that go to the FPU
close to the FPU block in the corner

 To help you with this, some tools will actually place the I/O
cells in the appropriate areas automatically; other tools will
provide graphic feedback for you based on your placement
decisions

 The floorplanning tool also shows basic wiring connections that
must travel between blocks

 It will show connections between the FPU and the RAM blocks,
for example.

Block Level Connectivity

fAcUlty of engineering - AlexAndriA University

Example: Block-Level and I/Os Connectivity

fAcUlty of engineering - AlexAndriA University

 The floorplanning tool will show you all the wiring
lines coming from each block connecting to the I/O
pads and to other blocks.

 All these myriad of wiring lines are what most tools
call rat’s nestsorflylines

 You will make changes to your block floorplan so
that your rat’s nest eventually looks as clean, nice,
and wireable as possible

 You might decide to relocate entire areas of
functionality.

Using Flylines

fAcUlty of engineering - AlexAndriA University

Example: Using Flylines

fAcUlty of engineering - AlexAndriA University

 Since the final floorplanning tool output files specify where the
gates will be generally located, the placement tool roughly
knows how long all the wires will be

 These wiring length estimations are based on the physical
dimensions of the digital library

 Using this information, your floorplanning tool can output an
estimated wire length file that goes back into the digital circuit
simulator

 You now can runsome simulations to determine how your
estimated wiring lengths will affect your digital circuit

 If the wire lengths are indeed overly affecting the circuit timing,
the designer will need to modify either the floorplan or netlist

Timing Checks

fAcUlty of engineering - AlexAndriA University

The floorplan/Timing Loop

fAcUlty of engineering - AlexAndriA University

 The exact positions of all the logic gates within each block is
specified using a placement tool

 The placement software starts by selecting one block to work
with and looks for components associated with the selected block

 The placement software continues placing logic gates based on
their connectivity and the output files from the floorplanning tool

 The initial placement scheme can be considered just a first pass

 Device placement might require multiple passes based on the tool

 There are placement tools available that can make gate placement
decisions based upon the signal timing of a design

 This placement approach is known astiming-driven layoutand has
quickly become standard practice

Placement

fAcUlty of engineering - AlexAndriA University

 The I/O drivers are placed at the placement phase

 These I/O drivers are the special cells that will drive the input
signals, provide outputs, contain protection and test circuitry

 These drivers are placed using separate placement tools that
know about the I/O rules

 They place the I/O pads separately from the placement of the
standard logic cells

 Finally, after all these automated tools and all the timing
feedback looping, you have the best placement you think you
can reasonably make

I/O Drivers

fAcUlty of engineering - AlexAndriA University

 With your gates and I/O cells nailed in place, you
will now start to wire everything together

 The routing tool has two priority nets—power and
clock signals

 It will route these two types of nets first since they
are the most critical

 After the power rails and the clock signals have been
placed, your wiring software will continue to wire
the remainder of the circuitry, beginning with any
other circuitry you declare as critical

Routing

fAcUlty of engineering - AlexAndriA University

 There are certain rules for connecting power to
logic gates

 Wiring must be centered in certain places and run in
certain directions

 You end up with power rails running through the
middle of your gates

 The wiring software is driven by the net list, which is
aware of every component

 Therefore, it can tell you when it has completed
wiring the power nets

Power Nets

fAcUlty of engineering - AlexAndriA University

Example: Power Rails Routing

fAcUlty of engineering - AlexAndriA University

 In Figure, notice the highlighted cell at the far upper right
corner, farthest from the VDD input pad.

 Distant cells see more resistance through the rails due to the
length of wire

Strapping

 By laying straps of
metal across your
power rails, you create
a big waffle iron

 grid of multiple paths.
Now it’s like having
resistors in parallel.
The overall resistance
reduces

fAcUlty of engineering - AlexAndriA University

 Once you have finished running the power rails, your software
usually offers a specialized tool just to wire all the clock nets

 You can use the Central Clock Trunk Approach

 There is usually a clock driver cell that has enough drive
strength to drive the top level clock buffers

 Place that cell centrally within your design and create a large
central trunk that branches out to join to all the clock buffers.

 As the net reaches further out from the main driver, it
continually splits into more and finer branches

 The wire widths at the outer edges become smaller and
smaller

Clock Net Wiring

fAcUlty of engineering - AlexAndriA University

Central Clock Trunk Approach to wiring clock nets

fAcUlty of engineering - AlexAndriA University

 At this point, we turn to any other nets that need special
attention

 You wire the critical nets that you are most worried about first,
maybe by hand

 This process can be semi-automated under your guidance

 The last thing you do is wire the rest of the circuitry

 The tool will know how to automatically wire everything else
on its own

 When the auto-router finishes as well as it can, you might end
up with all the wiring hooked up on your chip or you might not

 Usually you will have to use the human eye, break some nets,
and move stuff around, in order to complete the wiring

Finishing the Wiring

fAcUlty of engineering - AlexAndriA University

 All of the above techniques can be used on gate
arrays such as FPGAs

 You will still use floorplanning tools, placement tools,
and wiring tools

 However, you are not placing any diffusion or poly,
only metalization and contact layers

Prefabricated Gate Array Chips

fAcUlty of engineering - AlexAndriA University

 You feed your new wiring file back to the simulation people
again which simulate with the actual wire data.

 No more estimation as the wiring is physically in place this time

 If the post place and route verification fails you need to
redesign

 You might need to go back just one or two steps or you might
need to start all over again

 Eventually, when all the timing is done, all the wiring is placed,
and the chip has been re-simulated you will have a finished top-
level layout of your chip

 You have converted a database from a conceptual format into a
real mask design

Design Verification

fAcUlty of engineering - AlexAndriA University

 Up to this point, you have not been
working with real transistors but only just
been working with models

 To complete your mask design, you take
this abstract, high-level database, and
replace the boxes with the real logic gates

 You merge the real components from real
libraries with the wiring and placement
data from the place and route tools

 As you replace the abstract components
with real library components, you produce
a GDSII stream file of your chip

 This is a file that has all the components, all
the wiring of your cells, all your vias,
everything

Physical Verification

fAcUlty of engineering - AlexAndriA University

 Once you get your GDSII stream file, you then will want to run
checks to be sure that the wiring is correct and complete

 At this point, we check all the process design rules using Design
Rule Check (DRC) software

 We also check that the wiring and transistor connectivity
correctly match the connectivity defined in our netlist

 We use Layout Versus Schematic (LVS) software to perform this
connectivity check

DRC and LVS Checks

fAcUlty of engineering - AlexAndriA University

Flowchart of Digital Layout Process

